
Implementing Usage Control in Internet of Things:
A Smart Home Use Case

Antonio La Marra, Fabio Martinelli, Paolo Mori, Andrea Saracino
Istituto di Informatica e Telematica
Consiglio Nazionale delle Ricerche

Pisa, Italy
Email: name.surname@iit.cnr.it

Abstract—Internet of Things (IoT) is a paradigm which has
become extremely popular, with applications spanning from e-
health to industrial controls. IoT architectures are distributed
and often based on constrained devices, which make challenging
the task of introducing security mechanisms, in particular those
requiring dynamic policy evaluation. In this paper we present
UCIoT (Usage Control in IoT), a fault tolerant and adaptable
framework for the enforcement of usage control policies in IoT
environments. UCIoT brings the functionalities of a U-XACML-
based usage control framework on a decentralized, distributed
and Peer-to-Peer (P2P) architecture. In the present work, we
describe an application of UCIoT in a Smart-Home environment,
presenting also two possible use cases where usage control is
exploited to implement a policy for energy saving and a policy
for safety. A set of experiments on real devices is finally presented
to report the performance of the system, measuring the overhead
introduced by the UCIoT framework.

I. INTRODUCTION

In the last years, connected objects are increasingly be-
coming pervasive in our daily life. After that smartphones
and tablets have brought connectivity in our pockets, allowing
users to be seamless connected also in mobility, connected
objects are now rapidly entering our houses. “Gartner, Inc.
forecasts that 8.4 billion connected things will be in use world-
wide in 2017, up 31 percent from 2016, and will reach 20.4
billion by 2020. Total spending on endpoints and services will
reach almost $2 trillion in 2017.”1 These devices are the core
components of a new paradigm known as Internet of Things
(IoT), which becomes smart-home when the devices including
sensors and actuators are installed in a house. Smart house
appliances and smart home devices are gradually entering
our houses, replacing the traditional ones. The first devices
hitting the shelves were smart-TVs, which have been followed
by smart refrigerators, smart thermostats, smart ovens, smart
cameras, smart lights, smart showers, and many others. These
devices, differently from traditional ones, have the possibility
of running an operative system (such as Google Android),
which in several cases allows the installation of additional
applications, for added functionalities and customizability.

However, the connection capabilities of smart devices, as
well as the capability of installing third party software, expose
devices, users and the whole environment (house in case of
smart home setting) to potential security and safety issues.

1Gartner Inc., http://www.gartner.com/newsroom/id/3598917

The security and safety risks can be mitigated by adding
configurable systems for security policy enforcement. The
need for the introduction of Access Control and Usage Control
mechanisms in IoT and smart home environment has been
anticipated by relevant and recent works in literature such as
[3], [17] and [12], reporting also the challenges of introducing
these mechanisms on distributed architectures and constrained
devices, typical of the IoT.

In this paper we present UCIoT (Usage Control in the
Internet of Things), a framework which aims at bringing the
Usage Control on IoT architectures in a seamless, configurable
and dynamic manner. The framework is designed for hetero-
geneous and distributed architectures of connected devices,
evaluating and enforcing security, safety or general purpose
policies by exploiting the expressive U-XACML language
[5]. In particular, this work focuses on an implementation of
UCIoT in a smart home environment, presenting environment
specific policies and reporting experiments on a testbed com-
parable in performance and dimension to a smart home setting.

The contribution of this paper is summarized in the follow-
ing:

• We define UCIoT, a distributed, decentralized, fault tol-
erant and infrastructure independent framework to imple-
ment Usage Control functionalities in IoT systems;

• We discuss an implementation of the UCIoT framework
in a smart home environment, also introducing two poli-
cies for energy saving and physical safety which can be
enforced through UCIoT;

• We report details on the implementation of the UCIoT
framework, which exploits the CHORD-based Apache
Cassandra Distributed Hash Table for enabling the dis-
tributed communication and data storage, reporting the
challenges and implementation choices to decentralize the
UCON functions.

• We present a set of experiments to measure performance
of the proposed framework, to measure the performance
overhead caused by the UCIoT framework on a real
implementation performed on Raspberry PI-32 devices.

