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a b s t r a c t

In this study, a stochastic programming model is proposed to optimize the performance of a smart micro-
grid in a short term to minimize operating costs and emissions with renewable sources. In order to
achieve an accurate model, the use of a probability density function to predict the wind speed and solar
irradiance is proposed. On the other hand, in order to resolve the power produced from the wind and the
solar renewable uncertainty of sources, the use of demand response programs with the participation of
residential, commercial and industrial consumers is proposed. In this paper, we recommend the use of
incentive-based payments as price offer packages in order to implement demand response programs.
Results of the simulation are considered in three different cases for the optimization of operational costs
and emissions with/without the involvement of demand response. The multi-objective particle swarm
optimization method is utilized to solve this problem. In order to validate the proposed model, it is
employed on a sample smart micro-grid, and the obtained numerical results clearly indicate the impact
of demand side management on reducing the effect of uncertainty induced by the predicted power
generation using wind turbines and solar cells.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Future distribution systems will certainly face the increased
penetration of wind and solar renewable sources, which have an
intermittent natural behavior. This may endanger the security of
the system operation [1,2]. In order to implement advanced plan-
ning for Distributed Energy Resources (DERs) to ensure the eco-
nomic and safe operation of these systems, and Advanced
Measuring Infrastructure (AMI) is necessary [3e5]. AMI establishes
a bidirectional telecommunication between customers and elec-
tricity companies to provide readability, monitoring, and remote
control of meters; data collection and transmission to electricity
companies; processing and analysis of information, as well as the
implementation of energy consumption management in an
attempt to ensure the reliability of the system and to guarantee the
creation of a balance between supply and demand [6e8].

To manage and control a smart microgrid, the structure of the
fax: þ98 4533513957.
(G.R. Aghajani).
AMI system generally includes:

� Smart meters with Power Line Carrier (PLC) communications
installed at the customer premises. The smart meter of medium
and large customers using General Packet Radio Service (GPRS)
could be directly connected to the utility.

� To manage all smart meter measured data from each installa-
tion, Data Concentrators (DC) are installed in the proximity of
20 kV/400 V distribution transformers. Data concentrators
integrate PLC communications that exchange information with
smart meters and communicate with central.

� Meter Data Management Systems (MDMSs) are mainly Meter
Data Management & Repository (MDM/R) systems in which the
received unprocessed data are collected from all meters or
sensors then processed in order to deliver the required data to
distributed system operator and application systems.

One of the main drawbacks in the management of renewable
resources, including wind and solar energies, is the issue of un-
certainty in their behavior, such that before the use of solar and
wind energy and other renewable energies in power system,
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Nomenclature

r total number of residential consumers
c total number of commercial consumers
i total number of industrial consumers
h efficiency of the PV system
Si solar irradiance(kW/m2)
Prs probability of scenarios
aw scale parameter Weibull distribution
bw shape parameter Weibull distribution
Vwind wind speed(m/s)
Vm average wind speed
PR rated power of the wind turbine
Vci cut-in speed of the wind turbine
Vr rated speed of the wind turbine
Vco cut-in speed of the wind turbine
fv(Vwind) wind speed probability density function
Fv(Vwind) wind speed distribution function
Pw(Vwind) power output of WECS(kW)
fPw ðPwÞ probability density function for the power output of

WECS
fPPV ðsiÞ solar irradiance probability density function
FPPV ðsiÞ solar irradiance distribution function
PPV ðsiÞ power output of PVS
Ph power output of HSWPS
fhðPhÞ probability density function for the power output of

HSWPS
RC(r,t) amount of load reduction planned by each residential

consumer in period t
CC(c,t) amount of load reduction planned by each commercial

consumer in period t
IC(i,t) amount of load reduction planned by each industrial

consumer in period t
RCmax

t maximum load reduction proposed by each residential
consumer in period t

CCmax
t maximum load reduction proposed by each

commercial consumer in period t
ICmax

t maximum load reduction proposed by each industrial
consumer in period t

zr;t amount of incentive payment to each residential
consumer in period t

zc;t amount of incentive payment to each commercial
consumer in period t

zi;t amount of incentive payment to each industrial
consumer in period t

FCost total expected cost
FEmission total emissions
COC(t) certain operational cost function
UOC(t) uncertain operational cost function
Pi(t) output power ith unit in period t
piðtÞ offered price ith unit in period t
Ii(t) on and off status of the ith DG in period t
SUi(t) start up or shut down cost of the ith DG in period t
RCDG

i ðtÞ reserve costs of the ith DG in period t

RCDR
j ðtÞ demand response program coats of the j th load in

period t
PGrid(t) active power bought/sold from/to the utility in period t
pGridðtÞ offered price bought/sold from/to the utility in period t
CDG
i;s ðtÞ running cost of the ith DG unit at the t th period in the

sth scenario
CDR
j;s ðtÞ the cost caused by load reduction by the j th DRPs

during the t th period in the sth scenario
ENSn,s(t) amount of involuntarily load shedding in period t and

scenario s
EmiDG(t) average pollution of DG units
EmiGrid(t) average pollution of Grid
CO2;iðtÞ carbon dioxide pollutants of ith DG unit in period t (kg/

MWh)
SO2;iðtÞ sulfur dioxide pollutants of ith DG unit in period t (kg/

MWh)
NOx;iðtÞ nitrogen oxide pollutants of ith DG unit in period t (kg/

MWh)
PDemandL;s

load consumption in period t and scenario s
PDR,s(t) active power participated in DPRs
RDG(i,t) scheduled spinning reserve provided by DG I in period

t
PDG(i,t,s) active output power of DG I in period t and scenario s
Pmin
DG;i minimum output power limit of DG i

Pmax
DG;i maximum output power limit of DG i

Wess(t) battery energy storage at time t
hcharge(hdischarge) charge(discharge) efficiency of the battery

List of abbreviations
PDF Probability Density Function
CDF Cumulative Distribution Function
DRP Demand Response Program
DSM Demand Side Management
DER Distributed Energy Resource
AMI Advanced Metering Infrastructure
DR Demand Response
PSO Particle Swarm Optimization
MOPSO Multi-Objective Particle Swarm Optimization
WES Wind Energy System
PLC Power Line Carrier
DC Data Concentrators
MDM/R Meter Data Management & Repository
PVS Photovoltaic System
PVS Photovoltaic System
HSWPS Hybrid Solar-Wind Power System
DG Distribution Generation
VOLL Value of Lost Load
EENS Expected Energy Not Served
MT Micro-Turbine
WT Wind Turbine
PV Photovoltaic
FC Fuel Cell
PCC Point of Common Coupling
GPRS General Packet Radio Service
MDMS Meter Data Management System
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network operators have always used storage services to manage
production shortages and to create a balance between production
and consumption. Today, with the advent of renewable energies,
such as wind and solar energy, and the lack of certainty in their
production potential, the need to provide storage and find a
solution to resolve this uncertainty is felt more than ever. One of
these solutions is the use of Demand Response Programs (DRPs)
[9,10].

