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A B S T R A C T

Power systems employ measures of reliability indices to indicate the effectiveness a power system to perform its
basic function of supplying electrical energy to its consumers. The amount of energy required in a generating
system to ensure an adequate supply of electricity is determined using analytical and simulation techniques.
This study focuses on reviewing the generation reliability assessment methods of power systems using Monte
Carlo simulation (MCS) and variance reduction techniques (VRTs). MCS is a very flexible method for reliability
assessment of the power systems, by the sequential process it can imitate the random nature of the system
components and can be broadly classified into two, sequential and non-sequential simulations. A brief
introduction to MCS is provided. Unlike analytical methods, MCS can be used to quantitatively estimate the
system reliability in even the most complex system generating capacity situations. The major drawback of the
MCS is that it requires more computational time to reach for converging with estimated the values of reliability
indices. This paper presents an effective methods for accelerating MCS in power system reliability assessment.
VRT used is to manipulate the way each sample of an MCS is defined in order to both preserve the randomness
of the method and decrease the variance of the estimation. In addition, the study presents detailed descriptions
of generation reliability assessment methods, in order to provide computationally efficient and precise
methodologies based on the pattern simulation technique. These methodologies offer significantly improved
computational ability during evaluations of power generation reliability.

1. Introduction

The basic function of a power system is to supply electrical power
efficiently to consumers as economically as possible, with a reasonable
assurance of quality and continuity. The modern society required the to
be continuously the supply of electrical energy on consumers demand
[1]. A wide range of techniques are available for assessing engineering
systems and evaluating their reliability indices, and these should be
carefully interpreted and understood.

Generating capacity reliability indices assist in producing sufficient
energy to satisfy demand using a given amount of energy consumption
in the system. Generating capacity can be defined in terms of adequacy
of as the installed generating capacity required satisfying a particular
load demand. The amount of generating capacity required to ensure
sufficiency of electricity supply is determined by evaluating the
reliability indices of the power system. There are two main approaches;
the use of analytical methods and the performance of simulations using

the Monte Carlo simulation (MCS) [2,103,143].
Both approaches have advantages and disadvantages [4–7].

Analytical methods generally use basic knowledge and mathematical
models, recounting and combining the probabilities and frequencies of
system conditions to check reliability indices. MCS describes a problem
as a sequence of actual experiments that determines the operating
characteristics of a system and its components. Reliability indices are
then evaluated by observing the experiments. In general, reliability
evaluation depends on the analytical assessment methods [8] but
introduces MCS as an alternative solution to illustrate the random
behavior of a system and its components.

The advantage of MCS over analytical techniques is its improved
capability to simulate the actual operation of a power system; hence, it
provides a more accurate evaluation of reliability indices [1,9]. MCS is
an extremely robust computer-based technique for estimating system
reliability and, in most cases, applying MCS requires considerable
computational time to obtain accurate and reliable results. Moreover, it
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requires input information in the form of distributions as well as the
more conventional prospect values used in many analytical methods
[10].

This work reviews reliability assessment methods for power sys-
tems generating capacity based on the use of MCS, supplemented by
the application of applied VRTs since the number of samples required
by MCS methods can be reduced using VRTs [101,142,144]. VRTs rely
on presumed information concerning the analytical model of a system
under simulation and are effective for reducing variance. The combina-
tion of VRTs and the Monte Carlo algorithm minimizes computational
effort, and in many cases, the VRTs employed to provide the same
general applicability as the standard MCS (sampling) method, but offer
superior computational efficiency.

The main objective of this paper is to present efficient estimation
and accurate models based on a pattern simulation technique to
minimize computational efforts significantly while evaluating genera-
tion system reliability. Reliability evaluation is an important aspect of
any generation system, many techniques have been developed to assess
power system reliability. Hence, in this study, focus on a comprehen-
sive review of the probabilistic techniques applied to reliability evalua-
tion of the generation systems. The two main probabilistic techniques
that the analytical approach and the MCS approach. Father, this study
displays by using the various methods are available in the literature,
that used to improve the MCS approach namely variance reduction
techniques. In addition, the study presents descriptions of the new
robust computational intelligence techniques that are widely used in
power system generation applications. These techniques are often
utilized to solve the complex problems in power system, which are
difficult to solve with conventional methods.

The remainder of this paper is arranged as follows: Section (2)
contains an analysis of a power system demonstrating that the main
functional zones provide the most convenient basis for its division.
Section (3), explains the basic principles of the analytical methods and
the Monte Carlo simulation. Section (4), illustrates the Variance
Reduction Techniques and discusses the importance of sampling in
Monte Carlo simulation. Section (5) clarifies several methodologies for
reducing computational effort by combining the Monte Carlo simula-
tion and the Variance Reduction Techniques. Finally, Section (6)
presents the conclusions of the work.

2. Generation reliability assessment

Quantitative reliability assessments should not only evaluate a
system's actual physical components in terms of performance and
random behavior, but also the overall requirements, procedures, and
engineering issues inherent in the system's operation [11]. A power
system is an extremely complex, advanced and integrated structure
[12]; even the most advanced computer programs lack the capacity for
comprehensive, holistic interpretation for these systems. Consequently,
power systems are frequently divided into appropriate subsystems that
can be separately analysed.

