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The utility providers are estimated to lose billions of dollars annually due to energy theft. Although the
implementation of smart grids offers technical and social advantages, the smart meters deployed in smart
grids are susceptible to more attacks and network intrusions by energy thieves as compared to conven-
tional mechanical meters. To mitigate non-technical losses due to electricity thefts and inaccurate smart
meters readings, utility providers are leveraging on the energy consumption data collected from the
advanced metering infrastructure implemented in smart grids to identify possible defective smart meters
and abnormal consumers’ consumption patterns. In this paper, we design two linear regression-based
algorithms to study consumers’ energy utilization behavior and evaluate their anomaly coefficients so
as to combat energy theft caused by meter tampering and detect defective smart meters. Categorical vari-
ables and detection coefficients are also introduced in the model to identify the periods and locations of
energy frauds as well as faulty smart meters. Simulations are conducted and the results show that the
proposed algorithms can successfully detect all the fraudulent consumers and discover faulty smart
meters in a neighborhood area network.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Energy theft, which is also referred to as non-technical loss
(NTL) has been a daunting problem for all utility providers (UPs)
in the conventional power grid system. NTLs are generally related
to energy theft and consumers fraudulent behavior in which there
exist a number of methods to deliberately defraud the UPs [1].
NTLs may introduce a series of additional losses, such as reduction
in grid reliability and damage to the grid infrastructure. NTLs
include meter tampering, meter bypassing, meter switching, tap-
ping on secondary voltages, error in computation of technical
losses, defective meters, errors and delay in meter reading and bill-
ing, unpaid billing, etc. [2–4]. The latest estimates indicate that UPs
suffer from losses up to six billion dollars annually due to energy
fraud in the United State alone [5]. In recent years, Smart Grid
(SG) is being globally introduced to replace its antiquated prede-
cessor to address some of these issues. One significant feature of
SG infrastructure is the replacement of the conventional mechani-
cal meters by smart meters (SMs) in AdvancedMetering Infrastruc-
ture (AMI).

The introduction of SGs and SMs may contribute to a significant
cutback in NTLs by minimizing some types of losses [2,6]. How-
ever, the SG, AMI in particular, raises new security risks [5,7–11].
Specifically, AMI can be exploited by the adversaries to perform a
number of attacks for manipulating the energy utilization statistics
because SMs are vulnerable to more types of attack such as
network-borne attacks. In addition, consumers’ consumption data
may be compromised at three different stages, namely during
transmission to UP, while it is being recorded, or after it is stored
[12]. Since the conventional methods for mitigating NTLs impose
high operational costs (e.g., on-site inspection where extensive
deployment of human resources is involved [13,14]), this paper
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aims to reduce the operational costs of UPs by detecting NTL
activities.

In this paper, we propose two linear regression-based algo-
rithms to identify the locations of defective SMs and malicious
SMs which are compromised by energy thieves to falsify readings
(i.e., data attacks [15]) in the neighborhood area network (NAN).
The key idea is to adopt multiple linear regression (MLR) for esti-
mating and evaluating consumers’ anomaly coefficients based on
the reported consumers’ energy consumption data. MLR is chosen
because it adopts characteristic analysis, which attempts to model
the consumers’ energy consumption behavior for consideration
[16]. Therefore, any anomalies not following the utilization trend
may be indicative of energy thefts or metering defects. MLR analy-
sis is especially attractive as it is able to accurately reveal not only
the locations of energy thieves and defective SMs, but also the
amount of energy theft/loss.
2. Related work

Broadly, energy theft detection techniques, including those that
are widely implemented in both conventional power grids and SGs,
may be grouped into two categories, namely state-based detection
and classification-based detection.
2.1. State-based detection

This method utilizes monitoring state through mutual inspec-
tion [12], wireless sensor networks [15], control units [17], radio
frequency identification (RFID) [18] and distribution transformers
[19] to identify fraud in power system.