The remainder of the paper is organized as follows. In Sec-
tion II describes the UCON components and workflow phases.
Section III describes the UCIoT framework, detailing the

2https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

2017 IEEE Trustcom/BigDataSE/ICESS

2324-9013/17 $31.00 © 2017 IEEE

DOI 10.1109/Trustcom/BigDataSE/ICESS.2017.352

1056

components and the workflow and implementation choices to
adapt UCON components to a distributed architecture. Section
IV reports the performance evaluation of UCIoT documenting
the implementation on a testbed of real devices. Section V
reports a set of related work on access and usage control in IoT
environments. Finally Section VI briefly concludes proposing
some future directions.

II. THE USAGE CONTROL MODEL

The Usage Control (UCON) model [14], [16] extends tra-
ditional access control models introducing mutable attributes
and new decision factors besides authorizations: obligations
and conditions. Mutable attributes represent features of sub-
jects, resources, and environment that change their values as
a consequence of the normal operation of the system [15].
For instance, some mutable attributes change their values
because the policy includes attribute update statements that
are executed before (pre-update), during (on-update), or after
(post-update) the execution of the access. For instance, the e-
wallet balance is a subject attribute which could be decreased
by the policy every time the subject performs a new access to
a resource.

Since mutable attributes change their values during the
usage of an object, the usage control model allows to define
policies which are evaluated before (pre-decision) and contin-
uously during the access to the object (ongoing-decision).

The continuous evaluation of the policy when the access
is in progress is aimed at executing proper countermeasures
(such as interrupting the access) when the execution right is no
more valid, in order to reduce the risk of misuse of resources.
Hence, in the Usage Control model it is crucial to be able
to continuously retrieve the updated values of the mutable
attributes, in order to perform the continuous evaluation of the
policy and to promptly react to the attribute change by taking
proper actions, e.g., by interrupting those ongoing accesses
which are no longer authorized.

Fig. 1: Usage Control System architecture.

This paper takes into account Usage Control systems based
on the XACML reference architecture [13], with particular
reference to the one we presented in [2], [10], which is shown

in Figure 1. In the XACML reference architecture, the Policy
Enforcement Points (PEPs) embedded in the controlled system
intercept the execution of security relevant operations, and
they invoke the Context Handler (CH), which is the frontend
of the Usage Control system. The Policy Information Points
(PIPs) are the components invoked by the CH to retrieve the
attributes required by the Policy Decision Point (PDP) for the
execution of the decision process, i.e., to evaluate the policy
retrieved from the Policy Store (PS). Attributes are managed
by Attribute Managers (AMs), sometimes called Attribute
Providers or Attribute Stores, which provide the interfaces to
retrieve and, in case of mutable Attributes, to update their
current values. Each specific scenario where the Usage Control
system is exploited requires its own set of AMs to manage the
attributes required for the policy evaluation. Hence, PIPs are
properly configured in order to be able to query the specific
AMs adopted in the scenario of interest for retrieving and
updating attributes. In particular, each PIP implements the
specific protocol required to interact with the related AM and
exploits the provided mechanisms for securing the communi-
cations. The Usage Control model emphasizes the role of PIPs
because it introduces the continuous policy enforcement while
an access is in progress to cope with mutable attributes. In
particular, the PIP is also in charge to detect when the value of
an attribute changes in order to trigger the policy re-evaluation
for the involved ongoing accesses, which are managed by the
Session Manager (SM). To detect attribute changes, the PIP
could exploit the subscription mechanism provided by the AM
or the PIP must emulate it if it is not supported by the AM.

The phases of the Usage Control decision process are
regulated by the interactions between the PEP and the Usage
Control systems as follows (derived from [19]):

TryAccess: is the pre-decision phase, which begins when the
Tryaccess message is sent by the PEP to the Usage Control
system because a subject requests to execute the access. The
TryAccess phase finishes when the Usage Control system
sends the response to the PEP. The possible responses are:
PERMIT, to allow the access, or DENY;

StartAccess: is the first part of the ongoing-decision phase,
which begins when the StartAccess message is sent by the
PEP to the Usage Control system because the access has just
started, and finishes when the policy has been evaluated and
the response has been sent back to the PEP;

RevokeAccess: this is the second part of the ongoing-
decision phase. This phase is executed every time an attribute
changes its value. This phase starts when an attribute changes
its value. It finishes when the policy has been evaluate and, if
a policy violation occurs, the RevokeAccess message is sent
by the Usage Control system to the PEP.