The most convenient means for dividing a power system are its
main functional zones; namely its generating capacity systems, com-
posite systems, and distributed power systems. Hierarchical levels (HL)
have been developed [13] to determine an identical means of grouping
and identifying the aforementioned functional zones, as illustrated in
Fig. 1. The figure shows that the primary level (HLΙ) refers to the
generation facilities and their capability to satisfy pooled system
demand; the second level (HLΙΙ) refers to the composite generating
and transmission system and its capability to deliver energy to other
major points; and the last level (HLΙΙΙ) refers to the entire system as
well as the distribution system and its capability to satisfy the energy
demands of individual customers.

The main function of a power system is to supply consumers with
electrical power as economically as possible at an acceptable level of
quality [14,15]. The term reliability index, when applied to generation

systems, refers to performance measures of the generating system
capacity that can influence the continuity of electrical power supply to
the customer. Two basic concepts are used in system capacity assess-
ments: adequacy and security. Generating capacity requirements can
also be separated into two basic categories: static capacity, which
correlates with the long-term estimate of overall system demand; and
operating capacity, which is a short-term correlation with the actual
capacity required to meet a specified load.

Adequacy assessment considers the entirety of the facilities within a
system and their sufficiency to satisfy consumer load demands.
Adequacy is therefore associated with a static level of demand which
is exclusive of transient system disturbances [2]. The evaluation of
generating adequacy reliability can, therefore, be addressed by using
either probabilistic or deterministic method. Over the last few decades,
a large number of publications have proposed different probability
techniques for generation reliability evaluation [16–23]. Adequacy
correlates with the system's ability to satisfy load demand in the case
of planned or unplanned capacity outages.

Inadequacy can result from insufficient available generation capa-
city or inability of the transmission or distribution networks to transfer
energy to the customer load points. Often, therefore, calculation of the
adequacy indices used in assessing generation power systems at one of
the three hierarchical levels depends fundamentally on the expected
values of a random variable which representing the average value of the
reliability indices within a probability distribution. There are many
indexes to assess the adequacy of a power system as can be seen in
Fig. 2.

3. Adequacy assessment methods

Determining the amount of generating capacity required to satisfy
load demand is an important concept in electrical power system
operation and planning. The modern approach to evaluating reliability
indices for generation system capacity is based on two alternative
assessment methods for predicting the reserve capacity required to
meet the load demand with a predetermined level of reliability. These
assessment methods comprise analytical and simulation techniques
and both approaches are used in electric power utilities at the present
time.

Simulation techniques are used to imitate unpredictable perfor-
mance in power systems, either in a random or sequential way [1,9].
Analytical assessment methods are easily and simply applied using
mathematical analysis to derive precise analytical solutions to the value
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Fig. 1. Hierarchical reliability assessment levels [1].
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of reliability indices from the model. Monte Carlo simulation is the
preferred method for reliability assessment of large and complex
systems due to the realism it introduces, therefore, it is adopted as
the benchmark when comparing accuracies among different computa-
tional methods. Both assessment methods have merit and demerit and
can be very powerful when properly applied.

3.1. Analytical assessment methods for reliability adequacy

Analytical assessment methods use a mathematical model to
represent system states and evaluate reliability indices from the model
using mathematical solutions. In general, an analytical approach is very
efficient to assess the reliability if not taking into consideration the
complex operating conditions and the random failure probability for
system components. Analytical methods therefore offer potential
advantages over simulation methods in terms of reduced computing
effort when assessing expected reliability indices. They can be divided
into three categories: Enumeration Methods, Population Based
Methods, and Approximate Methods.

Enumeration Methods, calculate the probabilistic array of a system
state associated with its capacity level model. This model is combined
with the load model to construct a risk model. The first enumeration
method is the loss of load expectation method, which tests the
probability of a simultaneous outage of generating units against a
model of peak load. Loss of load expectation indicates a probability of
system load exceeding the available generation capacity. A second
enumeration method is the frequency and duration method, which
addresses those factors as well as probability [24,25,44]. The frequency
and duration method requires additional data (the transition rate
parameters µ and λ in addition to unavailability and availability) to that
required by the earlier method. Both techniques are widely used to
evaluate the static capacity relevant to a specific generation system
[2,5,6,26,43].

This paper also explained the population-based intelligent search
(PIS) which employed an optimization search tool to calculate the
reliability indices of power generating system. PIS can be considered as
a viable replacement for the analytical and MCS techniques in assessing
non-chronological system reliability indices.

PIS methods are basically enumeration algorithms, which account
for differing states in the system's state space. These methods make use
of optimization tools and evolutionary programming, such as genetic
algorithms (GA), particle swarm optimization algorithms (PSO), in-
telligent state space pruning (ISSP), and evolutionary computation
(EC); developed to facilitate calculation of reliability indices
[34,46,63,119,145–155]. PIS methods also attempt to discover the
majority, if not all, of the available states, in order to calculate a good
approximation of the reliability indices [27]. A significant number of
research papers in the power system reliability assessment in literature
have introduced techniques using PIS methods, which were used to
reduce the search space and the computational efforts.

Approximate methods are now used for examining a generation
system's suitability for modeling. While traditional algorithms for
generation system modeling are based on recursive algorithm proce-
dures, these algorithms are theoretically accurate for calculating
discrete probability distributions for generation capacity outages.
Approximate methods use the continuous probability distribution
function for formulating an approximate generation system model
[28].

Analytical assessment methods have two main drawbacks when
evaluating power generation systems, firstly relating to the system's
complexity and secondly to the number of potential system states, both
of which increase exponentially with the number of system compo-
nents.

3.2. Monte Carlo-based assessment methods

This approach, usually known as the Monte Carlo simulation,
imitates the actual process and random behavior of the power system
under consideration. The failure and repair of the system are simulated
using random variables and probability distributions of the system
states, which mimic random system operational behavior such as
component failures, etc. The main objective of the simulation method
is to generate the expected or average values for system reliability
indices.