Recently, significant studies have been conducted for better
implementation of demand side management programs and
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modeling their roles in creating a balance between generation and
consumption in the presence of renewable generation, considering
their stochastic behavior. Demand response programs were used in
Ref. [11] to manage the operation of a smart micro-grid with wind
and solar resources, and Particle Swarm Optimization (PSO) algo-
rithmwas applied to solve the proposedmodel so that the pollution
emission function was not considered in modeling the micro-grid
management. Multi-objective operation planning in a smart dis-
tribution grid with wind and solar resources was evaluated in
Ref. [12] as a probabilistic model to reduce operational costs and
emissions; Rayleigh and beta Probability Density Functions (PDFs)
were used for modeling variations in the wind speed and solar
radiation, respectively. In this reference, simultaneous modeling of
solar and wind power generation is not considered, and on the
other hand, the definition of pollution function from elements such
as SO2 and NOx is ignored, and the 3-constraint method is used for
problem-solving. A similar problemwas discussed by Zakariazadeh
et at. in Ref. [13], where a scenario tree approach was used to solve
the problem; in this study, authors have ignored solar power
modeling.

Online optimal management and modeling of a micro-grid with
poly-generation were studied in Ref. [14] the using mesh adaptive
direct search method in which the uncertainty caused by renew-
able generation was ignored. In Ref. [15], using demand response
programs was proposed for controlling the frequency of a smart
microgrid with renewable generation. A multi-objective function
has become a single objective function, and Mixed Integer Liner
Programming (MILP) method is used to solve the proposed model.

The use of demand side management in a smart grid, consid-
ering the wind power generation (wind farm) and the resulting
uncertainty, was studied by Cicke et al. in Ref. [16] in order to in-
crease social welfare. In this research, the authors don't consider
the use of solar power generation and do not use incentive-based
demand response programs that can cause consumers the moti-
vation to participate. Using a stochastic planning approach based
on the Monte Carlo method was suggested in Ref. [17] for modeling
the stochastic behavior of wind and Demand Response (DR)
considering the influence of wind power as an operational storage
in an energy market.

This paper aims to find the optimal operation of the smart
microgrid with the purpose of minimizing operational costs and
emissions and considering the concept of DR in smart grids for
covering the uncertainty caused by wind and solar power genera-
tion and taking into account the stochastic natural behavior. Since
consumer's participation in these programs is considered to be
completely voluntary, an incentive-based demand response
method is proposed for implementing demand response programs.
In this method, programs are considered in the form of offering
packages of price and storage of DR for residential, commercial, and
industrial consumers, where consumers can choose one of the
offered packages and participate in a demand response program
depending on their conditions. Rayleigh and beta PDFs are pro-
posed tomodel thewind and solar power generation. The proposed
multi-objective model is solved by using Multi-Objective Particle
Swarm Optimization (MOPSO) method, considering the Pareto
criterion with nonlinear sorting based on fuzzy mechanism.

In short, the main contributions of this study are:

� The use of DRPs to cover the uncertainty caused by wind and
solar power generation in a smart microgrid by considering the
objective functions related to the operation costs and pollution
emissions.

� Propose the use of offered packages of price strategy in order to
implement demand response programs.
� Use probabilistic modeling of wind, solar, and wind-solar
powers as a function of output power generation to provide
more compliance between planning and reality.

� Consider a probabilistic multi-objective model and use the
MOPSOmethod by considering Pareto criterion and fuzzy-based
mechanism to solve the intended problem.

The rest of this paper is organized as follows: after the Intro-
duction, in Section 2, the problem is described in detail. In Section
3, the studied smart micro-grid is introduced. In Section 4, the
proposed algorithm is presented based on Pareto criterion. In
Section 5, the simulation and analysis of numerical results are
discussed, and finally, the last section reports the important con-
clusions of this study.
2. Statement of the problem

In this study, a probabilistic model is proposed for short-term
energy management in order to minimize the operational cost
and emissions in a smart micro-grid. Due to the stochastic behavior
of wind and solar energies, their accurate prediction is not possible
and is always associated with uncertainty error in next-day plan-
ning. Therefore, to providemore compliance between planning and
reality, a PDF is used to model the behaviors of wind, solar and
hybrid solar-wind power systems in an attempt to obtain optimal
results despite uncertainties. To remove the uncertainty induced by
these resources, incentive-based payment demand response pro-
grams are proposed. However, it is assumed that planning for
generation resources and consumption demands in a smart micro-
grid is performed by the distribution system's operator, which has
the possibility of managing and controlling the grid using distri-
bution management systems and advanced metering infrastruc-
ture. The following section is dedicated to the modeling and
introduction of the objective function.
2.1. Proposed model for Wind Energy System (WES)

Wind turbines convert wind energy into electrical energy.
Output power from the wind turbine depends on parameters, such
as wind availability, wind speed, the wind turbine's power curve,
and shape and size of the turbine. Probabilistic models are devel-
oped based on available historical information; since wind speed is
a stochastic variable, the meteorological data can be appropriate for
Fig. 1. Wind speed distribution model.



