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Abstract:
Managing the electricity system becomes increasingly challenging, calling for modifications of the 
current electricity market. High fluctuations in power generation could make the introduction of 
dynamic end-consumer electricity pricing reasonable. Furthermore, the prediction of end-consumers’ 
power consumption would get easier when charging the maximum power capacity, instead of the 
consumed energy. Thus, this paper discusses the capability of smart buildings to cope with such 
market models and evaluates how the design of the electrical and thermal energy system of a modern 
German building is affected. Therefore, cost optimal sizing of the main supply system components is 
carried out based on a hybrid MILP and a heuristic optimization algorithm. The results indicate that 
local photovoltaic generation is beneficial in almost all market conditions, while except for the 
capacity market, batteries are only economical if prices decrease by more than 60%. The identified 
electricity price dynamics are too low to incentivize investments into load shifting capable supply or 
storage systems. Nevertheless, if an installed heat pump and the associated thermal storage have smart 
home capabilities, they support the maximization of PV self-consumption and reduce electricity cost. 

Keywords:
Electricity market, cost optimization, dynamic electricity pricing, capacity market, smart grid, 
demand side management

1. Introduction
The vastly growing renewable energy sector induces the challenge of highly fluctuating and 
unpredictable renewable energy generation (e. g. from photovoltaic (PV) and wind). Due to the 
current inflexibility of electricity demand, it is not always possible to match the renewable energy 
generation with the demand. The rising share of wind and PV in the total energy portfolio will further 
aggravate that challenge in the upcoming years [1]. Residential and commercial buildings, which are 
accountable for up to 30% of Germany’s final energy consumption [2], can provide flexibility to 
counter these imbalances between supply and demand in the electrical grid [3, 4]. However, there are 
several technical and energy political boundary conditions which strongly impact this potential. 
Technical challenges mainly arise from the energy demand of buildings, which is driven by space 
heating and supply of domestic hot water (DHW). Therefore, electricity driven heating systems (e. g. 
heat pumps, direct electric heating) are required to effectively utilize energy flexibility offered by 
buildings [3].
Furthermore, the energy only market (EOM) currently established in Germany and many other 
European countries, does not provide any motivation for flexible, grid supportive electricity 
consumption. Market models have to change in order to provide incentives for customers to change 
their consumption behavior. Grid compatibility could be encouraged by market models comprising 
dynamic electricity pricing dependent of the currently available electricity generation, while market 
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operability could be increased through capacity-based pricing, which limits the maximal power being 
drawn by an individual customer to a contract based level [5, 6]. 
Both concepts are already known in the European electricity market. France, Austria, Switzerland, 
Luxembourg and Germany are operating a mutual power trading platform, the European Power 
Exchange in Paris (EPEX) since 2008 [7]. Several electricity-based products with a granularity of up 
to 15 minutes are traded there. This is already very close to the concept of real time pricing, however, 
a minimum power capacity of 0.1 MW hast to be traded currently at the EPEX. Such capacities could 
be easily reached in the future by aggregators representing a larger group of end-customers. Similarly, 
capacity driven pricing is common for large industrial customers for a long time, since the impact of 
sudden load changes at high capacities has already induced high challenges for the electricity 
providers in the past [5]. Thus, in face of the increasing challenges in balancing the electricity market 
both approaches might play a role in the future end-consumer market and it is hard to predict in which 
direction the market may develop.
Previous works have analyzed optimal sizing and operation of building energy systems, but neither 
investigated nor compared the influence of different electricity market models. Athari and Ardehali 
[47], for example analyze the performance of energy storages with time-varying electricity prices. 
However, their study does not involve the sizing of energy conversion or storage units and they do 
not investigate different market models, such as capacity markets. Celik et al. [48], investigate 
optimal sizing and operation of residential photovoltaic energy systems with battery storage at fixed 
EOM. In contrast, Ren et al. [49], analyze the economic optimization of residential photovoltaic 
systems with dynamic prices. Other studies [50-52] further extend the optimization and also include 
sizing and operation of thermal generation systems, like combined heat and power units or boilers, 
but limiting their analyses to either fixed EOM or dynamic EOM.
Existing studies on electricity market and pricing structures typically do not account for optimal 
design, sizing and operation of energy systems. Laws et al. [53] analyze the spread of PV and PV 
with battery systems for three different utilities’ pricing structures and their effect on retail prices on 
a regional level. Darghouth et al. [54] similarly model the adoption of PV systems based on different 
pricing structures. They also analyze how PV systems affect utilities’ retail prices.
This paper contributes to this field of research by analyzing how different electricity market models 
(table 1) affect the sizing of thermal and electrical supply components of a residential building in 
Germany. Among others, the future role of battery storage and solar energy in the residential sector 
is discussed. Also, the future role of widespread technologies like thermal buffer storages will be 
discussed, especially as a measure of increasing the demand flexibility. Finally, based on the 
outcomes of the analysis, it is discussed which developments of the electricity market could be 
favorable in a complex future power grid with high fluctuation of renewable energies. Thereby, not 
only a radical change of the market model is observed but also potential variations of the current 
system or hybrid market models are discussed.

2. Approach
This analysis is based on thermal and electrical simulations of a generic modern residential one family 
house. This house comprises a photovoltaic system (PV), a battery (Batt), an inverter (Inv), a heat 
pump (HP) and a hot water thermal storage tank (TS), which are analyzed in this paper. It is assumed 
that in this house, a control unit and required measuring equipment enable the system to use all these 
components automatically and efficiently, while reacting to changing boundary conditions 
dynamically. The ability of this building system to manage the house’s energy demands and the 
ability to optimize when and how these demands are covered is summed up in the term “smart home”. 
The influence of different electricity market models on the sizing and usage of these components will 
be evaluated.
The different observed electricity market models are two versions of the EOM and one capacity 
market (table 1). In the conventional EOM, the electricity is traded at a fixed price at all times 
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combined with an also constant feed-in tariff for electricity produced by the PV system. This 
corresponds to the current end-consumer market situation in Germany and therefore boundary 
conditions of this market are chosen in compliance with the current German electricity market [8]. In 
the dynamic EOM, electricity is traded with a linkage to the European Power Exchange. Thus, the 
electricity price is based on the dynamic trading prices of the stock exchange plus the end-customer 
taxes and levies as applicable in Germany [8]. Therefore, prices of the intra-day-auctions of the EPEX 
are used as a realistic input data set for the dynamic EOM [9]. The German construct of the “market 
premium” [8] is used for the calculation of the revenues generated by the PV systems electricity 
generation. 
In the evaluated capacity market, the end-consumer pays the energy provider a fixed price according 
to the maximal power capacity, which can be drawn from, or fed into the grid. Below that capacity 
limit electricity can be obtained at all times without additional cost. Above the capacity limit a very 
high price for each kWh applies. PV generation can be sold to the grid according to the same rules as 
in the conventional EOM, however the feed-in capacity is also restricted by the limit. 