Simulation methods, therefore offer increasing advantages over
analytical methods as systems become larger and more complicated;
until a point is reached where analytical methods are no longer suitable
for assessing system reliability. Analytical methods often require
contingency enumeration of a large number of states before they can
be reduced to a representative model. Monte Carlo simulation methods
avoid this problem by sampling a characteristic set of system states.

Monte Carlo methods generate solutions as a parameter propor-
tionate to a population and, using a random sequence of numbers to
construct a sample of the population, obtain a statistical estimate of the
parameter [29]. Monte Carlo methods can be broadly classified into
two main types according to the way in which system states are
sampled; non-sequential Monte Carlo (random sampling), and sequen-
tial Monte Carlo (chronological sampling) simulations [1,5,9,30–
35,38]. Sequential MCS typically require higher computational effort
than non-sequential MCS [36]. Pseudo-sequential [37–39], quasi-
sequential [40–42] and pseudo-chronological MCS [38] do not adopt
either a chronological or a pure state-space representation [1,9,43].
These approaches are reviewed in the following sections:

3.2.1. Non-sequential method
In the non-sequential, or random, simulation approach towards

estimating generating capacity, each consecutive sample of system
states is randomly selected completely independently from previous
and subsequent samples. Therefore, in a non-sequential Monte Carlo
assessment, system components are sampled without considering any
time dependency between coherent states. In the case of the two-state
Markov model (operation and failure) for conventional generators, the
reliability indices estimation based on non-sequential MCS (state-
sampling) is represented by the following mathematical equation:

∑F
NS

F XĒ [ ] = 1 ( )
i

NS
i

=1 (1)

where Xi is a sampled system state; F(Xi) is the outcome of the test
function F; NS is the number of samples, and Ē[F] is the expectation of
a given reliability indices represented by F [44].

For example, the probability of a system load curtailment (LOLP),
which is a traditional reliability index [45], is evaluated using the test
function F and defined as:

⎪

⎪

⎪

⎪

⎧⎨⎩
⎫⎬⎭F X

if x S
if x S

( ) =
0 ∈
1 ∈

,LOLP
i

i
xf

i
xs (2)

where Sxs denotes the success states; Sxf denotes the failure states and
S S S= ∪x xs xf , which represents all the system states. All the basic
reliability indices can be obtained using Eq. (1), depending on the
definition of the test function [46] Eq. (2).

3.2.2. Sequential method
The sequential Monte Carlo assessment method can be used to

perform the system analysis in a chronological manner. In applying
sequential MCS for estimating generating capacity, each subsequent
system state sample is related to the previous set of system states. The
sequential approach moves consecutively through time, and system
states are simulated indirectly. In the case of the generating capacity
assessment addressing the two-states Markov model system compo-
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nents (upstate and down state), reliability indices estimation based on
sequential MCS is represented by the following mathematical equation:

∑F
NY

F XĒ [ ] = 1 ({ } ),
i

NY

n n
Si

=1
=1

(3)

where X X X S N{ } = { …, }; ∈n n
Si

Si i=1 1 is the synthetic gradation of
system states X in period i; and NY is the number of simulated time.
The LOLP index is evaluated using the test function F and defined as:

∑F X
T

d X F X({ } ) = 1 ( ) × ( )LOLP n n
Si

n

Si

n LOLP n=1
=1 (4)

where Xn is the nth state of the sequence; T is the duration of the
synthetic;, simulated time is (8760) hour; d X( )n is the duration of state
Xn; and F x( )LOLP n , is the outcome of Eq. (2).

3.2.3. Convergence criterion
The MCS approach is a fluctuating convergence process, therefore

the simulation should be terminated when the estimated reliability
index values achieve a specified degree of confidence. The purpose of
using a terminated simulation process is to provide a compromise
between required accuracy and computational cost. The coefficient of
variation is often used as the convergence criterion in MCS and the
coefficient of variation for any reliability index is defined as:

α σ
E X

=
( ) (5)

where the estimate of the reliability indices is E X( ), and the standard
deviation is σ . In other words, the coefficient of variation can be using
to expressed accuracy level of the MCS, in order to guarantee reason-
able accuracy in a multi-reliability index study [1].

Convergence criteria for MCS algorithms are based on the differ-
ences recorded between the reliability index values under observation.
The variance criterion, therefore indicates the extent to which a
random variable deviates from its expected value. A small variation
in this parameter is desirable since it results in improved MCS

accuracy. Such an improvement may be achieved by either increasing
the number of samples, thereby leading to a consequent increase in
computational effort, or by employing VRTs, which may produce better
estimates without changing the number of samples.

4. Sampling reduction techniques

The number of samples required by the sequential MCS and non-
sequential MCS techniques can be reduced using VRTs. These techni-
ques rely on model information collected a priori for the system under
simulation and are effective for reducing variance. Computing time and
variance are directly affected by system analysis requirements and the
selected sampling techniques. The standard deviation is given by the
following equation:

σ
V z

N
=

( )
(6)

where the sample number is N, and the unbiased sample variance is
V z( ). The equation shows that decreasing the unbiased sample variance
can decrease the standard deviation of MCS, and similar effect when
increasing sample number has on the accuracy of MCS.