G.R. Aghajani et al. / Energy 126 (2017) 622e637 625
estimating the wind energy potential of a site. According to the
wind speed behavior, Rayleigh distribution is used to model wind
[18]. Rayleigh distribution is a particular form of Weibull distribu-
tion in which the shape index is equal to 2. Therefore, assuming aw
as the scale parameter, and bw¼2 as the shape parameter, the
probability density and cumulative distribution functions are as
follows:

FV ðvwindÞ ¼ 1� exp
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vwind
aw
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!
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If vm is considered the average wind speed of a specific site, the
scale parameter is given:
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Therefore, in the case of substituting aw in Probability Density
Function (PDF) and Cumulative Distribution Function (CDF), the
Rayleigh model for Wind Energy System (WES) will be obtained as
a function of average wind speed according to (4) and (5). Fig. 1
demonstrates a sample of probability density and cumulative dis-
tribution functions.
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For a certain WES, the characteristic of the output power can be
defined as below [19]:

PwðvwindÞ ¼

8>>>>><
>>>>>:

0 vwind <vci

PR
ðvwind � vciÞ
ðvr � vciÞ

vci � vwind <vr

PR vr � vwind <vco

0 vwind � vco

(6)

where vci, vr, vco, and vwind are the cut-in speed, rated speed, cut-
off speed, and actual speed of the wind turbine, respectively, and
PR is the rated power of the turbine. The wind turbine used in this
study is of AIR403 type [20], where, PR ¼ 15kW ; vci ¼ 3:5m=s; vco ¼
18m=s; vr ¼ 17:5m=s . Fig. 2 shows the power curve for this wind
turbine.

In this paper, the PDF fPw(Pw) for the output power ofWES can be
obtained using Eqs. (4) and (6) by the application of the trans-
formation theorem [21] as:
fPW ðPwÞ ¼

8>>>>>><
>>>>>>:

1� ½FvðvcoÞ � FvðvciÞ�
�
vr � vci

PR

�
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64�
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@

FvðvcoÞ � FvðvrÞ
2.2. Proposed model for photovoltaic system (PVS)
Photovoltaic generators are systems that convert sunlight into
electricity in a way that the solar system output is entirely
dependent on the amount of sun radiation. Considering the solar
irradiance behavior, beta PDF and CDF are used to model it ac-
cording to (8) and (9) [22,23].

fBðsiÞ ¼

8><
>:

Gðaþ bÞ
GðaÞGðbÞsi

a�1ð1� siÞb�1 0 � si � 1;a � 0;b � 0

0 otherwise

(8)

FBðsiÞ ¼
Zsi
0

Gðaþ bÞ
GðaÞGðbÞsi

a�1ð1� siÞb�1dsi (9)

where si indicates the amount of solar irradiance (kW/m2). a and b

are parameters of beta PDF that can be calculated from the mean
value and standard deviation of solar irradiance data and are uti-
lized as follows:

a ¼ m
�
mð1þ mÞ

s2 � 1
�

(10)

b ¼ ð1� mÞ
�
mð1þ mÞ

s2 � 1
�

(11)

Now, solar irradiance can be converted into solar power using
Eq. (12) [24].

PPVðsiÞ ¼ Ac$h$si (12)

where PPV(si) indicates the amount of output power from PV (kW)
for the amount of irradiance s; Ac is surface areas of the arrays (m2);
and h is efficiency of the PV system.

Therefore, in the case of using Eq. (8), the probability density
function fB(PPV) for the output power of PVS is expressed as follows:

fPPV ðPPVÞ¼

8>><
>>:

GðaþbÞ
GðaÞGðbÞðAchsiÞa�1ð1�AchsiÞb�1 if PPV2½0;PPVðsiÞ

�
0 otherwise

(13)

2.3. Proposed model for hybrid solar-wind power system (HSWPS)

Power generation by hybrid system Ph is equal to total power
output from WES system plus the power output from PVS system.

Ph¼ PwþPPV (14)

Assuming that PW and PPV are independent in terms of perfor-
mance in accordance with relations (6) and (12), density function
Pw ¼ 0

vci þ ðvr � vcÞ Pw
PR

2ffiffiffi
p

p vm

1
A2
3
75 0<Pw <PR

Pw¼ PR

(7)
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Fig. 2. Wind turbine model AIR403 power curve.
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for random variable Ph as convolution between density functions
PW and PPV is defined as follows [25]:

fhðPhÞ ¼ fPW ðPwÞ�fPPV ðPPVÞ (15)

Since representing the continuous PDF in the mathematical
form seems to be difficult, the application of Monte Carlo simula-
tion is used in such cases to achieve different scenarios; yet,
generating different scenarios also adds to the mathematical
complexities of the problem. The appropriate strategy for pre-
venting mathematical complexities is to discretize the continuous
PDF by dividing it into different intervals. Depending on the desired
accuracy, PDF function can be divided into a number of discrete
instants with different possible levels. In this case, the surface
enclosed by each interval represents the median probability of that
interval. Therefore, in this paper, the probability density function
proposed for each wind and solar system is divided into seven
ranges per hour in order to supply the requested power. As a result,
any wind and solar systems have seven scenarios to participate in
production planning every hour.
Fig. 3. Classification of DRPs.
2.4. Model of demand response programs

In the present study, electricity consumers are considered to be
residential, commercial, and industrial, and the following equations
demonstrate themodeling for their behavior. Constraints show that
sum of energy reduction by each consumer at every hour should be
lower or equal to the maximum amount of its offers.

RPðr; tÞ ¼ RCðr; tÞ$zr;t ;RCðr; tÞ � RCmax
t (16)

CPðc; tÞ ¼ CCðc; tÞ$zc;t ;CCðc; tÞ � CCmax
t (17)
IPði; tÞ ¼ ICði; tÞ$zi;t ; ICði; tÞ � ICmax
t (18)

where r, c, and i represent the number of residential, commercial,
and industrial consumers; RC(r,t), CC(c,t), and IC(i,t) indicate the
amount of load reduction planned by each residential, commercial,
and industrial consumer in period t; RCmax

t , CCmax
t , and ICmax

t
indicate the maximum load reduction proposed by each consumer
in period t; zr;t , zc;t , and zi;t show the amount of incentive payment
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to each consumer in period t; and RP(r,t), CP(c,t), and IP(i,t) repre-
sent the cost due to load reduction by residential, commercial, and
industrial consumers in period t for the proposed load reduction,
respectively.

2.5. Objective functions

Demand response can be categorized based on the consumer's
participation in changing their consumption behavior into two
groups of price-based and incentive-based demand response pro-
grams (Fig. 3), and each of these groups is divided into several sub-
groups. More detail is presented in Refs. [9,10].