When the subject s tries to execute a security relevant action
a, the PEP suspends its execution and retrieves the information
related to this access (subject and resource IDs, etc.). The
PEP sends the TryAccess message with the data previously
collected to the Usage Control system system, which performs
the pre-decision process and returns the result to the PEP,
which enforces it. If the execution of a is permitted, the PEP

1057

sends the StartAccess message to the Usage Control system
as soon as a is started, to start the on-decision phase. Again,
the Usage Control system performs the first evaluation of the
Usage control policy. From this moment on, as long as the
action a is in progress, the Usage Control service evaluates
the Usage Control policy every time an attribute changes its
value, and we call this phase RevokeAccess. If the policy is
violated, the Usage Control system sends the RevokeAccess
message to the PEP, in order to take proper countermeasures.

III. THE UCIOT FRAMEWORK

This section describes the proposed framework which im-
plements Usage Control on the IoT devices installed in a Smart
Home scenario. Though the paradigm of Usage Control has
been already successfully applied in several scenarios bring-
ing, for example, the Usage Control System (UCS) in Cloud
[2], and on Android devices [11], the present work faces the
challenge of decentralizing the UCS functionalities proposing
a distributed a Peer-to-Peer (P2P) architecture for constrained
devices, such as the Smart Home ones. In particular, the
majority of devices that we are considering, Smart Cameras,
Smart TVs, Smart Thermostat, Smart Lights, Smart Oven,
have limited computational power and storage capabilities,
hence they are not suitable to handle and evaluate all the
requests which might be issued in a smart home environment,
nor to store needed information for policy reevaluation for
all the active sessions. As will be detailed in the following,
UCIoT partially replicates the functionalities of the UCS on
each P2P node. Also, any policy evaluation can be performed
by any of the nodes which can exploit the attributes collected
from the other nodes. These two features enable respectively
fault tolerance and higher complexity for enforced policies.

Another relevant advantage of such a distributed system
concerns the fault tolerance aspects, because the failure of one
(or of a number of) device(s) can be tolerated as long as the
system can be executed on the remaining ones.

Moreover, being distributed and exploiting several devices,
UCIoT allows the Usage Control framework to exploit the data
collected from the sensors of all these devices, thus allowing
to define more complex policies.

A. Architecture

The architecture of UCIoT framework, depicted in Figure 2,
is a distributed P2P framework, where each node represents
a smart device logically connected to all the others through
a Distributed Hash Table (DHT) [1]. In particular, the DHT
exploited by UCIoT is the Cassandra protocol [8], based on
a modified version of the CHORD DHT, which also includes
a non-relational distributed database, used by several popular
applications such as Facebook.

We consider as smart device any house appliance, sensor,
actuator, board, computer, smartphone, or other device which
is running an operative system which is able to install and
run third party applications. Every smart device will be thus
considered a P2P node, whilst connected devices not matching
these specifications will be considered as peripherals of a

Fig. 2: Logical architecture of UCIoT.

specific node, logically incorporated in the node itself. Some
elements of the smart devices environment could even have
also an acceptable computational power, a consistent power
autonomy, still with limited storage space. Given the capabili-
ties of smart devices, the UCS can be installed as a third party
app and run on any smart device in UCIoT.

At network and datalink layer, the used communication pro-
tocol is ad-hoc wireless which, being completely distributed,
does not rely on the presence of a single router node, which
might represent a single point of failure in the network.
Thus, thanks to the DHT protocol and to the ad-hoc wireless,
communication among smart devices will still be possible if a
limited subset is switched off or malfunctioning. The network
protocol is completely oblivious to the applications running on
the smart devices, thus smart devices will exchange messages
as if they are connected to the same Wireless-LAN.

A representation of the logical architecture components
of UCIoT in a single node is shown in As anticipated, the

Fig. 3: Logical architecture of a UCIoT node.

functionalities of UCS are replicated on every device, which
can thus decide to permit or deny the access/usage to an
operation, or a resource that it controls. This request can be
issued by physical users, other smart or peripheral devices and