The MCS method can easily incorporate all chronological aspects of
power systems into the simulation, such as load demand fluctuation,
failures on transmission lines, time dependent sources, etc. In addition,
it is the only method capable of providing the probability distribution
of the reliability indices. Despite these advantages, this method is time
inefficient due to the sequential process for sampling system states
[1,9,37]; and one way to make the MCS method more time efficient is
to use VRTs. In sampling terms, these techniques aim to decrease the
variance in estimates of the reliability indices without affecting their
expected value [1,9,47–53,68,69,116]. VRTs can reduce the amount of
sampling needed to obtain indices estimates to the desired level of
accuracy, or increase the accuracy of the estimates for the required
number of samples.

Among a number of VRTs that are very useful in assessment a
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power system reliability [1] are Antithetic Variables (AV) [47–49];
Dagger Sampling (DS); Control Variates (CV), Importance Sampling
(IS) [51,52,138], and Stratified Sampling (SS) [47]. A further interest-
ing way of reducing the variance of reliability indices is by using Latin
Hypercube Sampling (LHS) techniques [54,116], and integration of
these VRTs [95] has been used to speed up the process of estimating
the reliability indices using MCS.

Recent work has shown that the sampling efficiency of MCS
methods can be improved by using Importance Sampling (IS) [55].
This is a significant technique which is used to reduce sample numbers
and includes the following methods: variance minimum method; cross-
entropy method; weighted importance sampling; sequential impor-
tance sampling, and response surface estimation via importance
sampling [42]. The following sections briefly present IS and other
VRTs available in the literature:

4.1. Antithetic Variates (AV)

This technique is based on finding two unbiased estimators for the
unknown parameter which have a strong negative correlation. If there
are two unbiased estimators θ1 and θ2 , then:

θ θ θ= 1
2

( + )1 2 (7)

From the above equation, the estimator value is still an unbiased.
The variance of θ is:

V θ V θ V θ cov θ θ( ) = 1
4

( )+ 1
4

( )+ 1
2

( , )1 2 1 2 (8)

Clearly from Eq. (7), if cov θ θ( , )1 2 , is strongly negative, the overall
variance can be reduced [1,56].

4.2. Dagger Sampling (DS)

This method is suited to random variables with only two possible
outcomes and small probability events. In power system reliability
evaluation, the system components can be simulated by a two-state (up
and down) and small failure events probability. This technique is
discussed from the reliability evaluation point of view in more detail in
Refs. [1,56].

4.3. Control Variates (CV)

This method [1,56,57] is based on an understanding of difference
sampling between the result from the subject problem and a simplified
model to which a solution is known. If A and B are two random
variables with robust correlation, a new random variable D can be
defined as:

D B A E A= − + ( ) (9)

The mean value of E(A) can be obtained from analytical methods,
proving that D and B have the same expected value:

E D E B E A E A E B( ) = ( )− ( )+ ( ) = ( ) (10)

The variance of D is expressed by:

V D V B V A COV B A( ) = ( )+ ( )−2 ( , ) (11)

The covariance between B and A is cov (B, A). Since B and D have
powerfully correlated, the variance of D is smaller than the variance of
B. Variable A is called the control variable (CV). Some power system
applications of this can be used to evaluate system indices for
composite generation and transmission systems [56].

4.4. Importance Sampling (IS)

Is a method for changing the Probability Distribution Function

(Pdf) of sampling in such way that the events which make the greatest
contributions to the simulation results have greater occurrence prob-
abilities. An integral can represent an expected value of a parameter
and therefore the problem of estimating an integral by the MC method
is equivalent to the problem of estimating an adequate index in
reliability evaluation. The importance sampling technique can be
illustrated using the problem of estimating an integral. If an indefinite
integral function g(x) is non-negative within interval [0,1], then g(x)
can be expressed as:

∫I g x dx= ( ) .
0

1

(12)

Using the estimated method, the integral can be expressed as:

∑I E g U
N

g x= ( ( ))≈ 1 ( )
i

N

i
=1 (13)

where U is random number uniformly distributed between [0,1].
Where, U1, U2 and U3 are three random numbers obtained from the
uniform distribution, sampling between [0,1]. These random values
make different contributions to the integral; U2 and U3 have less
influence than U1 which designates that uniform sampling is unrea-
sonable.

If the Probability Distribution Function (Pdf) for sampling is
represented by the function f(x) which has the same shape as g(x),
then the random numbers which can make a greater contribution to the
integral value have larger occurrence probabilities. Dividing and
multiplying g(x) by f(x), the integral can be expressed as:

∫I g x
f x

f x d x= ( )
( )

( ) ( )
0

1

(14)

The function f(x) representing the new PDF is called the importance
sampling density function. If θ g x f x= ( )/ ( ) then according to the
estimated method the integral equals the expected value θ:

I E g x f x= [ ( )/ ( )] (15)

The variance of θ is:

∫V θ g x
f x

f x dx I( ) = ( )
( )

( ) −
0

1 2

2
2

(16)

If x g x I( ) = ( )/ , the variance of θ would be zero:

∫V θ I g x dx I( ) = ( ) − = 0
0

1
2

(17)

It is impossible to make x g x I( ) = ( )/ , because I, is unknown.
The variance can be reduced if f(x) is shaped similarly to the shape

of g(x). In power systems reliability evaluation, the IS technique [1,57]
can be used to address difficult problems in practical applications like
sample hydrological or load states.

4.5. Cross-Entropy (CE)

The traditional MCS method for estimating rare-event probabilities
requires a large simulation effort, therefore the Cross-Entropy techni-
que was first introduced by Rubinstein [58,59]to augment earlier work
on variance reduction [60], enabling the computation of rare events for
which the probabilities of occurrence are very small. The CE approach
is a well-known Monte Carlo technique for rare event estimation and
optimization [61]. The technique is based on the repeated sampling
process, wherein each iteration includes two steps: (a) generating
random data according to a specified technique and (b) updating the
parameters of the random technique based on that data to produce a
better sample in the next iteration [62].