Since incentive-based responsibility programs deal with price
signals and are considered voluntary, modeling it on the basis of
offering packages of price, given the reduced amount of demand, is
represented as Fig. 4 by considering the demand response pro-
grams based on incentive payment.
COCðtÞ ¼
XNDG

i¼1

½PiðtÞpiðtÞIiðtÞþSUiðtÞjIiðtÞ�Iiðt� 1ÞjþRCDGi ðtÞ
i

þ
XJ
j¼1

RCDRj ðtÞIBuyðtÞPGrid�BuyðtÞpGrid�BuyðtÞ�ISellðtÞPGrid�SellðtÞpGrid�SellðtÞ
(20)
In this study, a multi-objective stochastic programming model
will consider operation costs and pollution emissions in the pres-
ence of distributed generation resources and wind and solar sour-
ces. Moreover, DRPs based on incentive-based payment will be
used to remove the uncertainty caused by the random behavior of
wind and solar resources in a 24-h planning period. In these pro-
grams, demands are considered as responsive residential, com-
mercial, and industrial demand. Fig. 5 shows a clear picture of the
optimization model.

2.5.1. Operational cost function
Here, the operation function is divided into two parts: certain

operational costs - including the fixed running and start-up costs of
Distribution Generations (DGs), spinning and non-spinning reserve
costs provided by DGs, as well as demand response programs - and
costs of power, which is bought/sold from/to the utility; and un-
certain operational costs - by considering and realizing the
Fig. 4. DRP's offer package.
probability of scenario Prs during the t th period and sth scenario,
which are affected by the probabilistic amounts of wind and solar
parameters in each scenario. This part of the operational cost
function includes the running cost of distributed generation units,
cost of load reduction due to demand response programs, and costs
associated with Value of Lost Load (VOLL) and Expected Energy Not
Served (EENS) for consumers.

Min f1ðXÞ ¼
XT
t¼1

FCostðtÞ ¼
XT
t¼1

COCðtÞ þ
XT
t¼1

XS
s¼1

Prs � UOCsðtÞ

(19)

where Prs is the probability of scenario s. Certain and uncertain
operational cost functions are defined according to (20) and (21),
respectively.
UOCsðtÞ ¼
XNDG

i¼1

CDGi;s ðtÞ þ
XJ
j¼1

CDRj;s ðtÞþENSsðtÞ � VOLLðtÞ (21)

where Pi(t) and pi(t) indicate the amount of output power and
offered price for the ith unit during the t th period; binary Ii(t)
represents the on and off mode of the ith DG during the t th period;
SUi(t) shows running and shutting down costs for the ith unit
during the t th period; RCDG

i ðtÞ and RCDR
j ðtÞ are reserve costs of the

ith DG and demand response programs for the j th load during the t
th period; PGrid-Buy(t) and PGrid-sell(t) represent the amount of ex-
change power with utility in period t; pGrid-Buy(t) and pGrid-sell(t)
indicate the offered price for exchange power with utility in the
open electricity market during the t th period; CDG

i;s ðtÞ and CDR
j;s ðtÞ

show the running cost of the ith DG unit and the cost due to load
reduction provided by the j th DRPs during the t th period in the sth
scenario; and ENSs(t) and VOLL(t) are the Expected Energy Not
Served (EENS) in the sth scenario at t th period and Value of Lost
Load (VOLL) at t th period, respectively. In Eq. (19),
XT ¼ ½X1;X2; :::;XT � is the variables state vector that includes active
power produced by each DG, charge and discharge power of the
battery, and the active power exchanging with the upstream grid.

Regarding the operational costs in the proposed model, it is
assumed that DGs, along with the DRs, are the spinning reserve
providers for compensating the uncertainty caused by wind and
solar, renewable generations. Therefore, the DG that is considered
in the off mode at its ground state is turned on to provide reserve
power; thus, fixed and start-up costs of DGs with the possibility
equal to unity are included in the first part of the operational cost
function. In other words, during the occurrence of scenario in on/off
real-time modes, the DG remained constant during the planning,
and output power was only carried out according to the pro-
grammed values for the day ahead. Hence, in the real-time occur-
rence of each scenario, the reverse payment would not change and,
as a result, the reserve cost is considered with the possibility of one
in the first parts of the objective function.



Optimization Model

Participants Objective Function
MOPSO

Customers:
Industrial, Commercial, Residential

Sources:
DG,MT,FC,PV,WT,Batt,Grid

Stochastic model:
WECS and PVS

Operating Cost:
Cost function/constraints

Environmental Cost and Emission

Output Power:

DG, MT, FC, PV, WT, batt, Grid, Customers 

Fig. 5. Optimization model structure.

G.R. Aghajani et al. / Energy 126 (2017) 622e637628
2.5.2. Pollution emissions function
Pollution emissions function includes functions such as the

amount of pollution caused by DG units and the amount of pollu-
tion caused by the grid at the time of purchase. The pollutants
include CO2, SO2, and NOx, and the mathematical model of pollution
emissions function can be obtained as follows:

Min f2ðXÞ ¼
XT
t¼1

FEmissionðtÞ ¼
XT
t¼1

½EmiDGðtÞ þ EmiGridðtÞ
�

(22)

The average pollution caused by renewable DG units can be
calculated as follows:

EmiDGðtÞ ¼
XNDG

i¼1

�
EDGCO2

ðiÞ þ EDGSO2
ðiÞ þ EDGNOx

ðtÞ
�
� PDGi ðtÞ (23)

where EDGCO2
ðiÞ, EDGSO2

ðiÞ, and EDGNOx
ðiÞ indicate the amount of CO2, SO2,

and NOx, pollution caused by the ith DG, respectively, that kg/MWh
is its measurement unit. Similarly, pollution caused by the grid at
the time of energy purchase can be written as follows:

EmiGridðtÞ ¼
�
EGridCO2

þ EGridSO2
þ EGridNOx

Þ � PGridðtÞ (24)
2.6. Problem constraints

The typical smart microgrid is assumed to operate with the
following constraints.
2.6.1. Power balance constraint
The total power generated by DGs purchased from the utility;

and load reduction caused by demand response programs in each
interval and scenario must be equal to the total demand loads.