1058

is matched against usage control policies stored locally by the
UCS. More specifically, every smart device runs (i) the Policy
Administration Point (PAP) to store policies, (ii) an instance of
the Policy Decision Point (PDP) to match request and policies
and deciding to permit or deny the resource usage, (iii) a set of
Policy Information Points (PIP) to query local attributes, (iv)
a Context Handler (CH) to manage the interaction among the
various components. The main difference with the UCON ar-
chitecture presented in our previous works lays in the Session
Manager, for which UCIoT take advantage of the distributed
database offered by Cassandra. In fact, since smart devices
have limited memory storage and the number of managed
sessions will be likely unbalanced among devices in a smart
home settings, the set of active sessions are saved in the DHT,
to efficiently use the global memory storage offered by all
the devices. Moreover, thanks to the configurable replication
factor, the SM is not prone to single point of failure issues. The
other main difference with previous UCON architectures is the
presence of remote attributes. An attribute is considered local
to a node when the Attribute Manager (AM) is queried directly
by one of the PIPs belonging to the UCS of that node (see
Figure 2). However, in UCIoT is possible that not all attributes
needed to evaluate a policy are local, i.e. some attributes are
local to other smart devices and are thus considered remote.
To abstract this procedure to the UCS local to the evaluating
device, an abstract component named remote PIP is added to
all UCSs, and it is in charge of interacting with the remote
smart device to retrieve the attribute. The remote PIP retrieves
the identifier of the node physically connected to the AM
by the attribute table stored in the DHT, then retrieves the
attribute according to the procedure described in the following
subsection. r, we defined two distinct strategies to collect the
remote attributes required to perform the decision process.

B. Workflow

The operations performed by UCIoT are equivalent to
the one performed by the UCON framework described in
Section II. The main difference in the workflow is introduced
by the presence of remote attributes and by the distributed
Session Manager. UCIoT has been designed with the aim of
reducing as much as possible the differences in the workflow
with respect to the standard UCON workflow, despite the
distributiveness of the architecture where it is applied.

As anticipated, the SM is stored on the Apache Cassandra
DHT database, which brings the advantages of increased
storage space, tackling thus the issue of memory constrained
devices, and ensures fault tolerance thanks to the replication
factor, storing data of sessions related to temporarily unavail-
able devices. The DHT database also masks the underlying
distributed architecture of the database to the application level,
leaving thus the functionalities of the SM unmodified.

On the other hand, remote attributes introduce some ad-
ditional challenges, requiring thus a small alteration of the
usual workflow and UCON architecture. As anticipated, the
problem of remote attributes consists of collecting the value of
attributes from AMs connected to a UCS node different from

the one evaluating the policy. To this end, we introduce in each
node a component which abstracts the procedure of collecting
the remote attributes, named PIP remote. This PIP exploits
the Attribute Table stored on the DHT which memorizes, for
each attribute, the node whose AM is physically connected
to. Hence, when a remote attribute is needed, the local CH
reaches through the DHT the CH of the interested node (CH
rem in Figure 4), which will instruct the local PIP (PIP loc in
Figure 4) to retrieve the attribute value, which is then returned
to the local CH.

The complete workflow of the retrieval of a remote attribute
is depicted in Figure 4. In particular, Figure 4 represents the

Fig. 4: TryAccess sequence diagram with remote attribute
retrieval.

workflow of the TryAccess request issued by the PEP, detailing
the message exchange between the various components. For
the sake of simplicity and clarity of representation, no local
attributes are retrieved in the represented workflow. The re-
mote attribute retrieval is performed also for the StartAccess,
which is identical to the TryAccess in workflow, except for
the addition of the started session to the distributed SM and
for the subscription of the remote CH to the remote mutable
attributes. Thus, if a remote attribute changes its value the
remote CH is notified, and the new value is sent back to the
local CH for policy reevaluation and possible revocation.

C. Implementation

The current implementation of the UCIoT framework con-
sists of a Java application, shipped in the form of a jar file,
which can be installed on any device running a JRE. When
installed, the application will instantiate on the devices the
DHT for the distributed database and to handle communication
with other nodes belonging to the same network. The installed
application includes the full UCS, where the CH and PDP
are not altered with respect to the standard UCON model.
The SM is installed in the distributed database handled by
the DHT, which will also handle the data replication. The
distributed database also hosts the attribute table, which keeps
the correspondence among the attributes and the node to which
the AM is physically connected, hence it can be queried and
possibly updated by any node. As it happens in the standard
UCON framework, PIPs and PEPs will be device specific,

1059

to be interfaced with actuators and sensors proper of the
specific device. The single instances of the UCIoT application
are dynamically configurable and the code related to specific
PIPs and PEPs can be loaded at runtime by exploiting Java
reflection.