The CE method is demonstrated by assuming that g(X) is a
probability distribution belonging to the family of densities f(X; v),
where v is a vector of reference parameters. Likewise, f(X) can be
rewritten as f(X; u), where u is also a vector of reference parameters
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[63]. The core of the CE method is the minimisation of the Kullback-
Leibler distance between g(X) and g*(X) [64], which represents the
optimal IS distribution to achieve a substantial reduction in variance.
This distance is defined as:

⎡
⎣⎢

⎤
⎦⎥

∫ ∫

D g X g X E g X
g X

g X g X dX g X g X dX

( *( ), ( )) = Ln
*( )
( )

= *( )Ln *( ) − *( )Ln ( )

g*

(18)

The equation can minimize to:

∫max g X g X dX*( )Ln ( ) (19)

by replacing.
g X g X and f X*( ), ( ), ( ), by f X;v f X;u( ), ( ) in Eq. (19) as shown:

∫max H X f X u
θ

f X v dX max E H X f X v( ) ( ; ) Ln ( ; ) ↔ [ ( )]Ln ( ; )v v (20)

Naturally, the optimal vector of parameters v* is the outcome of this
optimization problem. Assuming that IS can be used iteratively to use
to solve Eq. (20), then in the first iteration of this procedure, IS will use
a new sampling function f(X; v). Accordingly Eq. (20) is rewritten as:

max E H X f X u
f X w

f X v[ ( )] ( ; )
( ; )

Ln ( ; )v w
(21)

The respective optimal vector of reference parameters v* is:

V argmax E H X W X w u f X v* = [ ( )] ( ; , )Ln ( ; )v w (22)

whereW X;w u f X;u f X;w( , ) = ( )/ ( ). One way to solve Eq. (22) is to follow
a stochastic program:

∑argmax
N

H X W X w u f X vṽ* = 1 ( ) ( ; , )Ln ( ; )v
i

N

i i i
=1 (23)

where N is the number of samples drawn from f(X; w).
Taking advantage of the fact that Eq. (23) is often convex and

differentiable with respect to v, an analytical solution to v* rather than
an estimate can be obtained [42]. Moreover, if f(X; v) belongs to the
Natural Exponential Family [65], the entry j, j=1,…., d, of the vector
can be calculated via:

v
H X W X w u x

H X W X w u
=

∑ ( ) ( ; , )

∑ ( ) ( ; , )
j

i
N

i i ij

i
N

i i

=1

=1 (24)

This last Eq. (24), [42] shows that it is possible to create an IS based
multi-level algorithm to improve iteratively the reference parameters
vj, j=1,…, d, until the optimal vector v* for the target defined E[H(X)] is
obtained.

4.6. Stratified sampling (SS)

Stratified sampling can be considered the similar to the concept of
importance sampling. The idea is to divide the system into different
subpopulations referred to as strata and to draw more samples into
subintervals that give greater contributions to the final results. For
more details see references [1,2,55,56].

4.7. Latin Hypercube Sampling (LHS)

LHS was first introduced by McKay [50]. It is a combination of
stratified and random sampling methods that can be used to reduce the
compute time of the MCS.

LHS is an effective VRT method that avoids the difficulties of SS for
high-dimensional sample spaces. If SS is used for a space composed of
D-dimensional uniform random variables, whose N/m is the number of
samples per stratum, (N/m)D samples would have to be drawn in the
expectation of at least one sample being drawn from every stratum. To
address this problem, LHS proposes the stratification of the probability

distribution of the random variables rather than the entire sample
space.

The practicability of drawing a sample according to LHS method is
notable. Consider a vector of D-dimensional independent uniform
random variables X X X= ( ,…., )D1 , and a scalar function H(X). Fixing m
as the number of strata per random variable, which must be equal for
all variables; and N as the total number of samples, generates n=N/m
independent samples U U U u u u U i n{ ,.., }, = ( ,, ), ~ (0,1), = 1,…, .i i

D
i i im i

1
1

Additionally, generating (n) independent permutations,
π π π m i n{ ,…, }, = (1,…, ), = 1,…,i i

D
i

1 , then accordingly, (m) samples of
X are generated in each iteration i, by the LHS technique [66]. Hence,
the sample X j m, = 1,…, ,ij is:

X
π u

m
π u

m
=

+1−
,…,

+1−
ij

ij ij ij
D

ij
D1 1

(25)

Finally, the LHS estimator test function can be described as:

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∑ ∑E H X

n m
H X[ ( )] = 1 1 ( )

i

n

j

m

ij
=1 =1 (26)

5. Methodology for reliability assessment

Systems adequacy evaluation using MCS is divided into two main
parts; state sampling and state evaluation. The most earlier literature
on this work has focused on developing techniques for state sampling.
Methods based on probability concepts such as MCS can be useful in
assessing high-performance electrical power systems.

The general steps in the sequential MCS algorithm used for the
reliability assessment of generation and composite systems are based
on the following:

• Step 1: Define the maximum number of years (N) to be simulated
and set the simulation time (h), (usually one year) to run with MCS.

• Step 2: Generate uniform random numbers to obtain the stochastic
failure/repair operation cycle for the system components.

• Step 3: Define the system capacity by aggregating the available
capacities of all system components and defining the load level.

• Step 4: Select a system state (success state and failure state), by
checking that the load level can be met by the available capacity (in
case composite reliability using optimal power flow to assess the
deficiency).