Table 1 - Analyzed market models

A coupled hybrid optimization model is created to evaluate the influence of these electricity market 
models on the building’s supply components. This model varies the supply components in size to 
minimize the sum of acquisition and grid interaction costs. Thereby one algorithm optimizes the 
choice of supply components, while a second algorithm performs a one-year optimization of the total 
system to find the resulting costs of operation. Where applicable, the results are compared to an 
optimized reference building without PV, inverter and battery system. Additionally, several input 
parameters of the optimizations are varied as a measure of sensitivity analysis. Thus, to evaluate the 
impact of component prices and enable the discussion of system changes in face of different price 
developments, components prices are varied by +/- 20%. Similarly, also the electricity prices and PV 
feed-in tariffs are varied. Additionally, the impact of changing the price input for the dynamic EOM 
from the intra-day-auctions to the day-ahead-auctions of the EPEX is analyzed. Variations of the 
electrical load as a measure of demand side management (DSM) are also investigated. Therein the 
flattening of electrical peak loads by 50% and the possibility to relocate 20% of the daily load to other 
times of the day is evaluated and compared to a 10% increase of the total load. Market specific 
sensitivities as the discontinuation of feed-in compensation or the introduction of wildcards for the 
capacity limit are also considered. Wildcards are defined as the number of hours per year where the 
capacity limitation has not to be met. Different quantities (12, 24, 48 and 120) of such exception hours 
per year are investigated. 

3. Modelling
3.1. Building model
The analysis is performed based on thermal simulations of a generic residential one family house with 
145 m² heated floor area constructed according to the German insulation standard EnEV 2009 [10]. 
This standard is chosen since it represents a large share of the modern German building stock 
constructed or retrofitted between 2009 and 2015. Also, it can be expected that future retrofits of 
existing buildings will often result in a similar thermal standard. The thermal building model is 
scripted in the modelling language Modelica [11] and used in the simulation environment Dymola. 
The developed model builds upon the HouseModels Library which is part of AixLib Library1 which 
is made publicly available by the Institute for Energy Efficient Buildings and Indoor Climate [12]. 
The HouseModels Library was validated with several test cases, for example with the ASHARE 
Standard 140 [13]. Table 2 and table 3 give the dimension of the envelope and the thermal properties 

1 https://github.com/RWTH-EBC/AixLib 

https://github.com/RWTH-EBC/AixLib
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of the main construction components respectively, while figure 1 presents a sketch of the modelled 
building from the east and the layout of the first floor. In addition to the thermal heating demand 
obtained from the dynamic simulation, a domestic hot water demand is calculated with the software 
DHWcalc [14], based on the requirements of a four-person household. The resulting thermal demands 
for space heating and domestic hot water are presented in figure 2. Even though all values are 
simulated in hourly time steps, figure 2 presents the average daily power demands for better 
visualization. Accordingly, figure 3 presents the average daily electricity demand. The underlying 
weather inputs for this analysis are based on the region 5 of the German test reference year (Lower 
Rhine region) [15]. The average daily ambient temperatures from the TRY weather file is presented 
in figure 4.

Table 2 - Properties of the building envelope

Table 3 - U-values of the main building components

Fig. 1 - Sketch of the modelled building from the east (left) and layout of the first floor (right)

Fig. 2 – Average daily thermal power required by the modelled building

Fig. 3 – Average daily electrical power required by the modelled building

Fig. 4 – Average daily ambient temperatures of the TRY weather file for region 5

3.2. Supply system components
The supply system of the building is modelled with an air to water heat pump, a thermal buffer tank 
and a direct electric resistance heater. Furthermore, it is also equipped with models for photovoltaic 
electricity generation, the associated inverter and a battery system. The appropriate sizing of these 
components in different electricity markets is one of the main outcomes of this study, however the 
boundaries for sizing were chosen based on market researches (table 4). In figures 5 through 7 the 
main not size dependent parameters of the battery, the inverter and the PV system are presented.

      

Fig. 5 – Cycle loss of battery capacity in dependence of the depth of discharge

Fig. 6 – Inverter efficiency in dependence of the applied fraction of nominal power

Fig. 7 – Average daily generation of the PV system in kWh per kWp 

The costs for heat pump, inverter and thermal storage are chosen with respect to the component size 
according to a descending quadratic price curve, which is based on a current review of online retailers 
[16-18]. Similarly, the battery and the PV system costs are based on linear price curves resulting from 
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an online review [19]. The components are depreciated based on assumptions about typical functional 
service lifetime. The service lifetime of the heat pump [20-22], the thermal storage [23] and the 
battery [24] is assumed to be 20 years. The service lifetime of the PV is estimated to 25 years [25-27] 
and the inverter service lifetime to 15 years [26, 28]. The battery is an exception since its service 
lifetime depends besides of the calendric aging also strongly on the deterioration induced by the usage 
[14, 29]. Therefore, it is depreciated by the expected service lifetime based on both effects [29]. In 
the further analysis, the sum of these component costs and the electricity costs resulting from the 
operation of these systems will be the main driver for the evaluation of any system configuration. 
Formulas (26-31), in Appendix A, present the exact calculations of the yearly component costs. 

3.3. Optimization
A three-layer structure (figure 8) is implemented for evaluating the impact of different electricity 
market models on the sizing and operation of building energy components. In the top-layer, a genetic 
algorithm is used for selecting a set of components. Furthermore, in this layer, the annual performance 
of each of these sets is evaluated. The mid-layer provides data inputs such as electrical and thermal 
demands and costs for the selected components. The bottom-layer executes an optimization of one 
full year of system operation based on a mixed integer linear program.
The separation into different layers has also been suggested in [30]. In this manner, the nonlinearities 
arising in the simultaneous sizing and operation optimization are largely avoided and an efficient 
analysis of the high number of possible component configurations is achieved.

Fig. 8 - Three-layer structure of the numeric algorithm

3.3.1. Top-layer – genetic algorithm
The top-layer uses a genetic algorithm [31, 32] to dimension five components of the residential 
building, the photovoltaic system, the battery, the inverter, the heat pump and the thermal storage. 
These components are available in different sizes between the chosen boundaries at the given 
discretization steps (table 4). Furthermore, the chances for mutation within the genetic algorithm are 
given in table 4. The chance of mutation and the discretization steps are chosen based on the total 
distance between upper and lower bounds as well as on accuracy’s manageable by the optimization. 
The resistance heater is not adapted dynamically in this analysis, since its cost is very low and has 
just a very small correlation with the power rating.