D. Relevant Use Cases

Several distinct Smart Home scenarios can be successfully
addressed exploiting the proposed framework. As a matter
of fact, several kind of policies can be defined and enforced
through the proposed framework, such as safety and security
policies, energy saving policies, and so on. For example the
following safety policy can be defined and enforced with the
proposed system: “The burner of a smart oven can be on if the
system is healthy, and if there is at least an adult in the kitchen
when a child is also present.”A schematic representation of this
use case is shown in Figure 5. This policy aims at protecting

Fig. 5: Smart oven safety and parental control use case.

the house from gas leak and reducing the possibility that a
child gets hurt or burned by touching the oven, due to the
missing surveillance of an adult. This safety policy requires
the presence of a smart oven3, able to check that there are not
physical failures such as gas leak, which enforces the usage
control policy preventing the burners to be lighted and by
turning off them, as soon as the policy is not matched anymore.
It is also required the presence of one or more smart cameras
in the kitchen, to detect who is present, which is also able to
discern among children and adults. Implementing UCIoT in
this specific scenario, will consider both the oven and the smart
camera as nodes of the UCIoT architecture. In particular, the
aforementioned policy will be evaluated and enforced on the
oven node which will thus include the PEP, whose actuator is
the burner controller valve. Evaluating the policy will require
thus a local attribute, i.e. the health check to avoid gas leak,
and a pair of remote attributes i.e. the number of people present
in the kitchen and the number of children, which are provided
by the camera.

An example of energy saving policy could instead be the
following: “The air-cooling can be on if there are people
in the house and there are no open windows.” A schematic
representation is again reported in Figure 6. In this case we
envision as sensors a set of cameras and/or presence sensors
to verify that someone is effectively present in the house, and
windows sensors to check whether one or more windows are
open. To implement UCIoT in this scenario, the UCS will be

3e.g.: http://www.dacor.com/Products/Ranges

Fig. 6: Setting for energy saving policy based on smart air
cooling control.

installed inside the air cooling system, the anti-theft system of
the house and possibly on smart cameras. Hence, the PEP will
directly interact with the air cooling controller, preventing it
from switching on, or switching it off when the policy is not
matched. The anti-theft will collect the information from the
presence and window sensors to verify that no windows are
opened and that people are effectively in the house. Additional
information on the presence of people, will be provided, as
anticipated by cameras. Thus, the policy will be evaluated
and enforced by the UCS local on the air cooling system (air
conditioner), by exploiting the remote attributes collected by
the PIPs installed on the anti-theft and cameras.

IV. EXPERIMENTAL EVALUATION

As shown, by decentralizing the UCON functionalities, we
enabled the continuous evaluation and enforcement of UCON
policies in constrained devices. The execution of the UCON
framework on such devices and, in particular, the process of
retrieving remote attributes from the other nodes and session
data from the DHT, introduces overhead. To quantify such
overhead and to evaluate its impact on usage in real system,
we conducted on our reference testbed a set of experiments
aimed at measuring the performance of the proposed system
and the results are discussed in the following.

A. The testbed

As anticipated, the testbed consists of five Raspberries PI 3
Model B and is shown in Figure 7. As shown, three devices are
equipped with the Raspberry SenseHat module, which adds to
the simple board sensing capabilities, incorporating sensors for
temperature, humidity, pressure, magnetometer, accelerometer
and gyroscope. The SenseHat also features a led matrix which
can be used to display messages. The two remaining devices
have been equipped with a Pi Camera Module v2, adding thus
the capability of collecting pictures and video. The Raspberry
PI 3 Model B has the following features: 1 GB RAM, 1.2
GHz ARM processor, VideoCore IV 3D graphics core and has
several interfaces for wireless communication, namely 802.11n
WLAN, Bluetooth 4.0 and Bluetooth Low Energy (BLE). For

1060

Fig. 7: Five Raspberries PI 3 used as testbed equipped with
SenseHat and Pi Camera.

our set of experiments, devices are interconnected through
an ad-hoc WiFi network, constituting thus a WANET with
AODV routing protocol [4]. The choice of using WiFi instead
of Bluetooth is due to the higher reliability and greater speed of
WiFi, which also does not require pairing phases as it happens
in Bluetooth. Also, being all devices connected to a power
supply, in the smart home use case it is not necessary to use
low consumption protocols. This hypothesis is sound since
in a smart home, house appliances are generally connected to
power supply and do not rely on batteries. However, it is worth
noting that the UCIoT framework is completely independent
from the routing and data-link protocol.

Sensors and cameras are used in our testbed as AMs,
providing the values for attributes which will be used in
policies. The led matrix is instead used as actuator, hence is
commanded by the PEP, showing a “P ”every time a session
starts, i.e., PDP returns the PERMIT decision for a StartAccess
and “D ”if the access is denied or revoked.