XNDG

i¼1

PDG;i;sðtÞ þ PGrid;sðtÞ ¼
XNs

l¼1

PDemandl;s
ðtÞ � PDR;sðtÞ (25)

where PDemand l,s is the amount of L th demand level during the t th
period and sth scenario. In Eq. (26), PDR,s(t) is the amount of active
power participation in demand response programs and can be
described as follows:

PDR;sðtÞ ¼
X
r

RCðr; t; sÞ þ
X
c

CCðc; t; sÞ þ
X
i

ICði; t; sÞ (26)
2.6.2. Reserve and DG power constraint
Maximum and minimum power generations by each unit are

constrained and can be expressed as follows:

Pmin
DG;i:Iði; tÞ � PDGði; t; sÞ � Pmax

DG;i$Iði; tÞ ci; t; s (27)

RDGði; tÞ � PDGði; t; sÞ � PDGði; t;0Þ c i; t; s (28)

2.6.3. Battery constraints
Since there are limitations of charging and discharging in stor-

age devices during each time interval, the following limitations and
equations can be expressed for a battery type:

WessðtÞ ¼ Wessðt� 1Þ þ hchargeðtÞPchargeðtÞDt$Icharge
� 1
hdischarge

PdischargeðtÞDt$IdischargeIdischargeðtÞ þ IchargeðtÞ

� 1Wess;min � WessðtÞ � Wess;maxPchargeðtÞ
� Pcharge;max; PdischargeðtÞ � Pdischarge;max

(29)

where, Wess(t) and Wess (t-1) separately; shows the amount of
energy stored within the battery at t and t-1 time; Pcharge (Pdischarge)
is the amount of allowed charge/discharge during a defined period
of time (Dt), hcharge (hdischarge) is battery efficiency during charging/
discharging; Wess,min and Wess,max are lowest and the highest
amounts of energy stored in the battery; and Pchrge,max (Pdischarge,-
max) is maximum battery charge/discharge during each time in-
terval Dt.

2.7. Typical smart microgrid system

A microgrid usually includes a set of DGs, energy reserves, and
load systems that can be operated independently or in conjunction
with the area's main electrical grid [26,27]. Development of micro-
grids is a part of a smart grid concept; due to the advantages of
micro-grids, such as reduced energy costs and improved reliability
and system security, it is obvious that there are common objectives
among micro-grids and smart grids [28]. Also, advantages such as
green technology development and the use of demand response
programs in micro-grids depend on the use of smart grid tech-
nologies. As observed in Fig. 6, the smart micro-grid studied here
has three types of consumers: residential, commercial, and indus-
trial, along with power generation resources such as Micro-Turbine
(MT), Wind Turbine (WT), Photovoltaic (PV) cell, Fuel Cell (FC), and
battery and diesel generators; therefore, this grid has the capacity
to exchange energy with the utility. The installation characteristics



Fig. 6. Typical smart micro-grid system.

Table 1
Bids and emissions coefficient of the DG sources.

Unit Type Bid (Vct/kWh) Start-up/Shut-down Cost (Vct) CO2 (kg/MWh) SO2 (kg/MWh) NOx (kg/MWh) PminðkWÞ PmaxðkWÞ
1 Diesel 0.586 0.15 890 0.0045 0.23 30 300
2 MT 0.457 0.96 720 0.0036 0.1 6 30
3 FC 0.294 1.65 460 0.003 0.0075 3 30
4 PV 2.584 0 0 0 0 0 25
5 WT 1.073 0 0 0 0 0 15
6 Bat 0.38 0 10 0.0002 0.001 �30 30
7 Grid e 0 950 0.5 2.1 �30 30
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are presented in Table 1, which includes DG price offers, cost of
starting up and shutting down of units, amount of greenhouse gas
emissions caused by DGs and utility, as well as minimum and
maximum power generations [29].
3. MOPSO algorithm

Since multi-objective optimization problems include multiple
conflicting objective functions, equality constraints and inequalities
must be optimized simultaneously.

Min FðXÞ ¼ ½ f1ðXÞ f2ðXÞ … fnðXÞ �T

Subject to :

�
giðXÞ<0 i ¼ 1;2; :::;Nueq
hiðXÞ ¼ 0 i ¼ 1;2; :::;Neq

(30)

where F(X) is a vector containing objective functions and X is a
vector containing optimization variables, fi(X) is the objective
function ith; gi(X) and hi(X) are constraints of equality and
inequality; and n is the number of objective functions. For a multi-
objective optimization problem either X or Y solutions can be one of
the two possible solutions. One will dominate another, or none is
dominated by any of the other solutions. Therefore, in an optimi-
zation problem, one solution X will dominate Y if the following two
conditions are met:

c j2f1;2; :::;ng; f jðXÞ � f jðYÞ
d k2f1;2; :::;ng; fkðXÞ< fkðYÞ (31)

Therefore, the Pareto set solutions can be obtained through non-
dominated solutions (desired answers) on search space. Finally, the
answer is obtained among non-dominated solutions stored in the
archive.
In this study, the concept of Pareto optimization is applied to the
basic principles of PSO algorithm [30] (developing the algorithm of
Multi-Objective Particle Swarm Optimization (MOPSO) [31]),
simultaneous minimization of operational costs and emission
functions with renewable generation, and DG and DR which are
carried out. Application of the algorithm to the problem considered
in this study can be accomplished with the following steps.

Step 1: Defining the input data.
These data are related to smart micro-grid technical specifica-

tions and include production capacity, proposed power price, and
the operational and emission costs of DGs. In addition, the data
include the mean values and variance of wind speed and solar
irradiance on the next day, and the requested demand from the
daily load curve.

Step 2: Obtaining the amount of wind and solar power from
proposed equations.

Step 3: Generating an initial population as XT¼[X1, X2, …, XT].
Step 4: Applying a power dispatch algorithm to the generated

population and calculation of fitness function according to Eq. (19)
or (22).

Step 5: Identifying non-dominated solutions.
Step 6: Separating non-dominated solutions and storing them in

an archive.
Step 7: Selecting the best particle from the non-dominated

response archive as a leader.
The process of selecting a leader is as follows:
The explored search space is divided into equal parts and a

probability distribution is distributed to each part. Finally, the best
particle is selected as the leader using the roulette wheel method.

Step 8: Updating the new velocity and position for each particle.
Step 9: Updating the best position for each particle.



Fig. 7. Flowchart of MOPSO algorithm.
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For updating the best position, the particle's new position is
compared with its previous position.