Table 4 - Supply component technical and heuristic parameters

To dimension these components, the algorithm creates a random start population of 30 system 
configurations named ‘individuals’. Each of the individuals consists of a full set of randomly sized 
components in component specific discretization steps (table 4). The individuals are assessed by the 
mid- and bottom-layer and attributed with their annual costs. Depending on the resulting costs the 
algorithm chooses and saves the best performing individual before further mutations and crossings 
are performed. All other individuals take part in a tournament selection. Therein, a new group of 30 
individuals consisting of members of the start population is chosen, while the chance to be selected 
for the new population scales with the performance in the previous evaluation. 
In this way high rated individuals are likely to appear several times in the new population while low 
ratings may lead to complete disappearance. Afterwards, the algorithm applies a two-point-crossover 
[33, 34] on the new population with a chance of 50% for each individual to be crossed. The remaining 
population is (again with a probability of 50%) exposed to a polynomial bound mutation. If an 
individual is selected for mutation, there are different chances for each component to mutate (table 4). 
Thus, a new start population is formed from the mutated and crossed individuals of the last one. Based 
on previous test optimizations the iteration limit is set to 30 iterations. Afterwards, the best performing 
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individual represents the optimal system configuration of supply components and the lowest 
associated operation costs in the investigated electricity market model [35].

3.3.2. Mid-layer – data aggregation
The mid-layer receives a given set of the five supply components chosen by the top-layer and allocates 
them with component and demand specific data for the analyzed case. Demand specific data includes 
hourly electricity, space heating and DHW demand profiles. Component specific data comprises:

 hourly PV generation, which is scaled according to the selected PV system size & weather 
[29]

 the inverter’s efficiency curve, which is scaled according to the selected nominal power [29] 
 the battery system’s aging, which is adapted according to the chosen capacity [29]
 the heat pump’s COP matrix, which is interpolated from available COP matrices according to 

the selected nominal power [36]
 the surface area of the thermal storage, which describes thermal heat losses, is calculated 

according to its volume
Moreover, the underlying investment costs for all selected components are calculated within the mid-
layer (formulas given in Appendix A).

3.3.3. Bottom-layer – linear optimization
The bottom-layer consists of a mixed integer linear program, which optimizes the operation of all 
selected components for a full year with respect to the resulting total costs. It is modelled in Python 
and solved with the Gurobi optimizer [37]. The model considers various options for routing energy 
flows and covering electrical and thermal demands within the building (figure 9). The optimization 
minimizes the annual energy costs of the system. Since a full year optimization in one step is 
computationally very expensive, a rolling horizon scheme is implemented. The chosen rolling horizon 
scheme first optimizes the system for a scope of five days with a time step of one hour. However, 
afterwards only the first day of the optimization is considered for the results and the procedure is 
repeated for every single day of the year. Such an approach is required to ensure a reasonable usage 
of the available storage capacities, since the cost minimization algorithm unloads all storage 
capacities by the end of the optimization scope. The following section presents the target function 
and the detailed constraints of the linear optimization. Additionally, for better comprehension of the 
entire optimization process figure 10 summarizes all performed steps in a flow chart. 

Fig. 9 - Energy system of the house model

Fig. 10 – Flow chart of the optimization process

The target function of the optimization (1) is the reduction of the grid interaction costs (Cgrid) and the 
battery aging costs (Caging). The detailed calculation of Cgrid is explained in section 3.3.4. These costs 
depend on the grid interaction, thus upon the sold (Psell) and bought (Pbuy) electrical energy. The 
following section describes the underlying constraints in the performed optimization.

min(Cgrid + Caging) (1)

The grid interaction has to be equal to the sum of the demands of domestic appliances and lighting 
(Pel), the power of the HP (PHP), the power of the resistance heater (Pheater), the power for the inverter 
(PAC → INV) and the power from the inverter (PINV → AC):

Pbuy ‒ Psell = PInv →AC ‒ PAC → Inv ‒ Pel ‒ PHP ‒ Pheater (2)

An ideal resistance heater is assumed, thus all electricity is transformed into heat ( heater):Q
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Pheater =  Qheater (3)

The heat generation of the heat pump ( HP) is calculated according to an ambient temperature (TA) Q
sensitive COP and the electrical heat pump power (PHP). Additionally, a binary variable (b) is used to 
limit the heat pump to two states (on and off) [38]: 

QHP = b ⋅ COP(TA) ⋅  𝑃𝐻𝑃 (4)

The energy level of the thermal storage (QTS) depends on the given water mass (mTS), the storage 
temperature (TTS) and the heat capacity of water (cp). Together with the heat generation of the heat 
pump and the resistance heater, the thermal storage has to cover the space heating demand ( SHD) and Q
the domestic hot water ( DHW) at all times. Furthermore, heat losses of the thermal storage ( loss) are Q Q
calculated depending on the surface area (AS) and the thermal transmittance coefficient (UTS) of the 
storage envelope as well as the storage temperature (TTS) and the surrounding temperature of the 
storage which is approximated with the buildings indoor temperature (TI).

mTS ⋅ cp ⋅ (T t
TS ‒ Tt ‒ 1

TS ) = (Q t
HP + Q t

heater ‒ Q t
SHD ‒ Q t

DHW ‒ AS ∙ UTS ⋅ (T t
TS ‒ Tt

I)) ∙ dt (5)

The inverter has a logarithmic efficiency curve (nx; ny) [29] describing the energy losses of the energy 
conversions from AC to DC (PAC → Inv; PInv → DC) and DC to AC (PDC → Inv; PInv → AC). The logarithmic 
efficiency curve has been implemented using continuous weighting variables (wAC → DC; wDC → AC). 
A Special Ordered Set of type Two (SOS 2) constraint is forced upon these weighting variables, 
which allows for piecewise linear interpolation within both sets wAC → DC and wDC → AC [39]:

PInv → DC = ∑ (wAC → DC ⋅ nx) (6)
PAC → Inv = ∑ (wAC → DC ⋅ ny) (7)

1 = ∑ (wAC → DC) (8)
PInv → AC = ∑ (wDC → AC ⋅ nx) (9)
PDC → Inv = ∑ (wDC → AC ⋅ ny) (10)

1 = ∑ (wDC → AC) (11)
The battery can be charged (PDC → Batt), discharged (PBatt → DC) or stay unchanged in every time step. 
The PV generation (PPV) is injected into the DC grid of the house and can be used to either charge 
the battery, or be converted to AC and fed into the grid or used for electric appliances within the 
house.