B. Local Evaluation

The first set of experiments, whose time performance is
shown in Figure 8, evaluates the time required to execute
the phases of the policy evaluation process, namely: Try-
Access, Startaccess, and RevokeAccess (see Section II). The
experiments have been performed enforcing policies including
local attributes only, varying the number of the attributes
required for the decision process from 2 to 50. The time of
the TryAccess phase is measured from the moment when the
access request is sent by the PEP to the CH to the moment
when the PEP receives the response (permit/deny) to this
request. This time affects the user experience because it is
the delay introduced by our framework in the utilization of
the smart home device. The time of the StartAccess phase is
measured from the moment when the evaluation of the policy
is triggered by the PEP because the access just began, to the
moment when the response has been received by the PEP.

Fig. 8: Performance with local attributes.

The time to perform the RevokeAccess phase is measured
from the moment when a given attribute changes its value to
the moment when the PEP receives the revocation response.
Hence, it also includes the time required by the PIP to
detect that an attribute changed its value. The StartAccess and
RevokeAccess phases do not directly introduce any delay in
the utilization of the resource because they are executed while
the access to the resource is already in progress. When a policy
violation is detected, the time required by the StartAccess
phase or by the RevokeAccess one represent the interval while
the resource has been used without holding the related right.
The X axis reports the number of local attributes, nLA, while
the Y axis reports the time in milliseconds. For measuring
the time taken by the RevokeAccess phase, we supposed that
only one of the sessions stored in the DHT requires the re-
evaluation of the policy.

The results of our experiments show that, in case of 2
local attributes, the time required to perform the TryAccess
phase is 252 ms, the StartAccess phase takes 247 ms while
the RevokeAccess phase requires 346 ms. In case of 50
local attributes, instead, the TryAccess phase takes 533, the
StartAccess phase requires 528 ms, while the time to execute
the RevokeAccess phase is 630 ms. First of all, we notice that
the time to execute the TryAccess phase is quite the same as
the time required for the StartAccess phase. The reason is that
the workflows of the two phases are very similar, i.e., they
perform quite the same operations in the same order. Hence,
in case of local attributes, the delay introduced by the UCIoT
framework would not affect the user experience, and the usage
of the resource would be revoked in a short time in case of
policy violation. Moreover, the difference between the time of
the RevokeAccess and of the TryAccess or StartAccess, for
all the attribute values, is mainly due to the time required to
detect that an attribute changes its value.

C. Remote attribute retrieval

The next set of experiments, shown in Figure 9, is aimed
at evaluating the time required to execute the TryAccess and
RevokeAccess phases of the policy evaluation process in case

1061

Fig. 9: Performance with local and remote attributes.

of policies including remote attributes. We omit the time
required for the StartAccess phase since the results of the first
set of experiments show that it is quite the same as the time
of the TryAccess phase. In this set of experiments, the policy
always includes 50 attributes, and we vary the ratio between
local and remote attributes. The policy is written in such a
way that the value of all the 50 attributes have always to be
collected and evaluated to perform the decision process, i.e.,
the UCIoT PDP cannot perform the decision phase exploiting
only a subset of the 50 attributes. We recall that real policies
would embed a smaller number of attributes, hence this can be
considered as a worst case test. For instance, the first policy
described in Section III-D embeds 3 attributes only.

On the X axis of the graph in Figure 9 we report the number
of remote attributes in the enforced policy, nRA. Hence, the
number of local attributes nLA is given by (50−X). In this
case too, for measuring the time taken by the execution of
the RevokeAccess phase, it is supposed that only one session
requires the re-evaluation of the policy. The experiments have
been conducted exploiting two distinct strategies for retrieving
the remote attributes described, namely Policy Driven (PD)
and Sequential Missing Attribute Collection (SMAC). The first
strategy consists of making the CH aware of the policy to
be analyzed, to have a list of the attributes to be queried
by the various PIPs. Hence, the list of attributes is matched
with the Attribute Table stored by the PIP remote, to find the
list of remote attributes, which are then queried temporarily.
The SMAC strategy instead does not perform the lookout in
the attribute table, it simply send the request to the local
PIPs to enrich it and then asks the PDP to evaluate the
enriched request. The PDP will hence return eventual missing
attributes present in the policy, which are queried by means
of the PIP remote. This strategy thus, has the advantage of
postponing the lookout to the attribute table, which is not
performed at all if the needed attributes are all local. The
lookout is instead always present in the PD strategy, which
however shows better performance when the number of remote
attributes is considerable. In fact, in the SMAC strategy, the
PDP returns one missing attributes per time, requiring thus

several consequential lookups and policy reevaluations. This
difference in performances is well shown in Figure 9.