As detailed in [12], Xiao et al. proposed three inspection algo-
rithms to identify malicious SMs in a neighborhood. First, they
developed a basic scanning method. Then, they designed a binary
tree-based method for inspection when the malicious SMs to honest
users ratio is high, and finally employed an adaptive tree-based
method to leverage on the advantages of both the scanning and
binary tree algorithms. However, adding an extra meter for each
consumer/provider will significantly increase the cost. Meanwhile,
the authors in [15] designed an AMI Intrusion Detection System
(AMIDS), which utilizes information fusion to combine the con-
sumption and sensors data from a SM to model and identify
fraud-related behavior more accurately. In [17], consumers con-
sumption data is compared with the feeder input level. Both indi-
vidual and aggregated consumption are also compared against the
feeder details to detect consumption anomalies. However, their
proposal can only detect a small region of electricity theft but
not the exact location of fraud. Khoo and Cheng [18] proposed a
system that incorporated RFID technology to assist the UPs in
ammeter inventory management and mitigate energy theft.
Although RFID technology can be implemented to identify electric-
ity theft, UPs have to pay extra cost to install the system. In [19],
the author adopted the measure of overall fit of the estimated val-
ues to the pseudo feeder bus injection measurements based on
consumers’ aggregated meter data at the distribution transformers
to localize the energy consumption abnormalities. They utilized an
analysis of variance to create a list of suspected consumers and
estimate the actual consumption based on the state estimation
results.
2.2. Classification-based detection

The key idea of this approach is to identify consumers’ energy
consumption anomalies based on testing datasets consisting of
the normal and attack class samples using machine learning [20].
Han et al. [2] designed a NTL fraud detection scheme by using
the approximated difference between the actual consumed elec-
tricity and billing electricity. On the other hand, Nizar et al.
designed a feature selection-based approach to extract features
from consumers’ behaviors for further analysis [21] to find optimal
subsets of features in establishing the load profiles, which describe
consumers’ energy consumption patterns over a period of time. An
attacker model for anomaly detector in meter data management is
developed by Mashima and C’ardenas to detect energy theft [22].
In [23], Nagi et al. studied consumers’ behaviors and proposed a
Remote Meter Abnormality Detection System to detect illegal
and abnormal energy consumption trends using meter event logs
and remote meter reading. In a different work [24], they proposed
a fraud detection framework using Support Vector Machine (SVM).
Their proposal chose some suspicious consumers in advance for
on-site inspection for fraud based on the abnormal power con-
sumption behavior. SVM is trained to extract features and generate
fraud detection model. They also designed a hybrid method for NTL
analysis by incorporating Genetic Algorithm (GA) and SVM [25].
Similar to [24], the algorithm selected suspicious consumers for
inspection. Then, GA provides an increased convergence and opti-
mized SVM hyper-parameters. Meanwhile, Depuru et al. [26] intro-
duced high performance computing to speed up the energy theft
detection through data encoding without compromising the qual-
ity of data. The encoded data are then classified to discover the
electricity pilfering using SVM and Rule Engine-based algorithms.
The authors in [27] shortlisted area with high probability of theft
using distribution transformers. Then, their proposal identified
the suspicious consumers by observing irregularities of consump-
tion patterns using SVM. The SVM-based energy theft detection
schemes [24–27] usually require a large volume of training data
with load profiles collected from SMs to extract features from his-
torical data.

Besides, it is crucial to preserve consumers’ privacy while
detecting energy theft in SGs as detailed in [28,29]. In their paper,
Salinas et al. proposed a LU decomposition-based (LUD) algorithm
to solve a linear system of equations for consumers’ honesty coef-
ficients while ensuring consumers’ privacy. However, their pro-
posal is restricted by the dimension of the consumers’ energy
consumption data (i.e., the data matrix must be a square matrix)
due to the characteristic of LUD. In order to meet the dimension
requirements, the authors have to change the time granularity.
Nevertheless, it might not be practical to reduce the sampling period
or time granularity indefinitely due to the memory size of SM.

To address some of the limitations of previous work, linear
regression-based schemes for identifying energy thefts and defec-
tive SMs which are not restricted by the dimension of consumers’
power consumption data as well as its time granularity are pro-
posed in this work.
3. Architecture of smart grid in neighborhood area network

Here, we present the electrical and communication network
architectures considered in this paper. In AMI, the electrical and
communication networks overlay each other and all electrical and
communication flows are bidirectional [30]. According to the sur-
veys of SG [9,11], the architecture of SG in a neighborhood area net-
work (NAN) can be illustrated in Fig. 1. Further details on Electrical
network and Communication network will be provided below.
3.1. Electrical network

Similar to the conventional electrical grid system, the power
supply of SG in a NAN is usually serviced by the same UP. The
UP builds a distribution station (DS), which is also known as fuse



Fig. 1. The architecture of smart grid in neighborhood area network.
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box [31] within every neighborhood. The DS acts like an ‘electricity
router’ to distribute power from the substation to all the con-
sumers in the neighborhood. A master SM, known as the collector
is endowed inside the DS to measure the aggregated power supply
from the UP to all consumers in the NAN at time interval ti,
denoted by cti , but not the power consumption of each consumer.
Therefore, in order to track the power consumption of each con-
sumer n 2 f1; 2; . . . ; Ng, UP installs a SM at each consumer’s
household. The n-th SM automatically records energy consumption
as a function of time interval ti (subject to the time granularity of
the SM), denoted by pti;n

and computes the consumption cost of

each household. Specifically, the SM reading is recorded at time
stamp ti, where the interval is ti � ti�1. Thus, we have [2,7]

cti ¼
XN
n¼1

pti;n
þ kþ hþ c; ð1Þ

where cti denotes the total energy supplied by the UP to all con-
sumers (i.e., N of them) in the NAN, k denotes the technical losses
(TLs), as well as the reduced meter readings due to energy thefts
(i.e., h) and faulty SMs (i.e., c).