PDC → Batt = PPV + PInv → DC ‒ PDC → Inv (12)
PBatt → DC = PDC → Inv ‒  PPV (13)

The PV generation depends on the size of the PV system (APV) and current weather conditions. 
Furthermore, the current weather conditions depend on the time and date (t), and include the required 
information about current direct solar radiation, diffuse solar radiation and ambient temperature:

PPV = f(weathert;APV) (14)

weathert = f(rad t
direct; rad t

diffuse; T t
ambient) (15)

The costs induced by the battery degradation depend on the relative battery costs , the  (𝐶𝑎𝑔𝑖𝑛𝑔) (𝑘𝑟𝑒𝑙)
capacity of the new battery , the minimal battery energy level and the current (𝐸𝐵𝑎𝑡𝑡 𝑛𝑒𝑤) (𝐸𝐵𝑎𝑡𝑡 𝑚𝑖𝑛) 
capacity of the battery . The loss of capacity of the battery depends on the logarithmic capacity (E t

Batt)
loss curve (mx; my) [29]. This is also implemented through continuous weighting variables (wBatt) 
using SOS 2 constraints for a piecewise linear interpolation [39], which depend on the depth of 
discharge (DOD): 



ACCEPTED MANUSCRIPT

8

Caging = EBatt new ⋅ krel ⋅
EBatt new ‒ E t

Batt 
EBatt new ‒  EBatt min

(16)

E t
Batt = ∑ (wBatt ⋅ mx) ⋅ EBatt new (17)

DOD = ∑ (wBatt ⋅ my) (18)
1 = ∑ (wBatt) (19)

DOD =
∑tn

t = 1
E t

Batt

EBatt new

(20)

3.3.4. Electricity markets
In this analysis, three different electricity market models are evaluated, two different EOMs and one 
capacity market. In the conventional EOM model, electricity is delivered to the end-customers at a 
fixed price of 0.2913 €/kWh (kfix price) at all times during the entire year [40]. This price is the average 
end-consumer price in Germany for the year 2014. The exported PV energy is compensated at a fixed 
feed-in tariff of 0.1302 €/kWh (kfix feed), which is the average of the monthly feed-in tariffs for new 
PV systems installed in 2014 in Germany [41]. 

Cgrid =  ∑
t

(P t
buy ⋅ kfix price ‒ P t

sell ⋅ kfix feed) ⋅ dt (21)

The dynamic EOM model is coupled to the dynamics of the European Power Exchange. In this case, 
end-customer prices are based on the dynamic electricity prices resulting from the intra-day-market 
of the EPEX Spot SE [42]. The power can be sold (kflex. feed) or bought (kflex. price) at fluctuating prices, 
which encourage increased electricity consumption when electricity is abundant and available at a 
low price and motivate reduced consumption and export when the market prices are high. The feed-
in tariff is granted according to current German regulations (“market premium concept”) [8]. This 
guarantees the end-customer average feed-in revenue slightly above the regular fixed feed-in tariff, 
but electricity has to be sold at the varying prices of the stock exchange in the first place. 
Discrepancies between stock exchange revenues and guaranteed feed-in compensation level are 
subsequently reimbursed in a second step.

Cgrid = ∑
t

(P t
buy ⋅ k t

flex price ‒ P t
sell ⋅ k t

flex feed) ⋅ dt (22)

In the capacity market model, the end-customer pays for the maximal available power capacity 
(in kW) instead of the consumed energy (in kWh) as in the EOMs. Thus, this model can be described 
as an electricity flat rate with the charge depending on the required bandwidth. If at some point in 
time, the end-customer requires a higher capacity than agreed with the energy provider, the consumed 
energy exceeding the limit  has to be purchased separately at a high price (khigh). The high (𝑃 t

over limit)
price is chosen as the fiftyfold of the conventional EOM price. The relative capacity price (kcap) has 
been derived from previous reference simulations to 1.44 €/W. At this relative capacity price, the grid 
interaction costs of the reference simulation in the conventional EOM are equal to the capacity 
markets flat rate price. Furthermore, the ability of selling electricity (Psell) to the power grid is also 
restricted by the chosen capacity limit (Pmax. cap) and not only by the actual energy production of the 
PV system (PPV). Latter restriction is required to prevent the consumer from re-selling his flat rate 
electricity to the grid. The exact restrictions applied in the calculations are given below.

Cgrid = Pmax cap ⋅ kcap + ∑
t

(P t
over limit ⋅ khigh ‒ P t

sell ⋅ kfix feed) ⋅ dt (23)

P t
sell + P t

buy ≤ Pmax cap (24)
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P t
sell ≤ P t

PV (25)

4. Results
Within this analysis hundreds of optimizations were performed. Therefore, it is not possible to present 
the detailed optimization outcomes and the convergence behavior for all optimized cases. In the 
following sub-chapter the most important and substantial outcomes for the three analyzed market 
scenarios will be presented. Additionally, figure 11 presents exemplarily the convergence curve of 
the performed optimization for the main scenario of the dynamic EOM. It can be seen that both, the 
best individual as well as the average fitness of the optimized population is clearly converging without 
considerable variations towards the final iterations.

Fig. 11 – Convergence curve for the dynamic EOM scenario

4.1. Conventional EOM
In the conventional EOM, the PV system is dimensioned with its maximum size of 60 m², while a 
battery is not selected at all. The thermal storage is sized to a volume of 550 l. Both, the nominal 
thermal power of the heat pump and the electrical power of the inverter are set to 4.5 kW. The 
resulting total system costs sum up to 2,200 € per year, as compared to 2,712 € for the reference house 
without PV.
In the sensitivity analysis, component price increases or decreases of 20% (in case of PV, heat pump, 
thermal storage) and 33% (in case of battery) only affect the total costs but do not influence the 
optimal component sizing. A battery would only be integrated in the system if the costs go down by 
58% of the current costs, thus below 250 €/kWh. Also, the variation of feed-in tariff by 20% does not 
affect the chosen components. Only a general discontinuation of feed-in tariffs leads to changes. 
Thereby, the area of the PV system would be reduced to 38 m² (-37%) and the inverter would be 
scaled down to 2 kW (-56%). In addition, the nominal power of the heat pump would slightly decrease 
to 4 kW (-12%) and the thermal storage volume would increase to a size of 700 l (+27%). The 
redistribution of the electrical load by measures of DSM only marginally influences the sizing of the 
thermal storage volume which increases by 50 l (+9%). 
In comparison, the reference building with just a HP and a thermal storage, would be equipped with 
a smaller thermal storage tank of 450 l (-19%) while keeping the same nominal power of the HP. Due 
to the reduced amount and size of supply systems the component costs in the reference building 
decrease by 36%, while total costs are 23% higher due to the missing revenues of PV feed-in. All 
other performed variations do not affect the optimal choice of supply system components.

4.2. Dynamic EOM 
In the dynamic EOM, the optimization results in similar component sizing as in the conventional 
EOM. Solely a decrease of the electricity costs by 2% (as compared to the conventional EOM) is the 
benefit from the optimized use of the dynamic electricity price. However, in this market model, 
variations of the boundary conditions significantly affect the component sizing. In case of a 20% 
reduction of the feed-in tariff as well as in a case of 20% reduction of thermal storage costs, a layout 
with a 750 l (+36%) thermal storage tank and a heat pump with 4 kW (-11%) nominal power is 
chosen. Such setup is also chosen if dynamic prices are based upon the day-ahead-market instead of 
the intra-day-market. In the dynamic EOM, the battery is only selected if the installation costs are 
reduced by 62% to 230 €/kWh.
Again, the redistribution of the electrical load by measures of DSM only increases the thermal storage 
volume by 50 l (+9%). The optimal size of the PV system and the inverter are insensitive to all tested 
variations. In the reference scenario (just a HP and a thermal storage) evaluated for the dynamic 
market, the thermal storage volume is increased to 600 l (+9%) while the HP nominal power is 
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reduced to 4 kW (-12%) resulting in 24% higher total costs than the optimized case. All other 
performed variations do not affect the optimal choice of supply system components.