We observe that, when all the attributes are local (i.e.,
nLA = 50,nRA = 0), the time required for the execution of the
TryAccess and RevokeAccess phases is, respectively, about
533 and 630 ms, with no measurable differences among the
two strategies. Hence, the AT lookout time is negligible.

In case of policies with 10 remote attributes (i.e., nLA =
40,nRA = 10), if we adopt the PD strategy the time required
for the execution of the TryAccess phase is 4,2 seconds, while
the time for the RevokeAccess phase is 3,9 seconds. Adopting
the SMAC strategy the times required for the execution
of the two phases are, respectively, 8,8 and 7,7 seconds.
Instead, when the policy embeds remote attributes only (i.e.,
nLA = 0,nRA = 50), the time required for the execution of the
StartAccess and RevokeAccess phases is, respectively, about
16,6 and 17,8 seconds if we adopt the PD strategy, while it
is about, respectively, 38,3 and 40,9 seconds if we adopt the
SMAC strategy.

D. Network delay evaluation

Fig. 10: Performance on emulated devices.

The aim of the third set of experiments, shown in Figure
10, is to evaluate the the overhead introduced by the com-
munications over the network. In particular, we installed the
5 nodes on distinct Virtual Machines running on the same
physical machine, and we measured the time for executing
the TryaAccess and RevokeAccess phases in case of policies
including remote attributes. In this experiments we adopted
the PD strategy for the collection of remote attributes.

The results show that, even in case of 50 remote attributes,
the time to perform the TryAccess and RevokeAccess phases
is less than 2 seconds. Compared with the results of Figure
9 these experiments confirm that the time required for the
communications over the network is the main factor which
affects the overhead introduced by the UCIoT framework.

V. RELATED WORK

The need of introducing access control in IoT environments
has recently been discussed by V. Cerf in [3], where he also
proposed some directions based on the idea of introducing

1062

controlling and verification mechanisms on edge devices.
UCIoT extends this vision, by introducing the more expressive
UCON model and presenting an architecture which can be
easily integrated in both edge and internal devices, given they
have smart device requirements. The author of [18] present
a model to include access control in constrained devices to
be used in IoT. The work mainly focuses on the introduction
in the COAP protocol of an overlay to ensure authenticated
access. On the other hand, UCIoT focuses on usage control
acting at application level, without modifying the standard
communication protocol. In [17], a set of challenges for
security and privacy in IoT is discussed. The paper is not
proposing solutions to the presented issues, still it supports the
claim that a distributed solution, like UCIoT would be more
effective in the IoT environment. The work in [9] presents
a distributed and decentralized architecture for data usage
control. Differently from UCIoT, this work is focused on
controlling the right to access and use data in multi-domain
environment, attempting to ensure that policies are respected
even after data are moved in a different environment with
different control mechanisms. The work in [6] presents a
methodology to enforce data usage control in IoT, to enable
policy protected information sharing, exploiting semantic web
technologies to derive the current context. However, not real
implementation are presented in this work, which, differently
from UCIoT is not focused on the control of operations not
related to data sharing. An architecture featuring distributed
UCS is presented instead in [7], where different UCS homed
on different systems cooperate to find the most reliable value
of a common attribute, whose AM is temporarily unavailable.
In the paper is presented an application to smart cities environ-
ment, still the focus of this paper is on the reputation algorithm
used to measure the reliability of exchanged information.

VI. CONCLUSION AND FUTURE WORK

Introducing security in IoT is a challenging task, which
needs to cope with the distributed, decentralized and con-
strained nature of the IoT architectures. In this paper we have
proposed UCIoT a framework to introduce Usage Control on
IoT architectures, which leverages on the distributed nature
of IoT systems to provide a flexible, dynamic, fault toler-
ant and adaptable framework able to enforce usage control
policies. The paper showed how UCON can be exploited to
implement safety and energy saving policies and demonstrated
the feasibility through implementation on real devices and
performance experiments. Several future work direction might
stem from this prototype, in particular we plan to further opti-
mize performance to make the system able to handle policies
with several remote attributes, by parallelizing the process of
attribute retrieval. Furthermore additional experiments will be
performed in a larger and more heterogeneous environment,
evaluating performance with different routing strategy and
multi-hop use cases.