Therefore, if h > 0 (i.e., energy theft exists) or c < 0 (i.e., at least
one SM is malfunctioning), the discrepancy in meter reading at
time ti, denoted by yti , is computed as:

yti ¼ cti �
XN
n¼1

pti;n
¼ kþ hþ c: ð2Þ
3.2. Communication network

The SMs installed in households, collector, operation center and
DS form a neighborhood area network (NAN). In a NAN, UP relies on
an operation center to monitor the DS and distribution networks.
The communications among the SMs and the collector are con-
ducted in a wireless manner while the communications among
the collector, operation center, DS and substation are conducted
via wired medium such as power feeder line [31]. In our model,
we assume all consumers premises are endowed with a SM. There-
fore, we do not consider the effect caused by consumers without a
SM.

4. Linear regression model for detecting energy theft and
defective smart meters

We present the mathematical model for detecting energy theft
and defective SMs in a NAN. Suppose that UP equips a SM at each
household to record the electricity consumption at some prede-
fined time intervals. Besides, a collector is installed inside the DS
such that the collector can measure the aggregated power supply
from the UP to the service area.

Consider a service area consisting of N consumers. Let pti;n
and

cti denote the near real-time energy consumption recorded by con-
sumer n and collector, respectively, at time interval ti 2 T. We fur-
ther define an anomaly coefficient, denoted by an, for each
consumer such that an ¼ 0 if consumer n is honest in reporting
his/her energy consumption. Therefore, ðan þ 1Þpti;n

gives the

cumulative energy consumption reported by consumer n at ti.
Since the sum of electricity consumption reported by all the con-
sumers must agree with the total load consumption measured by
the collector at time interval ti [28], the following can be
formulated:

ða1 þ 1Þpti;1
þ ða2 þ 1Þpti;2

þ � � � þ ðan þ 1Þpti;n
¼ cti : ð3Þ

To facilitate the discussion, Eq. (3) is re-arranged as:

a1pti;1
þ a2pti;2

þ � � � þ anpti;n
¼ cti �

XN
n¼1

pti;n
: ð4Þ

Similar to Eq. (2), the right hand side of Eq. (4) is the difference
between the total electricity supplied by the UP and the sum of
energy consumption reported by all consumers in the service area
at time interval ti.

Note that our model does not consider TLs (in which its per-
centage is denoted by k) in the SGs. TLs occur during power distri-
bution and transmission, which involve substations, transformers
and line-related losses [21]. TLs also occur due to dynamic environ-
ment factors (e.g., temperature) and are caused by the low voltage
power lines as well as intrinsic inefficiencies in the transformers
[28]. Nonetheless, Sahoo et al. [32] proposed a method to precisely
compute TLs in branches of distribution system. In their proposal, a
specific circuit is assumed for each branch. By applying the least
square regression to the data from distribution transformers and
the current readings collected by smart or conventional power
meters, the resistances of the lines connecting the consumption
points to the distribution transformers as well as the non-ohmic
losses are calculated. These parameters are then utilized to predict
TLs in future time intervals. Thus, once the TLs are calculated from
Sahoo’s approach, our proposed model can be adjusted accordingly
by subtracting TLs from vector y as expressed in Eq. (2).

Our goal is to find all an in the linear system of equations
(LSE) from Eq. (4) so as to evaluate the anomalous behavior of each



S.-C. Yip et al. / Electrical Power and Energy Systems 91 (2017) 230–240 233
consumer or reliability of SM endowed in each household. In par-
ticular, there are three possibilities:

an ¼ 0: Consumer n is honest and does not cheat.
an > 0: Consumer n reports less energy consumption than what
was consumed (i.e., energy theft).
an < 0: The n-th SM reports more than what was consumed (i.e.,
faulty SM).

Suppose that the electricity consumption is sampled over T time
intervals in a day. A LSE for the detection of electricity theft and
faulty SMs can be formulated as follows:

a1pt1;1 þ a2pt1;2 þ � � � þ aNpt1;N ¼ yt1

..