4.3. Capacity market
In the capacity market, the PV system is sized to 44 m² and a battery with a capacity of 7 kWh is 
selected. The thermal storage is sized to 1,400 l, the inverter is scaled to 3.5 kW and the heat pump’s 
nominal power is 4.5 kW. The maximum required capacity of grid interaction is 1.65 kW. The 
resulting total system costs sum up to 3,037 € per year.
The sensitivity analysis reveals that the determined component sizing is just sensitive to some 
variation of the boundary conditions. While cost variations do not have great influence on the system, 
the variations of the electrical loads induce changes. Thus, a 10% increase of electrical loads results 
in a 6% increase of the required maximal capacity and 4% increased total costs. 
When flattening the electrical peak loads, the required capacity can be reduced by 3% resulting in 6% 
lower total costs. Also, in the case of peak load flattening, the battery’s capacity can be reduced to 
5 kWh (-29%) while the thermal storage volume is increased to 700 l (+25%). For the case of 
combined peak load flattening and general load increase, the battery’s capacity is reduced to 4.5 kWh 
(-36%) and the thermal storage volume increases to 600 l (+11%) respectively, yielding an overall 
cost reduction of 3%. In both cases, the inverter’s nominal power is approximately halved. The 
dynamic redistribution of the daily loads results in diverse component variations, however the 
capacity limit remains unchanged. Still, the redistribution yields a total cost reduction of 3%. 
Without a feed-in tariff, the PV system is completely omitted and the required maximal capacity is 
increased by 6%. Furthermore, the influence of a given number of hours without power limitation is 
also investigated. The cases with 12 or 24 such one hour wildcards, both allow for reducing the 
required capacity limit by 9%, and lowering total costs by 4% and 7% respectively, without changing 
any component sizing. For higher numbers of wildcards (48, 120) the PV system size, the thermal 
storage capacity and the heat pump size tend to decrease, in contrast to a growing battery. With 120 
wildcards, the maximum required capacity can be reduced by 27%, leading to total cost savings of 
10%. Table 5 gives an overview of the optimal choice of components and the resulting costs for the 
three presented market scenarios. An overview of all optimization results including the outcomes of 
the sensitivity analysis is given in Tables 6-8 in Appendix B.

Table 5 - Main optimization results

5. Discussion
5.1. Conventional EOM
For the conventional electricity market, the simulation underlines the high profitability of the PV 
systems. The main reason for that is the fixed feed-in tariff of 0.1302 €/kWh, which is well above the 
calculated PV electricity generation cost of about 0.0866 €/kWh (in case of the smart building 
observed in this study with a 60 m² PV system, 25 years of service lifetime). Thus, the generation 
costs are 33% lower than the feed in-tariff, making the PV system even profitable if it is not used to 
cover any of the electricity demand of the house. Moreover, the relative costs of PV systems decrease 
with the system size. As a consequence, the possible profit increases with the system’s size and is 
only limited by the available roof area (which was set as a boundary condition to 60 m² in this 
analysis). 
Increasingly PV systems are offered in combination with a battery storage. However, purchasing a 
battery system in the present market is not favorable at all. First, the savings due to an increase of PV 
self-consumption, which can be reached using a battery, do not outweigh the very high investment 
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costs. And second, there is no incentive to store electricity from the grid in a battery, when it can be 
purchased at the same price at any time.
The required thermal storage size is determined by different influences. First, to enable coordination 
of the building’s dynamic heat demand with the cycling operation of the heat pump, a minimal storage 
volume of 150 l is inevitable. Second, the comparison with the reference simulation shows, that the 
existence of a PV system increases the thermal storage by 22%. This indicates, that the thermal 
storage is an economically reasonable measure to increase PV self-consumption. Third, the use of a 
large thermal storage as a buffer tank allows reducing the nominal power of the installed heat pump, 
since demand peaks can be covered by the storage. However, fourth, the heat loss of the thermal 
storage increases with the size and reduces the attractiveness of a large storage.
The heat pump has an average COP of 3.4, which describes the amount of heat delivered per unit 
electrical power ( / Pel). This means, that on average the heat pump is 3.4 times more efficient than Q
the resistance heater and is consequently the preferred heat source. Still, it is not reasonable to 
dimension the heat pump for the rarely occurring peak loads. Therefore, the balance of purchasing 
costs and operation costs is found at a nominal power of 4.5 kWel. The inverter is dimensioned with 
4.5 kW and therefore capable of handling the PV generation in 99.5% of the time, even though the 
PV peak generation power is at 5.67 kW. Due to the lack of electrical storage, the options of a smart 
home are limited. Only the thermal storage is used to increase the self-consumption of solar power. 
Additionally required energy is obtained from the grid demand-driven due to the constant price. 
Excess PV generation is also injected to the power grid immediately.

5.2. Dynamic EOM 
The introduction of dynamic electricity pricing does not induce any changes to the optimal system 
configuration of the conventional EOM. This is mainly due to the various taxes and levies in the 
German market [40], which sum up to 85% of the end-consumer electricity price and do not depend 
on the actual trading price. Therefore, the resulting variance of the final end-consumer price is very 
low (+/- 6.5%). While these fluctuations have some impact upon the operation of the building’s 
supply systems, they are not sufficient to provide a real financial incentive for changing the optimal 
component configuration, particularly not for purchasing battery storage. Therefore, the possibilities 
to react on price fluctuations are very limited and the dynamics of the electricity tariff are solely 
exploited through the thermal storage, which is charged by the heat pump. As a consequence, the 
smart home also does not fully reach its potential in this electricity market. However, the identified 
slight electricity cost reduction of 2% supports the upcoming development towards dynamic 
operation of smart interconnected heat pumps coupled with thermal storage. 