• Step 5: Evaluate and update the outcome of the test function for the
reliability indices evaluation.

• Step 6: If (N) is equal to the maximum number of years, stop the
simulation; otherwise set (N˭N+1), (h=0), and go back to Step 2 and
repeat the attempt. Fig. 3 shows a flowchart of the main steps in
reliability indices assessment.

A general observation of these steps shows that the MCS method
takes a long time to estimate power systems reliability or evaluate
reliability indices. This is because conventional MCS generates a series
of numbers quite randomly in order to guarantee the probability
distribution for the expected loss of demand. Many techniques have
therefore been proposed to reduce the computational effort required to
evaluate generating system reliability, composite system reliability and
distribution system reliability. These techniques include:

1. VRTs [67–71]: methods based on Monte Carlo models that are
implemented with VRTs to reduce computational effort;

2. Importance Sampling [72];
3. MCS and fuzzy algorithms: references [73–80,107] present an

overview of the application of a fuzzy set to power system modeling;
4. Artificial neural networks: all types of reliability indices can be

evaluated using these networks supplemented by MCS for composite
system reliability [81–86,145];
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5. Genetic algorithms: a method using for evaluating reliability indices
for generating and generation and transmission systems [87–91].

Superior sampling efficiency and quality of MCS convergence are
necessary if computational expenses are to be kept to a minimum [92].
This paper reviews several techniques for minimizing computation
time and maintaining a high degree of estimate when assessing the
reliability indices for generating systems. The following section de-
scribes the selected methodologies:

5.1. Monte Carlo Simulation (MCS)

Monte Carlo simulation (MCS) has been recently re-established,
largely due to improved understanding of its capabilities, and some-
times because it is the only available technique [93]. The MCS method
relies on statistics but is useful in various fields where statistical data is
rare. When addressing problems that include random variables with
given or known probability distributions, MCS.

results are presented in a histogram form which is especially useful
for additional statistical assessments [6].

It should be noted that the sequential simulation method is a very
comprehensive tool for evaluating reliability indices. Convergence
criteria for MCS simulation algorithm are based on the variance of
the recorded reliability indices. However, the major drawback of this
method is the relatively high computational time required to converge
variances for the reliability indices produced by this method. Many
studies have used different models based on MCS, such as MCS-LSSVM
[94], CREAM [68], MECORE [95], CONFTRA [96], and MOPSO [97];
and numerous works have also been proposed based on MCS to assess
the reliability of power systems [98–100].

The sequential MCS approach is the most fundamental technique
used to assess the adequacy of a power system [101,102]. In general,
applying MCS first requires the appropriate computational resource to
obtain sufficient accuracy in the actual results. Applying the sequential
MCS technique on the Roy Billinton Test System [103], shows the
relation between the computational effort of the simulation process and
samples, as presented in Table 1.

Table 1 demonstrates that increasing the numbers of simulation to
achieve the required degree of results in increased computation times,
and the results have been compared with reference data [3]. Second,
requires additional data in the form of distributions, along with
conventional predicted values used in many analytical procedures
[104].

The MCS method [105] has significant advantages when employed
to assess power system reliability. Evaluating the reliability of power
generation systems using probabilistic methods [106], has attracted
considerable attention because of its capability to account for systema-
tic uncertainties, particularly when used to evaluate the reliability
indices of generating systems.

5.2. MCS with variance reduction techniques for reliability
assessment

The computational effort required to gain an adequate degree of
accuracy is the main limitation of Monte Carlo methods. Many studies
have been proposed based on MCS and different VRTs for uncertainty
variables in a generating system, such as energy prices and demand,
which represent planning and operation tools in most generating
systems [107,108]. MCS is more efficient in reducing computational
time when VRTs are used. The aim of these techniques is to decrease
the variance of the estimators of reliability indices with accurate values.
Control variables (CV), antithetic variables (AV), and stratified sam-
pling (SS) are some common techniques used to improve the precision
and accuracy of estimator reliability indices in Refs. [109–111].

A computer algorithm has been designed that combines stratified
sampling and antithetic sampling to enhance the accuracy of MCS

Define the number of years (N) to be 
simulated and set the time period for 

simulation (h), to run with MCS.

Generate uniform random numbers to obtain 
the operation cycle (failure/repair) for all the 

system components.

Sampling states space
Classification the system state (success state & 
failure state), by checking the load level, can 

be supplied with the available capacity.

Any 
state 

failure?

Evaluation state 
Calculated and update the outcome of test 

function for the reliability indices evaluation.

Yes 

No 

Select a system state (compose the available 
capacity model from system components 

capacities, and load level model).   

Start

End

Fig. 3. Flowchart for the steps of the reliability assessment methodology.

Table 1
Reliability evaluation indices vs number of samples using sequential MCS technique.

Refs. Reliability
indices

No of sample years

Refs. [103] 2000 4000 6000 8000 10,000
LOLE (h/
yr.)

1.015 1.103 1.096 1.085 1.084

LOEE
(MWh/yr.)

8.257 9.833 10.263 10.106 9.908

LOLF
(occ/yr.)

0.21 0.22 0.22 0.21 0.21

LOLLE (h/
yr.)

1.010 1.102 1.090 1.075 1.161

Computed
results

LOEE
(MWh/yr.)

9.472 9.780 10.576 10.789 10.314

LOLF
(occ/yr.)