.

a1ptT;1 þ a2ptT;2 þ � � � þ aNptT;N ¼ ytT

8>><
>>:

ð5Þ

The LSE can also be expressed in matrix–vector form:

Pa ¼ y ð6Þ
where

P ¼

pt1;1 pt1;2 . . . pt1;N

pt2;1 pt2;2 . . . pt2;N

..

. ..
. . .

. ..
.

ptT;1 ptT;2 . . . ptT;N

2
666664

3
777775
;

a ¼ a1; a2; . . . ; aN½ �0 and y ¼ ½yt1 ; yt2 ; . . . ; ytT �
0
: ð7Þ

Here, the ti-th row of P represents the data recorded by all N con-
sumers at the ti-th time interval. On the other hand, the n-th col-
umn of P denotes the data measured by the SM for consumer n
over all ti. In this model, a is a column vector consisting of anomaly
coefficients a1; a2; . . . ; aN .

We explain the scenario using a simple 2-consumer topology,
namely consumer A and consumer B. As mentioned previously, if
there are no energy thefts or defective SMs at ti; yti ¼ 0 in Eq. (2)
and then Eq. (4) becomes aApti;A

þ aBpti;B
¼ yti ¼ 0 because the

sum of consumption readings of all consumers matches the total
power supplied by the UP. In particular, both aA and aB are 0 as
the energy reporting of the consumers are truthful. However,
yti – 0 implies that either the AMI is under attack or one or more
of the SMs may be faulty at ti. If consumer A is honest while con-
sumer B reports less than what was consumed, then aA ¼ 0 and
aB > 0. Similarly, aA > 0 and aB ¼ 0 imply that consumer A cheats
on the SM readings while consumer B is honest.

5. Estimating anomaly coefficients using linear regression

In the following subsections, we develop two algorithms to
solve the LSE for the anomaly coefficients in Eq. (6) using linear
regression. Our objective is to enable the collector to reveal the
locations of energy thieves and/or faulty SMs.

5.1. Multiple linear regression

We first develop a Linear Regression-based scheme for Detec-
tion of Energy Theft and Defective SmartMeters, hereafter referred
to as LR-ETDM, to detect energy thieves and defective SMs. Linear
regression is a modeling technique utilized to explicitly describe
the relationship between a continuous-valued response Yi and lin-
ear predictors pti;1

; pti;2
; . . . ; pti;N

. The goal of regression analysis is

to find a function that describes, as closely as possible, the relation-
ship between the variables so that the value of the dependent
variables can be estimated using a range of independent variables
[33,34]. Here, yti as defined in Eq. (2) is viewed as the realization of

a normally distributed random variable Yi � Nðdti ;r2Þ, where

dti ¼ aþ
XN
n¼1

anpti;n
: ð8Þ

Eq. (8) defines a hyper-plane [35], where the parameter a (i.e.,
known as intercept) represents the expected response when all
the predictors are zero, i.e., pt1;1 ¼ � � � ¼ pti;n

¼ 0. The parameter an
represents the expected increment in the response per unit change
in pti;n

when the other predictors are constant. In our work, we set

a ¼ 0 due to the assumption that the response is entirely dependent
on the predictors.

An important characteristic of the linear regression-based
model (i.e., Eq. (8)) is that it is additive [35]. Specifically, the effect
of a predictor on the response is always the same regardless of the
values of the other predictors. The implicit assumptions are:

1. The predictors are uncorrelated with each other. In other
words, there is no linear dependencies among the predictors.
This assumption is reasonable so it does not warrant changes
to our model as expressed in Eq. (8).

2. The coefficients an never change throughout the period of
observation. This assumption only holds true when the con-
sumers cheat consistently throughout the period of
observation.

However, inconsistent cheating in energy reporting will lead to
inaccurate energy fraud and metering defects detection. Hence, it
is possible for some of the dishonest consumers to escape detec-
tion when their cheating behaviors change during the period of
observation. In this section, we assume that consumers steal
energy or SMs are damaged all the time. This assumption may be
unfeasible, and therefore later in Section 6 we will introduce an
enhanced model which captures the changes of the estimated
anomaly coefficients to identify the period of the fraud and/or
metering defects.