5.3. Capacity market
There are entirely different challenges for a smart home in a capacity market compared to the EOM 
situation. Consequently, the system’s layout is also significantly different. Since a low capacity limit 
is cost-critical, the increased use of storage technology is essential. The battery is now dimensioned 
to a capacity of 7 kWh, as compared to no battery in the EOMs. Similarly, the thermal storage 
capacity increases from 550 l in the EOMs to 1400 l in the capacity market. The benefits of these 
changes become obvious when focusing on the capacity limit. The maximum hourly capacity required 
by the smart building is as low as 1.65 kW, while the highest electrical capacity required for the 
reference building is 5.12 kW, not even taking into account the electricity demand for the heating 
system. The evaluation of the capacity limit is performed, as the rest of the optimization, with a one-
hour time step and does therefore not take into account the real dynamics of domestic electricity 
consumption, with its frequent, short and high demand peaks. However, it can be expected that the 
large battery system installed in a smart building participating in a capacity market would be capable 
of efficiently flattening such peaks.  
The profitability of PV on the other hand decreases in the capacity market. Instead of the total roof 
area as in the EOMs, the optimal PV area decreases to 44 m². Mainly, because the possible feed-in is 
now also restricted by the capacity limit. Therefore, revenues no longer increase proportionally to the 
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PV system’s size. However, PV is still profitable generating revenues from the feed-in tariff. 
Additionally, the local PV generation allows for reducing the required capacity limit by 6%. The 
inverter’s nominal power output also decreases in comparison to the EOMs. On the one hand, this is 
the direct result of the reduced PV system size. On the other hand, the sum of the inverter’s nominal 
power and the capacity limit matches the maximum electrical load of the building. In this way, even 
in peak load situations the electricity demand can be covered without exceeding the capacity limit. 
Sizing of the heat pump does not change in comparison to earlier market scenarios, since the large 
capacity of the storage tank is generally required for load shifting purposes and does not leave 
potential for generation capacity reductions. In general, the smart home concept is of major 
importance in the capacity market. Electrical and thermal loads have to be covered at all times with 
a possibly low capacity limit. Therefore, a well-coordinated interplay of the different components as 
well as an intelligent and proactive usage of the given energy storage options is essential.

5.4. Sensitivity analysis
Further conclusions about chances and challenges of the market models can be derived from the 
sensitivity analysis. It is shown that in both analyzed EOMs, approximately 60% lower battery prices 
(< 250 €/kWh) would be crucial to justify such an investment. However, further improvement of the 
expected battery service lifetime and reduction of the capacity loss due to deterioration could increase 
the profitability of batteries even at slightly higher costs. Still, even with the expected rapid battery 
price decline, such low end-customer prices are unlikely to be reached in the upcoming years [43]. 
Therefore, currently batteries are just installed for ideological reasons and under very special 
circumstances, like for example in systems, which have the capability to operate in island mode. 
Investigation of DSM redistributing 20% of the daily electrical load indicated better utilization of the 
local PV generation and results in electricity cost reductions of 5% in both EOMs. Thereby, mainly 
consumption peaks occurring in the evenings are mitigated and relocated to earlier times of the day, 
as presented in figure 12. However, even without DSM, the self-consumption plays a major role. 
Even without feed-in compensation, a PV system with 63% of the maximum size would be selected 
under conventional EOM conditions. 

Fig. 12 – Daily distribution of electrical load with and without DSM

In the capacity market, flattening of electrical peak loads as a crucial impact factor is investigated. It 
turns out that such change in consumption dynamics is sufficient to operate the building with a smaller 
capacity limit (1.60 kW) and in such way reduce costs significantly (-6%). Similarly, the 
redistribution of loads is beneficial, yielding total cost reductions of 3%. This underlines the 
assumption that the capability of a smart home to decouple the electricity demand and electricity 
usage significantly contributes to cost savings in a capacity market. The PV self-consumption proves 
to be beneficial for reducing the required capacity limit, still the profitability of the system relies on 
the feed-in tariff. Therefore, in case of total discontinuation of feed-in tariffs, a system configuration 
without a PV system would be selected, resulting in a capacity limit increase of 6% and a 30% higher 
grid interaction balance. The evaluated concept of wildcards in the capacity market is meant to 
increase practicability of this market scenario, offering a possibility to cope with seldom occurring 
unpredictable high loads. It is shown that already 24 wildcard hours per year (about 0.3% of the year) 
are sufficient to reduce the overall cost by about 7%. Figure 13 exemplary demonstrates the 
distribution of these 24 hours among the year along with a relative indication of the associated 
electricity load. It can be seen that the wildcards are distributed relatively equal among the heating 
period, without distinct aggregation on special days. Thus, the general concept of exceptions from 
the strict capacity limitation seems very promising. Still, it must be ensured that a massive 
synchronous use of wildcards along the end-consumers is prevented. However, the well-distributed 
usage of individual wildcards among the winter season, as presented in in figure 13, indicates that the 
risk that different systems will select exactly the same wildcard hours is limited.
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Fig. 13 – Distribution of wildcard hours (depicted by red vertical lines)
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5.5. Strengths and weaknesses of the market models
In the conventional EOM model the consumer pays a clear and well predictable amount just for the 
actually used electricity. However, there is no incentive to adapt the demand to the increasing 
fluctuations of the electricity generation. Therefore, the smart home concept can be hardly established 
under such market conditions, since it is limited to maximizing the PV self-consumption. In contrast, 
a dynamic EOM could in general promote demand elasticity since consumers are given incentives to 
adapt through the electricity price fluctuations. However, under the current German market 
conditions, the relatively small fluctuations of the end-consumer price cannot justify investments in 
storage technologies. Therefore, the extent of the smart home concept is limited. Nevertheless, the 
existing thermal storage in combination with the heat pump is now beneficially used for thermal load 
shifting. Still, to create an incentive for flexible and grid compatible smart homes comprising the 
required storage technologies, at least parts of electricity taxes and levies must adapt dynamically as 
well. Furthermore, the implementation of a dynamic EOM requires the dissemination of smart meters, 
smart home getaways and interconnected supply system components.
In contrast, the introduction of capacity market model would directly generate significant incentives 
towards smart home systems, yielding more uniform power consumption. In this way, the fluctuations 
of the grid load would be reduced, facilitating the manageability and predictability of the system for 
the grid operators. This could be of major value especially in rural not intermeshed power grids, 
which are challenged strongly by the high peak loads of consumption and PV feed-in at given times. 
However, there is no incentive for the adaption of demand to current renewable generation and there 
is risk of an overall consumption increase due to the flat rate character of this market. Also, further 
clarification is required concerning the feed-in of PV generation in a capacity market. To prevent re-
selling of flat rate electricity as PV generation, it would be necessary to couple the permitted feed-in 
to the current generation of the PV system. Also, strictly limiting the permitted feed-in capacity, even 
in times when the power grid is not overloaded but requires electricity, would be counterproductive 
for the electricity market. Thus, in comparison to the dynamic EOM, the capacity market requires 
more complex definition of the market conditions as well as a sophisticated management and control 
system. Furthermore, the adaption of a building to this market model is more complex and expensive 
while the benefits for end-consumers are not foreseeable in advance.