0.22 0.24 0.24 0.23 0.23

Elapsed
time (s)

6690.6 41985.21 37261.82 58124.17 95081.74
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[47,48]. The major stimulus for using sequential MCS with variance
reduction techniques is a reduction in the computational effort so that
the results show a faster simulation process to realize the convergence
[49]. Table 2 reviews of some of the applications used to study the
reliability assessment by using non-sequential MCS and sequential
MCS with different VRT techniques.

This paper also presents some studies focused on using the LHS
method of reliability assessment that can yield the same quality of
estimated reliability indices with fewer samples. As a result, variance
reduction of reliability indices assessment can be achieved.

In the literature, LHS has been adopted in many power system
applications as a variance reduction tool to evaluate generating system
reliability [112,113], and reduce the required storage for simulation.
LHS techniques are used to address the adequacy planning problem in
a power system [114,115]. Moreover, some works have examined the
impact of LHS on the reliability estimates of multi-area generation
systems [116]. By applying LHS to different numerical examples, the
results show that the computational time and required sample size to
reach convergence can be further reduced [117,118].

Discrete LHS and LHS are two approaches employed to evaluate
the reliability indices distribution of power systems with less associated
consumption of memory [116]. The main advantage of this approach is
its capability to perform naturally at any level of reliability analysis.
LHS can produce the same quality of representativeness with a fewer
number of samples. Consequently, a reduction in variance of the
estimated indices can be achieved. In order to provide the reader with
some references that have recently published, Table 3, reviews some
studies of reliability assessment conducted using non-sequential MCS
and sequential MCS with LHS techniques. In all cases, the results prove
that LHS enhances the performance of MCS in the area of generation
system reliability.

This paper also presents many works that have been successfully

applied to various ranges of estimation and optimization problems
[119–130]. In particular, importance sampling is used to estimate
rare-event probabilities through the alternative CE method approach.

The CE approach is a general stochastic optimization technique for
a good speed-up provides a considerable reduction in the number of
samples required for convergence in which it aims to propose a new
density or obtaining a new density at least very close to the original
density distributions for the reliability indices. Selection a new density
distribution different from the original distributions, according to this,
the sample variance is minimized and the convergence is achieved. The
efficiency of the CE depends on finding the new distributions or very
close to it. New distributions lead to change the original distributions,
therefore, the mean values for reliability indices which can obtain it
with the CE, these values cannot be depended on it in compensated for
the real distributions of the same reliability indices [52]. A general
introduction to the CE method is provided in [60,62,131,132]. The CE
approach is a general stochastic optimization technique for solving
both discrete and continuous multi- objective optimization problems
[133,134].

The numbers of the applications using the CE method have recently
increased. Table 4 reviews of some of the applications studying
reliability assessment by using non-sequential MCS, and sequential
MCS with CE techniques. In real applications, computational perfor-
mance and speed-up can be easily achieved using the CE method and
IS to estimate the reliability indices of generating and composite
systems [65,135]. A good speed-up provides a considerable reduction
in the number of samples required for convergence in [136].

5.3. population-based intelligent search for Reliability Assessment

This paper also presents some studies focused on using the
optimization techniques (enumeration algorithms) based on metaheur-

Table 2
Reliability indices calculate based on sequential MCS and VRTs techniques.

Refs. VRTs methods used Reliability indices

SMCS Antithetic Variates
(AV)

Control Variates
(CV)

Dagger Sampling
(DS)

Importance
Sampling (IS)

Stratified
sampling (SS)

LOLE (h/
yr.)

EENS
(MWh/yr.)

LOLF (ooc/
yr.)

LOLP (h/
yr.)

[47] ✓ ✓ ✓
[48] ✓ ✓ ✓ ✓
[49] ✓ ✓ ✓ ✓ ✓ ✓
[53] ✓ ✓
[55] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[56] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[66] ✓ ✓
[67] ✓ ✓ ✓ ✓
[69] ✓ ✓ ✓ ✓
[70] ✓ ✓ ✓ ✓
[109] ✓ ✓ ✓ ✓ ✓
[110] ✓ ✓ ✓
[111] ✓ ✓ ✓ ✓
[137] ✓ ✓ ✓ ✓ ✓ ✓
[71] ✓ ✓ ✓ ✓ ✓
[138] ✓ ✓

Table 3
Reliability indices calculate based on non-sequential and sequential MCS with LHS techniques.

Refs. Methods used Reliability indices Time (s) Test system

NSMCS SMCS LHS LOLF LOLD LOLP EPNS

[113] ✓ ✓ ✓ ✓ ✓ 2508 IEEE RTS96
[115] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Several cases IEEE RTS79
[117] ✓ ✓ ✓ ✓ ✓ ✓ 1560 IEEE RTS79
[119] ✓ ✓ ✓ ✓ ✓ ✓ Several cases IEEE RTS79
[139] ✓ ✓ ✓ Several cases IEEE RTS79
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istic searching for the truncated sampling of state-space are proposed
for reliability assessment of the power generation system adequacy.
The objective of using metaheuristic optimization techniques is to
present new algorithms that can solve complicated reliability analysis
for electrical power systems, such as the increase in the complexity of
the power systems infrastructure, low accuracy for reliability indices
estimate, and large computation effort.

Both the MCS and PIS methods have the state spaces, but are different
in their mechanisms for sampling; with regards to MCS, the state of
success or failure influences the reliability indices estimation. This implies
that the sampling of the state of failure is less likely compared to the state
of success. This condition explains why the convergence takes more
computation effort in the reliability assessment of highly reliable systems.
Meanwhile, for the PIS, the system state of the failure probability system
can guide the search [35]. Therefore, the state of a system that has a
higher probability of failure can ensure greater chances to be nominated
and evaluated. To date, this characteristic has enabled the PIS algorithms
to be utilized to address reliability problems due to its higher efficiency.
Table 5, reviews some studies of reliability assessment conducted using
PIS techniques. The results indicated that the reliability indices derived
from the use the PIS corresponded closely with those derived from the use

of an analytical approach or Monte Carlo simulation with less computa-
tion burden.