It has been shown in [35] that the maximum likelihood esti-
mate of the coefficients a are those that minimize the residual
sum of squares between yti and dti . If P is of full column rank, then
a is given by:

a ¼ ðP0PÞ�1P0y: ð9Þ
5.2. Student’s t-statistic and two-tailed p-value approach

As mentioned in the previous section, Eq. (9) is introduced to
compute the absolute value of all anomaly coefficients, a. However,
there is no objective way to determine whether the value of the
computed anomaly coefficient is 0 or 1. In linear regression, the
purpose of t-statistic is to make inferences about each estimated
anomaly coefficient an to test the null hypotheses that it is equal
to zero. In other words, it means that an is likely to be 0 if its cor-
responding t-statistic is not significant, and vice versa.

For a hypothesis test on coefficient an, with

H0 : an ¼ 0
H1 : an – 0

;

�
ð10Þ

the t-statistic for estimated an is computed as t ¼ an
SEðanÞ, which fol-

lows a t-distribution with (m - p) degrees of freedom [35,36]. SE
(an) is the standard error of the estimated anomaly coefficient
an; m denotes the number of observations and p is the number of
regression coefficients.
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Each t-statistic tests for the significance of each an given other
coefficients in the model. Meanwhile, p-value is a function of the
t-statistic that is utilized for comparing the probability of rejecting
Ho when it is actually true. The p-value will be compared against a
threshold value, known as the significance level, under a two-tailed
test. The significance level of 5% or 1% are conventionally used as
the cut-off between significant and non-significant results [37],
but in our work, we choose the latter to reduce the rate of false
positives. If the p-value is smaller than a 1% significance level, it
suggests that the observed data are inconsistent with the assump-
tion that the null hypothesis is true and hence, the null hypothesis
an = 0 must be rejected. It also implies that there is a relationship
between the independent variable and the dependent variable. In
other words, it indicates that the anomaly coefficient of consumer
n, i.e., an, significantly contributes to the value of the dependent
variable (i.e., yti ) in the model.

5.3. The LR-ETDM algorithm

In this section, we detail the LR-ETDM algorithm. Here, we
assume a constant scenario where the fraudulent consumers
always steal energy and the defective SMs always report more than
what the corresponding consumers actually consumed.

The flowchart as shown in Fig. 2 summarizes the LR-ETDM
scheme. Assume that the collector labels the SM of all consumers
in the service area of interest from 1 to N. SMn then transmits
pti;n

to the collector to allow the collector to collaboratively com-

pute yti ; an; t-statistic and the corresponding p-value. The algo-
rithm commences by computing the discrepancies between the
total power supplied by the UP (i.e., cti ) and the total energy con-

sumption of all consumers in the service area (i.e.,
PN

n¼1pti;n
) for

time interval ti 2 T . Then, a LSE consisting of consumers’ reported
load data, anomaly coefficients and the differences in reading is
Fig. 2. Flow chart of LR-ETDM.
formed as expressed by Eq. (5). In this work, we use the fitlm

function built in the Statistics Toolbox of Matlab R2014b to solve
for the estimated anomaly coefficients an, standard errors,
t-statistics and p-values. The indicator for the constant intercept
in the fit (i.e., a in Eq. (8)) is configured as ‘false’ so that the
response is entirely dependent on the predictors P. Next, the
an; t-statistics and corresponding p-values of all consumers (i.e.,
8n 2 N) are found using linear regression method. Based on the
p-values and estimated an, we can pinpoint the locations of energy
frauds and faulty SMs.

For every consumer n 2 N, if the p-value of the t-statistic of
consumer n is less than 0.01, it is obvious that this coefficient
is significant at a 1% significance level given the other estimated
anomaly coefficients in the model, and hence the null hypothesis
an ¼ 0 will be rejected. Specifically, when an energy fraud or
metering defect has occurred at household n, it is unlikely that
an ¼ 0. In such a case, the estimated anomaly coefficient of the
consumer n is further investigated. Obviously, if the predicted
an > 0, it means that the consumer n is reporting less than what
he/she consumes. On the contrary, an < 0 indicates that the SM of
consumer n is reporting more than what he/she consumes. In
other words, the SM may be malfunctioning. Otherwise, if
an ¼ 0 or p-value of an > 0:01, consumer n is honest and hence
the SM is neither fraudulent nor faulty. Note that the collector
invokes LR-ETDM scheme at the end of each day after data collec-
tion has completed.

It is observed that LR-ETDM may not be numerically stable
when the fraudulent consumers do not steal energy constantly.
Specifically, LR-ETDM may not detect all thieves when consumers
only cheat during a particular period in a day. For instance, they
only cheat during the peak hours. The inaccuracies are due to the
limiting factors of regression model. As discussed earlier, linear
regression explicitly assumes that the anomaly coefficients an do
not change throughout the period of observation [38]. In other
words, linear regression presumes that if a consumer cheats, he/
she cheats at the same rate throughout the day. Thus, some of
the dishonest consumers could stay undetected when they do
not cheat all the time.