Pbest;iðtþ1Þ¼

8>><
>>:
Pbest;iðtÞ Pbest;iðtÞ3Xiðtþ1Þ
Xiðtþ1Þ Xiðtþ1Þ3Pbest;iðtÞ
select randomly	
Pbest;iðtÞorXiðtþ1Þ
 otherwise

(32)

Step 10: Adding the current non-dominated solutions to the
archive.

Step 11: Removing the dominated solutions from the archive.
Step 12: If the number of members in the archive exceeds the

determined capacity, extra members would be removed.
Step 13: Evaluating the criterion for program termination.
If the maximum number of repetitions is established, the opti-

mization process would stop; otherwise, the current population
would replace the previous population, and the algorithm would
return to Step 7.

Step 14: Selecting the best interactive solution.
In order to choose a better solution from among the obtained

optimal responses, the fuzzy decision-making function with a
membership function is considered, in which the exact number of
variables can be located; where mki represents the optimality
amount of the objective function i in among Pareto optimal
response k, which is calculated as follows:

mki ¼

8>>>>><
>>>>>:

1 fi � fmin
i

fmax
i �f i

fmax
i �fmin

i

fmax
i < f i < fmin

i

0 f i � fmax
i

(33)

where fmax
i and fmin

i are the upper and lower limits of the objective
function i, respectively. In the proposed method, these values are
calculated using optimization results for each objective function. mki
is in the range of 0e1 such that mki ¼ 0 indicates incompatibility of
the solution with the objectives of designer, while mki ¼ 1 repre-
sents full compatibility.

Fig. 7 shows the flowchart of the proposed algorithm used for
solving the optimization problem.

4. Simulation and analysis of numerical results

The smart microgrid connected to the utility in Fig. 6 has three
residential, commercial, and industrial consumers whose load de-
mand from the system and daily load curve are shown in Fig. 8 [32].
It is considered a test system, so that the total energy consumption
during the day is equal to 4034 kWh. The real-time market price of
APX is shown in Fig. 9 [33].

The spinning reserve cost due to DGs is considered to be 20% of
the highest marginal cost of energy generation [34]. Hourly wind
speed data, which are taken from the weather forecast website
(Willy Online Ply Ltd.) [35], are shown in Fig. 10. The solar cell
considered here is a 25 kW SOLAREX MSX, composed of solar
panels of 10✕2.5 kW with h¼18.6% and s¼10m2 [36]; Fig. 11 shows
the average hourly solar irradiance [37].

It is assumed that the power coefficient of the wind turbine and
PV system is equal to 1, while other DGs and loads locally
compensate for the required reactive power through capacitor
placement in the related buses. The value of lost load is considered
to be equal to 1.33 V/kWh [38]. In a typical system, including a
battery with a capacity of 30kWh, minimum andmaximum charges
are considered to be 10% and 100% of the battery capacity,
respectively, with a charge and discharge efficiency of 94% [39,40].
The offered packages provided for demand response programs are
shown in Table 2. For their implementation, it is assumed that 40%
of consumers participate in demand response programs [41].
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To evaluate the effect of planning for energy level, reserve, and
DR in the operational costs and pollution emissions function, and to
resolve the uncertainty caused by wind and solar resources, the
problem is considered in three different conditions:

� Case 1: Considering operational cost and emission functions
without demand response

� Case 2: Considering operational cost and emission functions
with demand response

� Case 3: Simultaneously considering multi-objective functions of
operational costs and emissions

In all the cases, power generation units are supposed to have the
capability of participating in the smart microgrid depending on
their technical and economic characteristics and exchange of en-
ergy with the utility through a Point of Common Coupling (PCC) in
the case of excessive generation and demand. In order to evaluate
the effects of the proposed model, it has been implemented in
MATLAB software on a PC (2.6 MHz with 4 GB of RAM).

Case 1: Operational cost and emission functions without demand
response
2 14 16 18 20 22 24

e(h)

speed forecast.
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Fig. 11. Hourly solar irradiance forecast.

Table 2
Price-quantity offer package for DRPs.

Quantity (kW)

Price (Vct/kWh)

DRP1 0e5 5e10 10e50 50e70
0.06 0.13 0.26 0.36

DRP2 0e5 5e20 20e30 30e60
0.04 0.07 0.28 0.43
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In this case, the operational costs and emission are separately
minimized without considering the DR. The optimal allocation of
the power generation of the units for minimizing the operational
costs and emissions is shown in Tables 3 and 4, respectively. The
results of Table 3 suggest that in the early hours, when the price of
energy is low, the battery starts to be charged, and from 9 to 16,
Table 3
Energy resources scheduling for operation cost objective function without DR.

Hour units

DG (kW) MT (kW) FC(kW)

1 30.000 7.9514 7.283
2 32.287 12.912 27.010
3 45.130 7.189 20.433
4 38.075 6.000 24.565
5 30.000 8.835 13.957
6 37.393 8.068 23.610
7 30.000 12.489 19.287
8 33.650 9.813 26.953
9 104.789 28.719 21.201
10 234.763 6.000 3.213
11 211.313 8.245 19.145
12 283.868 6.000 5.132
13 272.073 6.000 8.400
14 218.992 13.747 24.529
15 213.897 14.123 28.932
16 226.268 13.190 6.804
17 114.225 29.999 29.974
18 95.459 27.799 30.000
19 105.819 29.999 30.000
20 122.196 14.555 29.017
21 155.728 28.322 28.442
22 79.629 28.946 26.685
23 54.699 29.097 25.325
24 31.509 10.515 26.946
when energy prices are high, the utility purchases energy from the
smart microgrid in which the power consumption is provided by
DGs with the priority of offered price. The results of Table 4 show
that, in most operational periods, due to the high pollution of
utility, the utility purchases power from the smart microgrid in
most of the periods. Results in Fig. 12 indicate that, since wind and
solar power are devoid of any pollution most of the time, these
resources reach their maximum power generation by considering
the pollution emission function.

However, since the offered price of these resources is higher
than that of other power generation resources, they cannot receive
much attention when considering the optimal operational cost.
Results reported in Ref. [29] verify this conclusion.

Case 2: Operational cost and emissions functions with demand
response

In this step, operational costs and emissions are separately
minimized with the involvement of DR. The optimal allocation of
power generation of units for minimizing operational costs and
emissions is shown in Tables 5 and 6, respectively.