ACKNOWLEDGEMENT

This work has been partially funded by EU Funded projects
H2020 C3ISP, GA #700294, H2020 NeCS, GA #675320 and
EIT Digital HII on Trusted Cloud Management.

REFERENCES

[1] Hari Balakrishnan, M. Frans Kaashoek, David Karger, Robert Morris,
and Ion Stoica. Looking up data in p2p systems. Commun. ACM,
46(2):43–48, February 2003.

[2] Enrico Carniani, Davide D’Arenzo, Aliaksandr Lazouski, Fabio Mar-
tinelli, and Paolo Mori. Usage control on cloud systems. Future
Generation Comp. Syst., 63:37–55, 2016.

[3] V. G. Cerf. Access control and the internet of things. IEEE Internet
Computing, 19(5):96–c3, Sept 2015.

[4] I. D. Chakeres and E. M. Belding-Royer. Aodv routing protocol
implementation design. In 24th International Conference on Distributed
Computing Systems Workshops, 2004. Proceedings., pages 698–703,
March 2004.

[5] Maurizio Colombo, Aliaksandr Lazouski, Fabio Martinelli, and Paolo
Mori. A proposal on enhancing XACML with continuous usage control
features. In Grids, P2P and Services Computing [Proceedings of the
CoreGRID ERCIM Working Group Workshop on Grids, P2P and Service
Computing, 24 August 2009, Delft, The Netherlands]., pages 133–146,
2009.

[6] P. K. Das, S. Narayanan, N. K. Sharma, A. Joshi, K. Joshi, and T. Finin.
Context-sensitive policy based security in internet of things. In 2016
IEEE International Conference on Smart Computing (SMARTCOMP),
pages 1–6, May 2016.

[7] Mario Faiella, Fabio Martinelli, Paolo Mori, Andrea Saracino, and
Mina Sheikhalishahi. Collaborative attribute retrieval in environment
with faulty attribute managers. In 11th International Conference on
Availability, Reliability and Security, ARES 2016, Salzburg, Austria,
August 31 - September 2, 2016, pages 296–303, 2016.

[8] Dietrich Featherston. cassandra: Principles and application. Department
of Computer Science University of Illinois at Urbana-Champaign, 2010.

[9] Florian Kelbert and Alexander Pretschner. A fully decentralized data
usage control enforcement infrastructure. In Applied Cryptography and
Network Security - 13th International Conference, ACNS 2015, New
York, NY, USA, June 2-5, 2015, Revised Selected Papers, pages 409–
430, 2015.

[10] A. Lazouski, G. Mancini, F. Martinelli, and P. Mori. Usage control
in cloud systems. In The 7th International Conference for Internet
Technology And Secured Transactions,(ICITST-2012), pages 202–207,
2012.

[11] Aliaksandr Lazouski, Fabio Martinelli, Paolo Mori, and Andrea Sara-
cino. Stateful data usage control for android mobile devices. Interna-
tional Journal of Information Security, pages 1–25, 2016.

[12] A. Mordeno and B. Russell. Identity and access management
in the internet of things - summary guidance, 2017.
https://cloudsecurityalliance.org/download/identity-and-access-
management-for-the-iot/.

[13] OASIS. eXtensible Access Control Markup Language (XACML) version
3.0, January 2013.

[14] J. Park and R. Sandhu. The UCONABC usage control model. ACM
Transactions on Information and System Security, 7(1):128–174, 2004.

[15] J. Park, X. Zhang, and R. Sandhu. Attribute mutability in usage control.
In Research Directions in Data and Applications Security XVIII, IFIP
TC11/WG 11.3 Eighteenth Annual Conference on Data and Applications
Security, pages 15–29, 2004.

[16] A. Pretschner, M. Hilty, and D.A. Basin. Distributed usage control.
Communications of the ACM, 49(9):39–44, 2006.

[17] Rodrigo Roman, Jianying Zhou, and Javier Lopez. On the features
and challenges of security and privacy in distributed internet of things.
Computer Networks, 57(10):2266 – 2279, 2013. Towards a Science of
Cyber SecuritySecurity and Identity Architecture for the Future Internet.

[18] Denis Sitenkov, Supervisors-Ludwig Seitz, Shahid Raza, and Göran
Selander. Access control in the internet of things. Master’s thesis,
2014.

[19] Xinwen Zhang, Francesco Parisi-Presicce, Ravi Sandhu, and Jaehong
Park. Formal model and policy specification of usage control. ACM
Transactions on Information and System Security, 8(4):351–387, 2005.

1063