Therefore, in Section 6, we design an enhanced algorithm to
reveal the locations and periods (i.e., during peak, off-peak of a
day or whole day) of energy theft or device failure by introducing
categorical variables in linear regression.
6. Estimating variable anomaly coefficients using categorical
variable method

In LR-ETDM, we assumed that the anomaly coefficients,
a1; a2; . . . ; aN are constant. However, it is possible that the rate
at which the fraudulent consumers steal electricity is variable
when they commit energy theft [28]. In SGs, Time-of-Use (TOU)
pricing scheme is also present in AMI. TOU scheme refers to a pric-
ing scheme in which energy costs more during peak load period,
and vice versa. Specifically, TOU scheme divides a day into several
periods known as tariffs, typically off-peak and on-peak [8] tariffs.
Therefore, consumers will be motivated to reduce energy costs by
shifting some energy-intensive loads to off-peak hours or tamper-
ing the SM readings during the peak demand period. It is observed
that when dishonest consumers attempt to falsify their energy
consumption inconsistently, LR-ETDM gives an anomaly coefficient
vector where some of the predicted elements are showing inaccu-
rate values. Hence, we propose another algorithm, Categorical
Variable-Enhanced Linear Regression-based scheme for Detection
of Energy Theft and Defective Smart Meters (CVLR-ETDM), by
introducing categorical variables in linear regression through
dummy coding to resolve the varying cheating problem.
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6.1. Categorical variables in regression: dummy coding

Linear regression allows the inclusion of categorical indepen-
dent variables known as dummy variables through dummy coding.
It is utilized when one wants to compare other groups of the pre-
dictor variables with one specific group of predictor variables (i.e.,
reference group) [39]. Dummy variables take the values of 0 or 1.
Specifically, the value of 0 and 1 imply the absence and presence
of the attribute of the category, respectively. It is necessary to cre-
ate k� 1 dummy variables where k indicates the number of cate-
gories of the predictor [40,41].

In our work, we include the categorical variables, xi for
i ¼ 1; 2; . . . ; N to categorize the time of fraud or metering defect
of consumers 1; 2; . . . ; N. The period of energy theft or metering
defect is grouped into two categories, namely off-peak (i.e., from
08:00 P.M. to 07:59 A.M.) and on-peak (i.e., from 08:00 A.M. to
07:59 P.M.). As a dummy variable, off-peak and on-peak are
denoted by 0 and 1, respectively. In the regression equation, the
coefficient for the dummy variable would indicate how the on-
peak attribute has an effect on the dependent variable in reference
to the off-peak attribute. The category which is designated as 0
(i.e., off-peak) in the categorical variable is known as the reference
group.

Consider a NAN consisting of N consumers and each of them
commits energy theft independently. Let x denotes the categorical
variables in the model. The period of energy theft or metering
defect (i.e., off-peak and on-peak) can be identified by defining
another metric known as detection coefficient, b to the regression
equation as follows:

a1pt1;1 þ � � � þ aNpt1;N þ b1pt1;1x1 þ � � � þ bNpt1;N xN ¼ yt1

..

.

a1ptT;1 þ � � � þ aNptT;N þ b1ptT;1x1 þ � � � þ bNptT;N xN ¼ ytT ;

whereby bn indicates whether consumer n cheats inconsistently in a
day for n ¼ 1; 2; . . . ; N.

Since the category ‘off-peak’ is the reference group, it is desig-
nated as 0 in the dummy variable. Thus, we can have a LSE to iden-
tify fraudulent consumers who cheat during off-peak hours as
follows:

a1pto;1 þ � � � þ aNpto;N þ b1pto;1 � 0þ � � � þ bNpto;N � 0 ¼ yto ;

whereby pto;n denotes the energy consumption reported by con-
sumer n during off-peak hours at time interval
to 2 f08 : 00 P:M:; 08 : 30 P:M:; . . . ; 07 : 30 A:M:g. Note that the
time granularity is 30 min. Thus, we have

a1pto;1 þ � � � þ aNpto;N ¼ yto ; ð11Þ

for 8 to.
The LSE can also be expressed in matrix-vector form:

Poffa ¼ yoff ; ð12Þ
which is similar to Eq. (6). In Eq. (12), a represents the vector of
anomaly coefficients of consumers during off-peak hours.