6. Conclusion

A power system is a large and complex system; hence reliability
assessment is also a complex process. For large networks, estimating
reliability using simulation techniques is necessary. The computational
effort required to gain a sufficient degree of accuracy is the main
limitation of Monte Carlo methods. The number of samples required by
the MCS method can be reduced using VRTs. The aim of these
techniques is to decrease the estimate variance for reliability indices.
Many studies have been proposed based on MCS and different VRTs.
These techniques rely on information regarding the model of the
system under consideration. A simulation that uses information
collected a priori is more effective for reducing variance.

The MCS models, wherein estimations are conducted using a digital
computer, offer a robust approach to evaluating system reliability. This
study provides a brief introduction to MCS and several MCS based
techniques combined with VRTs such as MCS–LHS, MCS–CE, and
MCS–IS.

Table 4
Reliability indices calculate based on non-sequential MCS and sequential MCS with CE techniques.

Refs. Methods used Reliability indices Time (s) Test system

NSMCS SMCS CE LOLE LOLF LOLD LOLP EPNS

[51] ✓ ✓ ✓ ✓ ✓ 35.7 IEEE RTS79
[52] ✓ ✓ ✓ ✓ ✓ 4.07 IEEE RTS96
[65] ✓ ✓ ✓ ✓ ✓ ✓ 86 IEEE RTS79–96
[71] ✓ ✓ ✓ ✓ Several cases IEEE RTS79–96
[132] ✓ ✓ ✓ ✓ ✓ Several cases R-RBTS
[135] ✓ ✓ Several cases IEEE RTS79–96
[136] ✓ ✓ ✓ ✓ ✓ 59 IEEE RTS79–96
[140] ✓ ✓ ✓ ✓ ✓ Several cases IEEE RTS79
[141] ✓ ✓ ✓ ✓ ✓ Several cases RBTS, IEEE RTS79
[142] ✓ ✓ Several cases IEEE RTS79
[143] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Several cases IEEE RTS96
[144] ✓ ✓ ✓ ✓ Several cases IEEE RTS79

Table 5
Reliability indices calculate based on Population-based intelligent search techniques.

Refs. Population-based intelligent search techniques Reliability indices

Genetic Algorithm
(GA)

State space pruning
(SSP)

Particle swarm optimization
(PSO)

Others algorithms LOLE (h/
yr.)

EENS (MWh/
yr.)

LOLF (Ac/
yr.)

LOLP (h/yr.)

[35] ✓ ✓ ✓ ✓
[46] ✓ ✓ ✓ ✓
[63] ✓ ✓
[119] ✓
[145] ✓ ✓ ✓ ✓
[146] ✓ ✓
[86] ✓ ✓ ✓
[87] ✓ ✓
[88] ✓ ✓ ✓ ✓ ✓
[147] ✓ ✓
[148] ✓ ✓
[73] ✓ ✓ ✓ ✓
[90] ✓ ✓ ✓ ✓
[35] ✓ ✓ ✓ ✓
[149] ✓ ✓ ✓ ✓
[89] ✓ ✓ ✓
[150] ✓ ✓
[151] ✓ ✓ ✓ ✓
[26] ✓ ✓ ✓ ✓ ✓
[152] ✓ ✓
[153] ✓ ✓
[154] ✓ ✓
[155] ✓ ✓ ✓ ✓
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The outstanding of this paper utilizing sequential Monte Carlo
simulation in reliability indices analysis needs the great computation
effort, by employed the VRTs methods of reliability assessment that can
yield the same quality of estimated reliability indices with fewer
samples. As a result, variance reduction of reliability indices assess-
ment can be achieved. By applying LHS to different numerical
examples, the results show that the computational time and sample
size to reach convergence can be further reduced. LHS can produce the
same quality of representativeness with a fewer number of samples.
Consequently, a reduction in variance of the estimated indices can be
achieved. Also, the computational performance and speed-up for SMCS
method can be easily achieved by using the CE method and IS to assess
the generating adequacy and composite reliability of the power
systems, by a considerable reduction in the number of samples and a
good speed -up required for convergence. The efficiency of the CE
depends on finding the new distributions or very close to it. The change
of the original probability distributions is the weakness of this
approach, therefore, the mean values for reliability indices which can
obtain it with the CE, these values cannot depend on it in compensated
for the real distributions of some reliability indices.

Finally, this study described and discussed reviewing some the
generation reliability assessment methods for power systems using
MCS and VRTS. The main objective of this work is to present efficient
estimation and accurate methodologies based on a pattern simulation
technique to minimize computational efforts significantly while evalu-
ating generating reliability.

Also, the reviews indicated that the reliability indices derived from
the use the PIS corresponded closely with those derived from the use of
an analytical approach or Monte Carlo simulation but with reduced
computational burden.

This paper also discussed the PIS which employed an optimization
search tool for the reliability indices of power generating system and
relies on the population-based intelligent search method, which is
considered as a viable replacement for the analysis and Monte Carlo
simulation in assessing non-chronological system reliability indices. In
conclusion, the benefits of using the intelligent search techniques are
that an accurate assessment of reliability indices for the power
generation system with less computational effort can be obtained.
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