5.6. Outlook on potential market model modifications
Both, the markets with flexible electricity prices, as well as the capacity market have a distinct 
potential to promote the dissemination of the smart home concept and thus impact the electricity 
consumption patterns of buildings. However, both also require adaptions within the energy system 
and investment in smart home equipment. Especially, the capacity market is not suitable for direct 
implementation by end-consumers due to the necessary high investments and the required complex 
regulatory system. Nevertheless, some promising aspects of these market models could be 
implemented with reduced expenses. As such, the capacity limit could be applied just for the feed-in 
of PV generation in the first step. Furthermore, instead of a fixed capacity limit, the maximum 
capacity could be modified in dependence of the load situation of the power grid. Alternatively, a 
dynamic electricity price could be applied within the limits of a capacity cap, to prevent overreactions 
to price signals. In this way, the benefits of the capacity market, yielding a more uniform consumption 
could be combined with the incentives for adapting local demand to the generation induced by the 
flexible pricing.
Furthermore, especially the capacity market could be strongly facilitated if consumers are aggregated 
within a city district or rural area. In this way, regional grid overloads could be still effectively 
prevented without strict capacity limit regulations for every single individual. Also, the required 
storage capacities could be established and utilized at district level, reducing the investment costs for 
each building. As shown by the evaluation of the wildcard approach, just very few exceptions to a 
strict capacity limit can reduce the total system cost significantly. 
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Thus, the coordination of interconnected smart buildings within a district would strongly facilitate 
managing such exceptions locally without violating the regional capacity limit. Therefore, while 
dynamic pricing could be established successfully for every single end-consumer, it would be 
preferable to establish a capacity market rather on a district level.

6. Conclusion
In this paper, the effect of different electricity market models on the sizing of supply system 
components and the smart home capability of a residential building was analyzed. In both analyzed 
energy only markets, PV was highly profitable for both, self-consumption and feed-in to the grid. 
Therefore, in most system configurations, the PV system’s size was maximized. In contrast, battery 
systems require a cost reduction of approximately 60% to become economically feasible under EOM 
conditions. Today, thermal storages are the only economical source of demand flexibility in 
residential buildings, in particular improving the performance of heat pumps. Still, it turns out that 
without an adaption to the currently imposed taxes and levies, the electricity price dynamics in the 
end-consumer market are too low to promote any investments into storage systems for load shifting. 
This corresponds to former research on the profitability of storage systems [44]. In the case of a 
capacity market, the smart home concept offers a great potential in flattening and redistributing daily 
local electricity demands, if equipped with the necessary storage technologies. Widespread 
implementation of capacity markets could be simplified by defining capacity limits for aggregated 
regions instead of individual customers. Further, selective dynamic capacity limits (e.g. on PV feed-
in) could be combined with a dynamic electricity price in future markets.
In general, the operation of smart residential buildings can be well adapted to different electricity 
market models, generating savings for the residents and offering flexibility to the power grid. 
However, the impact is very limited if the optimal configuration of building supply and storage 
systems is selected according to the current market conditions. Stronger incentives or regulations are 
required to encourage investments in load shifting supporting smart home systems. Building supply 
systems have service lifetimes of 20 years on average. Thus, it is crucial to timely disseminate such 
systems for reaching the governmental goals of 55-60% renewable electricity generation in Germany 
by the year 2035. Future work should further focus on possibilities to provide electrical demand 
flexibility through energy systems in buildings. Especially, on the development of predictive control 
algorithms, enabling storage based load shifting and demand flexibility while maximizing efficiency 
and minimizing system operation costs. Furthermore, since there is only very limited economic 
motivation to invest in domestic storage systems, the promising concept of utilizing the intrinsic 
thermal mass of buildings as a thermal storage should be further analyzed [4, 45, 46]. 
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Appendix A – Yearly costs of supply system components

PV system
𝐶PV =

184
€

𝑚2 ⋅ 𝐴PV + 1061 €

25 𝑎
(26)

Thermal 
storage 𝐶TS =

‒ 0.0001
€

𝑙2 ⋅ 𝑉 2
TS + 1.16

€
𝑙 ⋅ 𝑉TS + 682 €

20 𝑎
(27)

Battery 𝐶Batt = 600
€

𝑘𝑊ℎ ⋅ 𝐸Batt new ⋅ max ( 1
20  , 

𝐸Batt new ‒ 𝐸 t
Batt 

𝐸Batt new ‒  𝐸Batt min) ⋅
1
𝑎

(28)

Heat pump
𝐶HP =

‒ 1.6
€

𝑘𝑊2 ⋅ 𝑄 2
HP,nom + 484

€
𝑘𝑊 ⋅ 𝑄HP,nom + 3182 €

20 𝑎
(29)

Inverter
𝐶Inv =

‒ 2.1
€

𝑘𝑊2 ⋅ 𝑃 2
Inv + 165

€
𝑘𝑊 ⋅ 𝑃Inv + 517 €

15 𝑎
(30)

Total 
component 

costs
𝐶component = 𝐶PV + 𝐶Batt + 𝐶TS + 𝐶HP + 𝐶Inv (31)

Appendix B – Full optimization results

Table 6 - Results conventional EOM

Table 7 - Results dynamic EOM

Table 8 - Results capacity market

Appendix C – Further parameters

Table 9 – Parametric values
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Nomenclature
Abbreviations and symbols
A Area, m²
AC Alternating Current 
COP Coefficient of Performance
cp Heat capacity, J/(kg K)
C Costs, € or € /a
DC Directed Current
DHW Domestic Hot Water 
DOD Depth of discharge (battery), %
DSM Demand Side Management
E Battery Capacity, kWh
EOM Electricity Only Market
EPEX European Power Exchange
HP Heat pump

k[_] Costs related to subscript
kW Kilowatt
kWh Kilowatt hour
kWp Kilowatt peak
m Mass, kg
P Power, W or kW
PV Photovoltaic (-system)

Heat flow rate, W Q
Q Thermal energy / heat, J or kWh
T Temperature, °C
TS Thermal storage
U thermal transmittance
V Volume, l

Subscripts and superscripts
A Ambient
A → B Indication: flow from A to B
aging Battery aging
Batt Battery
Batt new New battery
buy Electricity from the power grid
cap Capacity
component Supply system component
el Electric appliances and lighting
flex price Flexible price
flex feed Flexible feed in tariff
fix price Fixed price
fix feed Fixed feed in tariff
grid The power grid
heater Electrical resistance heater

high Very high electricity price if 
capacity limit is exceeded

Inv Inverter
loss losses (thermal or electrical)
max cap Maximal capacity
nom Nominal
over limit Above capacity limitation
rel Relative
sell Remunerated feed in
S Surface
t Time step
TS Thermal storage
x / y First / second component of 

matrix / table
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Tables: 

Table 1 - Analyzed market models

Model Basis for billing Electricity 
tariff

Feed-in 
remuneration

Conventional EOM consumed electric energy constant constant 
Dynamic EOM consumed electric energy dynamic dynamic 
Capacity market maximum power capacity flat rate constant 

Table 2 - Properties of the building envelope
in m² North East South West

Outer walls 40 39 37 37.5
Windows 3 9 6 10.5

Table 3 - U-values of the main building components
Building element U-value according to EnEV 2009 in W / (m²·K)

Outer wall 0.28 
Floor towards ground 0.35

Separation ceiling/attic 0.20
Saddle roof 0.20

Window 1.30

Outer door 1.80

Table 4 - Supply component technical and heuristic parameters

Component Chance of 
mutation Dimension size Boundaries Discretization 

steps
Photovoltaic system 30% area 0-60 m² 2 m²
Battery 20% capacity 0-10 kWh 0.5 kWh
Thermal storage 30% volume 200-2,000 l 50 l
Heat pump 20% nominal thermal power 0-10 kWth 0.5 kWth