On the other hand, the group ‘on-peak’ is designated as 1 in the
dummy variable. Thus, we can form another LSE to detect con-
sumers who perpetrate theft during on-peak hours or faulty SMs
as follows:

a1ptp;1
þ � � � þ aNptp;N þ b1ptp;1

� 1þ � � � þ bNptp;N � 1 ¼ ytp ;

which can also be re-arranged as:
ða1 þ b1Þptp;1 þ � � � þ ðaN þ bNÞptp;N ¼ ytp ; ð13Þ
whereby ptp;n denotes the energy consumption reported by con-
sumer n during on-peak hours at time interval
tp 2 f08 : 00 A:M:; 08 : 30 A:M:; . . . ; 07 : 30 P:M:g.

In matrix form, the LSE for the ‘on-peak’ group can be
expressed by:

Ppeakðaþ bÞ ¼ ypeak; ð14Þ

where (a + b) denotes the anomaly coefficients of consumers during
on-peak hours. a itself denotes the anomaly coefficients of
consumers during off-peak period. The coefficient for categorical
variable, known as detection coefficient (i.e., b) would indicate
how the on-peak attribute has an impact on the dependent
response y.

The relationship between Eqs. (12) and (14) can be represented
by partitioned matrices as follows:

By applying Eq. (9), the maximum likelihood estimator of our
regression coefficients are thus computed by:

where

By investigating the estimated a and b, we can deduce
whether the dishonest consumers are committing theft either
all the time or only during a particular period in a day. The fol-
lowing seven scenarios describe the operation of Eqs. (12) and
(14) to identify cheating consumers or faulty SMs that occur con-
stantly or occasionally through dummy coding. The possible sce-
narios of each consumer (i.e., n ¼ 1; . . . ; N) are summarized in
Table 1.

� Scenario 1: Obviously, both a and b equal to 0 imply that each
consumer is honest in his/her energy reporting.

� Scenario 2:When a is positive while b ¼ 0, the sum of a and b is
also positive. b ¼ 0 indicates that the anomaly coefficient is
constant throughout the observed period. Therefore, we can
conclude that the consumer is cheating on his/her energy con-
sumption during both off-peak and on-peak hours (all the time).

� Scenario 3: If a is negative and b ¼ 0, the total of a and b is also
negative. These combinations imply that the SM in the con-
sumer’s premise is out of order all the time.

� Scenario 4: a ¼ 0 and b is positive. The positive sum of a and b
indicates that the consumer is cheating only during on-peak
period. a ¼ 0 implies that there are no cheating or device failure
during off-peak hours. Positive b shows that there is a status
change from non-cheating during off-peak to cheating during
on-peak.



Table 1
Description of a, b and (a + b).

Scenario a b a + b Description

1 =0 =0 =0 Honest
2 >0 =0 >0 Cheating constantly
3 <0 =0 <0 Faulty constantly
4 =0 >0 >0 Cheating during on-peak
5 =0 <0 <0 Faulty during on-peak
6 >0 �a =0 Cheating during off-peak
7 �b >0 =0 Faulty during off-peak
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� Scenario 5: Meanwhile, a ¼ 0 and b < 0 show that SM is defec-
tive during on-peak (i.e., aþ b < 0).

� Scenario 6: a is positive while b ¼ �a (negative). The resultant
of a and b is equal to 0. These combinations imply that the con-
sumer is cheating on his/her energy consumption only during
off-peak period. He/she does not steal electricity during on-
peak because aþ b ¼ 0.

� Scenario 7: b is positive and a ¼ �b. In such a case, aþ b = 0,
thereby indicating that the SM is faulty during off-peak and is
working fine during on-peak times.

Scenarios 5 and 7 are not realistic, but are included here for
completeness of discussion.

6.2. The CVLR-ETDM algorithm

The flow chart in Fig. 3 shows the operations in CVLR-ETDM.
Categorical variables are incorporated in the regression model as
dummy variables prior to the invocation of CVLR-ETDM. In this
work, there are two time attributes (i.e., k = 2), namely off-peak
and on-peak. Therefore, one dummy variable (i.e., k� 1 ¼ 1) is cre-
ated for each consumer. In total, we have 2N coefficients (i.e., N
anomaly coefficients and N dummy variables). Recall that, off-
peak and on-peak are designated by 0 and 1, respectively.