Comparison of the results presented in Tables 3 and 5 show that,
in the case of using demand response programs, wind power
generation is reduced from 8.51 kW to 7.87 kW, and solar power
generation is reduced from 4.82 kW to 3.34 kW. On the other hand,
comparison of results obtained from the optimization of emission
function with/without DR indicates that use of these programs
reduces the wind and solar power generations from 50.61 kW to
47.39 kW, and from 91.39 kW to 89.50 kW, respectively. Fig.13 shows
the amount of power generation by wind turbine and solar cell
considering the operational cost and pollution emissions with the
involvement of demand response.

According to Fig. 14, it can be said that, considering the pollution
emissions, the use of DRPs reduces the production capacity of wind
turbine and solar cell, and also shifts the demand from peak periods
to off-peak periods. In this case, when the customers participate in
the DR program and accept a reduction of their consumption at a
specific hour, it allows the system operator to reduce the scheduled
power of generating units.

Case 3: Simultaneous consideration of multi-objective operational
WT (kW) PV(kW) Batt (kW) Utility (kW)

0.178 0.000 11.587 30.000
0.178 0.000 �19.688 26.299
0.069 0.000 �19.786 21.963
0.000 0.000 �30.000 29.359
0.403 0.000 �14.207 26.011
0.091 0.000 �21.981 23.818
0.016 0.000 �0.705 22.912
0.063 0.075 26.505 22.939
0.178 0.112 30.000 �30.000
0.000 0.000 �15.975 �30.000
0.000 0.851 15.444 �30.000
0.000 0.000 �30.000 �30.000
0.054 1.695 �28.255 �29.966
0.473 0.342 21.758 �29.843
0.714 0.859 27.265 �29.791
0.300 0.338 24.099 �30.000
0.000 0.550 30.000 25.252
1.741 0.000 30.000 30.000
1.302 0.000 30.000 29.879
0.000 0.000 26.876 27.355
1.300 0.000 30.000 �23.792
0.555 0.000 29.860 29.323
0.717 0.000 25.161 30.000
0.172 0.000 28.682 25.174



Table 4
Energy resources scheduling for emission objective function without DR.

Hour units

DG (kW) MT (kW) FC(kW) WT (kW) PV(kW) Batt (kW) Utility (kW)

1 37.654 17.999 29.918 1.428 0.000 30.000 �30.000
2 30.000 23.862 24.679 0.426 0.000 27.435 �27.403
3 30.000 13.837 26.968 1.428 0.000 30.000 �27.233
4 30.105 6.678 30.000 0.801 0.000 30.000 �29.584
5 30.000 6.000 27.317 1.785 0.000 29.897 �30.000
6 30.000 8.457 30.000 0.4146 0.000 30.000 �27.871
7 32.727 16.279 30.000 1.501 0.000 30.000 �26.508
8 50.717 30.000 29.678 1.305 0.197 29.731 �21.628
9 59.526 30.000 30.000 1.630 3.727 30.000 0.116
10 111.604 29.726 28.456 1.809 7.525 29.507 �10.627
11 125.775 30.000 30.000 8.775 10.449 29.999 �20.000
12 152.640 30.000 29.999 10.410 11.950 29.999 �30.000
13 142.210 30.000 29.988 3.915 23.899 29.984 �29.997
14 164.908 30.000 30.000 2.345 21.050 30.000 �28.304
15 175.367 30.000 30.000 1.780 7.875 30.000 �19.027
16 161.097 29.987 29.019 1.284 4.225 30.000 �14.607
17 158.091 29.869 27.953 1.593 0.493 30.000 �18.000
18 153.215 30.000 30.000 1.785 0.000 30.000 �30.000
19 115.726 30.000 28.812 1.275 0.000 30.000 21.187
20 108.116 29.540 29.986 1.785 0.000 29.469 21.103
21 98.827 30.000 30.000 1.300 0.000 29.873 30.000
22 73.699 30.000 30.000 1.300 0.000 30.000 29.999
23 44.515 29.573 29.999 0.915 0.000 30.000 29.997
24 38.253 29.227 30.000 0.615 0.000 30.000 �5.096
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Fig. 12. Output power (a) Wind turbine (b) Solar cell, considering operating cost and emission without DR.

G.R. Aghajani et al. / Energy 126 (2017) 622e637 633
and emission cost functions
In case 3, the optimal power allocation of the units is carried out

for the simultaneous minimization of operational costs and emis-
sions as two inconsistent functions with/without the involvement
of DR. According to Fig. 15, since the objectives of operational cost
and emissions costs are opposite, moving from initial points on
curves toward the endpoints along the Pareto path is equal to the
change in the operation behavior from low cost and more pollution
to higher cost and low pollution, where the optimal operation point
can be determined by fuzzy mechanisms.

The results of Fig. 15 indicate that, in the case of using demand
response programs, it is possible to improve the optimal operation
point such that the operational cost and pollution emissions are
reduced by 21% and 14%, respectively. Fig. 16 shows the amount of
wind and solar power generation with the minimization of oper-
ational cost function and emissions function, as well as with the
simultaneous minimization of these two functions when demand
response programs are implemented.

The results of Fig. 16 show that maximumwind and solar power
generation is related to the case in which pollution emission is
taken into account; therefore, it is possible to establish a balance
between them by simultaneous optimization.

Results are shown in Table 7 for a better comparison of output
wind power and solar cell power from the perspective of operation
costs and emissions with/without the presence of demand re-
sponses. Results show that among the proposed scenarios, the state
of considering the operation cost is the best state to resolve the
uncertainty resulted from solar and wind resources.

By comparing the results of simulations calculation of requested
power in different cases and the amount of requested energy (4034
kWh), it can be observed that the amount of energy not supplied is
negligible and does not have much impact on the results.



Table 5
Energy resources scheduling for operation cost objective function with DR.