Inverter 20% electrical power 0-10 kWel 0.5 kWel
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Table 5 - Main optimization results
Component/cost Unit Conventional EOM Dynamic EOM Capacity market
Photovoltaic system size m² 60 60 44
Battery capacity kWh 0 0 7
Thermal storage size l 550 550 1,400
Heat pump nominal power kWth 4.5 4.5 4.5
Inverter power kWel 4.5 4.5 3.5
Capacity limit kWel --- --- 1.65
Grid interaction costs € 1,304 1,281 2,018
Component costs € 896 896 1,019
Total costs € 2,200 2,177 3,037

Table 6 - Results conventional EOM
Value APV EBatt VTS 𝑄𝐻𝑃,𝑛𝑜𝑚 PInv Cgrid Ccomponent CtotalCase
Unit m² kWh l kWth kWel € € €

Optimized case 60 0 550 4.5 4.5 1,304 896 2,200
Without PV and battery - - 450 4.5 - 2,386 326 2,712
Electricity costs +20% 60 0 550 4.5 4.5 1,633 896 2,529
Electricity costs -20% 60 0 550 4.5 4.5    968 896 1,864
PV feed-in tariff +20% 60 0 550 4.5 4.5 1,234 896 2,130
PV feed-in tariff -20% 60 0 550 4.5 4.5 1,376 896 2,272
Without PV feed-in tariff 38 0 700 4.0 2.0 1,778 705 2,483
PV system costs -20% 60 0 550 4.5 4.5 1,304 800 2,104
Battery costs +33% 60 0 550 4.5 4.5 1,304 896 2,200
Batter costs -33% 60 0 550 4.5 4.5 1,304 896 2,200
Heat pump costs +33% 60 0 550 4.5 4.5 1,304 949 2,253
Heat pump costs -33% 60 0 550 4.5 4.5 1,304 843 2,147
Thermal storage costs +20% 60 0 550 4.5 4.5 1,304 909 2,213
Thermal storage costs -20% 60 0 550 4.5 4.5 1,304 883 2,187
20% load redistribution 60 0 600 4.5 4.5 1,241 899 2,140
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Table 7 - Results dynamic EOM
Value APV EBatt VTS 𝑄𝐻𝑃,𝑛𝑜𝑚 PInv Cgrid Ccomponent CtotalCase
Unit m² kWh l kWth kWel € € €

Optimized case 60 0 550 4.5 4.5 1,281 896 2,177
Without PV and battery - - 600 4.0 - 2,307 399 2,706
Day-ahead-market 60 0 750 4.0 4.5 1,306 895 2,201
Battery costs +33% 60 0 550 4.5 4.5 1,281 896 2,177
Batter costs -33% 60 0 550 4.5 4.5 1,281 896 2,177
PV system costs -20% 60 0 550 4.5 4.5 1,281 799 2,080
PV feed-in tariff +20% 60 0 550 4.5 4.5 1,223 896 2,119
PV feed-in tariff -20% 60 0 750 4.0 4.5 1,345 895 2,240
Heat pump costs +20% 60 0 550 4.5 4.5 1,281 950 2,231
Heat pump costs -20% 60 0 550 4.5 4.5 1,281 843 2,124
Thermal storage costs +20% 60 0 550 4.5 4.5 1,281 909 2,190
Thermal storage costs -20% 60 0 750 4.0 4.5 1,285 880 2,165
20% load redistribution 60 0 600 4.5 4.5 1,212 896 2,108

Table 8 - Results capacity market

Value APV EBatt VTS 𝑄𝐻𝑃,𝑛𝑜𝑚 PInv Pmax.cap Cgrid Ccomponent CtotalCase
Unit m² kWh l kWth kWel kWel € € €

Optimized case 44 7.0 1,400 4.5 3.5 1.65 2,018 1,019 3,037
Battery costs +33% 40 7.5 1,400 4.5 3.5 1.65 2,030    930 2,960
Battery costs -33% 44 7.0 1,400 4.5 3.5 1.65 2,009 1,089 3,098
Load increase +10% 42 7.0 1,450 4.5 3.5 1.75 2,134 1,016 3,150
Flattening peak loads 40 5.0 1,750 4.5 2.0 1.60 1,923    930 2,853
Load increase and 
Peak flattening 28 4.5 1,550 4.5 1.5 1.65 2,135    813 2,948

20% load 
redistribution 34 6.0 1,100 5.0 2.5 1.65 2,035    904 2,939

Without PV feed-in 
tariff 0 4.0 1,350 5.0 3.0 1.75 2,629    567 3,196

No PV feed-in limit 60 5.5 1,450 5.0 3.5 1.65 1,704 1,106 2,810
12 wildcard hours 44 7.0 1,400 4.5 3.5 1.50 1,860 1,046 2,906
24 wildcard hours 44 7.0 1,400 4.5 3.5 1.50 1,780 1,059 2,839
48 wildcard hours 26 7.5    950 3.5 3.5 1.50 1,927    857 2,784
120 wildcard hours 36 9.0 1,100 4.0 3.0 1.20 1,733 1,007 2,740
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Table 9 – Parametric values
Name Value Unit

Lifetime heat pump 20 a
Lifetime battery 20 a

Lifetime photovoltaic 25 a
Lifetime thermal storage 20 a

Lifetime inverter 15 a
Specific heat capacity - cp 4,180 J/(kg K)

Thermal transmittance of the TS - UTS 1.1189 W/(m² K)
Used time step - dt 3,600 s

Water mass in TS per liter - mTS 1 kg
EOM fixed electricity price - kfix price 0.2913 €/kWh
Fixed feed-in remuneration - kfix feed 0.1302 €/kWh

Capacity price - kcap 1.44 €/W
Electricity price above capacity limit -khigh 14.5650 €/kWh

Relative battery costs - 𝑘𝑟𝑒𝑙 600.00 €/kWh
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Figures:

Fig. 1 - Sketch of the modelled building from the east (left) and layout of the first floor (right)

Fig. 2 – Average daily thermal power required by the modelled building

Fig. 3 – Average daily electrical power required by the modelled building
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Fig. 4 – Average daily ambient temperatures of the TRY weather file for region 5

Fig. 5 – Cycle loss of battery capacity in dependence of the depth of discharge

Fig. 6 – Inverter efficiency in dependence of the applied fraction of nominal power

Fig. 7 – Average daily generation of the PV system in kWh per kWp
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Fig. 8 - Three-layer structure of the numeric algorithm

Fig. 9 - Energy system of the house model



ACCEPTED MANUSCRIPT

29

Fig. 10 – Flow chart of the optimization process
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Fig. 11 – Convergence curve for the dynamic EOM scenario

Fig. 12 – Daily distribution of electrical load with and without DSM

Fig. 13 – Distribution of wildcard hours (depicted by red vertical lines)
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