Hour units

DG (kW) MT (kW) FC(kW) WT (kW) PV(kW) Batt (kW) Utility (kW)

1 37.694 12.202 8.359 0.243 0.000 0.473 23.029
2 36.791 12.318 13.077 0.000 0.000 �16.677 23.490
3 32.129 15.173 13.239 0.283 0.000 �19.486 23.662
4 31.252 9.991 21.058 0.178 0.000 �29.479 30.000
5 30.178 7.711 3.304 0.000 0.000 �29.998 3.804
6 32.588 6.000 7.898 0.046 0.000 �3.391 17.859
7 36.320 7.426 25.822 0.459 0.000 �20.765 29.736
8 37.811 13.354 29.065 0.030 0.003 26.825 7.911
9 82.384 10.887 22.688 0.178 0.931 27.931 �30.000
10 163.871 22.707 17.409 0.000 0.672 18.340 �30.000
11 239.305 6.475 5.723 0.000 0.000 �1.503 �30.000
12 205.704 8.094 15.044 0.048 0.377 �4.268 �29.999
13 223.543 6.000 27.248 0.005 0.279 �7.202 �29.875
14 267.051 6.000 5.700 0.000 0.000 �3.751 �30.000
15 217.144 25.307 27.230 0.000 0.000 11.251 �29.932
16 175.002 12.794 26.700 0.131 0.531 5.823 �29.981
17 128.741 27.860 29.831 1.785 0.550 29.066 7.166
18 47.588 30.000 29.854 0.000 0.000 27.804 29.753
19 55.726 29.981 30.000 1.302 0.000 29.990 30.000
20 91.621 29.253 28.888 1.747 0.000 28.817 29.674
21 131.616 25.949 24.737 0.769 0.000 26.608 �29.679
22 101.889 16.946 19.488 0.238 0.000 25.349 26.089
23 30.000 14.163 27.543 0.183 0.000 23.249 29.862
24 31.719 15.337 30.000 0.246 0.000 �22.667 28.365

Table 6
Energy resources scheduling for emission objective function with DR.

Hour units

DG (kW) MT (kW) FC(kW) WT (kW) PV(kW) Batt (kW) Utility (kW)

1 30.000 6.000 11.962 0.178 0.000 28.859 �30.000
2 30.704 10.370 25.188 0.107 0.000 29.056 �26.425
3 30.000 11.401 27.743 0.000 0.000 30.000 �29.143
4 30.000 6.000 3.000 0.000 0.000 19.000 �30.000
5 30.000 6.000 3.000 8.58E-19 0.000 6.000 �30.000
6 30.013 6.010 3.051 0.005 0.000 21.862 �29.941
7 32.110 9.840 29.792 1.205 0.000 30.000 �28.956
8 30.000 10.442 23.967 0.000 0.161 30.000 �24.570
9 35.074 30.000 29.692 1.606 3.249 30.000 15.378
10 39.394 29.719 28.609 3.037 7.525 29.878 19.836
11 80.775 30.000 30.000 8.775 10.450 30.000 30.000
12 106.976 29.999 29.791 10.409 11.335 29.994 11.493
13 42.214 30.000 29.986 3.915 23.900 29.999 29.985
14 129.915 29.997 30.000 2.199 21.050 29.969 1.868
15 126.938 29.918 30.000 1.781 7.127 29.991 20.243
16 71.943 30.000 30.000 1.276 4.158 28.990 24.633
17 57.665 30.000 29.999 1.785 0.550 29.999 30.000
18 67.661 30.000 30.000 1.649 0.000 30.000 5.689
19 102.590 30.000 30.000 1.221 0.000 30.000 23.188
20 96.809 30.000 29.999 1.770 0.000 29.582 �18.161
21 58.733 29.999 30.000 1.294 0.000 30.000 29.974
22 36.309 30.000 30.000 1.300 0.000 30.000 17.390
23 51.233 29.999 29.998 0.757 0.000 30.000 18.013
24 33.639 30.000 30.000 0.123 0.000 29.578 �10.341
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Results are given in Table 7 for a better comparison of solar and
wind generation capacities from the perspective of operating costs
and emissions with/without DR. We see that among the proposed
modes, taking into account operating costs is the best case to
resolve the uncertainty derived from wind and solar resources.
5. Conclusion

In this study, a probabilistic programming was implemented for
the smart microgrid, by considering the DR as the compensation for
uncertainty caused bywind and solar power generation in the form
of an optimization function with two inconsistent objectives. The
total operational cost of the microgrid, and pollution caused by
pollutants were considered in three different conditions. Moreover,
a probabilistic programming method was used to model the sto-
chastic behavior of the wind and solar cells' power generation. For
better performance of the smart microgrid, the possibility of energy
exchange with the utility was assumed.

In order to manage consumption, it is assumed that consumers
can participate in DRPs based on incentive payment. The proposed
price package and the amount of demand reduction are used to run
these programs.
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Fig. 13. Output power (a) Wind turbine (b) Solar cell, considering operating cost and emission with DR.
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Fig. 14. Load demand before and after DR implementation.
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The MOPSO method, based on fuzzy techniques, was used to
solve the proposed model and achieve an optimal response.

The results of the simulations showed that if consumers
participate in DRPs, there is a possibility for reducing the opera-
tional costs and emissions. Among the studied cases, simultaneous
consideration of operational costs and pollution emissions, with
the involvement of DR, produced the best results by reducing
operational cost and pollution emissions by 21% and 14%, respec-
tively. In addition, results of the simulation showed that consid-
ering the pollution function as the main objective, it increased the
operational costs such that maximum use of demand response
programs occurred in this case, compared with the operating
condition. Another important result is providing a model with a
simple structure. As this model shows, if consumers participate in
demand response, in addition to covering the production shortages
caused by the uncertainty derived fromwind and solar power, this
will result in a reduction of operating costs and the system's overall
pollution.
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Fig. 16. Power generation (a) Wind turbine (b) Solar cell.

Table 7
Comparison of solar and wind generation capacity from the perspective of operating costs and emissions without/with DR.

Cases Wind power
(kW)

Solar power
(kW)

Wind power forecast
(kW)

Solar power forecast
(kW)

Cover percentage of wind
power

Cover percentage of solar
power

Operating costs without DR 8.51 4.82 57.15 91.47
Operating costs with DR 7.87 3.34 57.15 91.47 7.5% 30.7%
Emissions without DR 50.605 91.39 57.15 91.47
Emissions with DR 47.39 89.50 57.15 91.47 6.3% 2.1%
Simultaneous optimization

without DR
23.12 90.21 57.15 91.47

Simultaneous optimization
without DR

21.97 78.27 57.15 91.47 4.9% 13.2%

Operating costs with DR are written in bold.
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