Next, the p-value of bn is verified to test the significance of the
coefficient given the other coefficients. If the p-value of bn is less
than 0:01, it means that the t-statistic is significant at a 1% level
given the other coefficients. In other words, bn is non-zero (i.e.,
an is not constant) and thus consumer n or n-th SM has different
cheating pattern throughout the period of observation. In such a
case, (peakTn ¼ an þ bn) is computed to solve Eq. (14) for determin-
ing the anomaly coefficient of consumer n during on-peak hours.
The outcome of peakTn > 0 and an ¼ 0 indicates that SM reading
of consumer n is reporting less only during on-peak hours. If
peakTn < 0 and an ¼ 0, it implies that the n-th SM is malfunction-
ing during on-peak period. When peakTn ¼ 0 and an < 0, the n-th
SM is malfunctioning during off-peak hours. Otherwise,
peakTn ¼ 0 and an > 0 indicate that consumer n steals energy dur-
ing off-peak period.

On the other hand, the p-value of bn greater than 0.01 implies
that an of consumer n is constant. That is, consumer n cheats or
n-th SM is malfunctioning consistently throughout the period of
observation. In such a case, if an > 0, it shows that the consumer
reports less in his/her energy consumption reporting all the time.
Otherwise, the n-th SM is out of order when an < 0. Apart from
that, an ¼ 0 shows that consumer n is honest in reporting his/her
electricity consumption.

7. Performance evaluation

We conduct two series of simulations in Matlab R2014b to eval-
uate the performance of our proposed LR-ETDM and CVLR-ETDM
schemes. Specifically, two scenarios are considered, namely,
fraudulent consumers steal at a fixed rate (constant anomaly coef-
ficient) and variable rate (variable anomaly coefficient).

According to Jokar et al. [27] and Sahoo et al. [32], real-world SG
energy theft samples rarely, or do not, exist because SG is not fully
implemented. As a result, the smart energy data from the Irish
Smart Energy Trial denoted by P, are extracted from [42] in our
study. The SM electricity trial dataset was released by Electric Ire-
land and Sustainable Energy Authority of Ireland (SEAI) in March
2012. It consists of half-hourly energy usage reports for over
5000 Irish residential and commercial premises during 2009 and
2010. Consumers who took part in the trial had a SM endowed in
their premises. Since the participation in this trial is voluntary, it
is justifiable to assume that all samples are collected from honest
consumers who reported the actual utilization. In addition, based
on the trial dataset in [42], three types of malicious samples for
each half-hourly sample Pn ¼ {pt1;n ; pt2;n ; . . . ; pt48;n}, for time

ti ¼ t1; t2; . . . ; t48 are generated:
1.
 h1ðpti;n Þ ¼ mpti;n ; m ¼ ð½0;0:9� [ ½1:1;2:0�Þ;

2.
 h2ðpti;n Þ ¼ dti pti;n�
dti ¼
m; start < ti < end
1; otherwise
where m is as defined in (1) above, start and end are the
starting and ending time of either on-peak or off-peak
period;
3.
 h3ðpti;n Þ ¼ gti pti;n�

gti ¼

0; start < ti < end
1; otherwise
where start and end are the starting and ending time of
either on-peak or off-peak period.
In the first scenario, h1 multiplies the meter readings by the
same randomly chosen percentage, which remains constant (i.e.,
fixed rate). When fraudulent consumer steals energy at a fixed rate,
he/she consistently reports a fraction of his/her consumed energy
(e.g., 50% of the actual consumed data). In h2, the energy thief
cheats only during a certain period in a day (i.e., either on-peak
or off-peak only). For instance, the fraudulent consumer reports
40% less than the consumed data during on-peak hours and reports
the actual consumption data during off-peak hours. Using h3, the
SM sends zero reading or does not have measurements during a
certain period in a day. In the simulations, we assume that defec-
tive SMs always report more than what the consumers actually
consumed (i.e., m = [1.1, 2.0]).

As discussed previously in Section 4, our model does not con-
sider technical losses (TLs) in the SGs. Nevertheless, TLs can be
computed by observing the data from distribution transformers
and the current readings collected by smart or conventional power
meters [32]. Therefore, once the TLs are calculated, the proposed
model can be adjusted accordingly by subtracting TLs from vector
y as expressed in Eq. (2).



Fig. 3. Flow chart of CVLR-ETDM.
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7.1. Constant anomaly coefficients

Here, we assume that the fraudulent consumers steal energy all
the time and never stop cheating (i.e., h1, where m = [0,0.9]). At the
same time, some of the SMs are malfunctioning continuously (i.e.,
h1, where m = [1.1,2.0]). Therefore, the rates of cheating as well as
reporting more (due to malfunctioning) do not change and hence
the anomaly coefficients are constant.

Service area of sizes 15 and 45 energy consumers are consid-
ered. Without loss of generality, we assume that 40% of the con-
sumers are stealing energy and/or SMs are reporting more on
their energy usage (i.e., SMs are out of order) constantly in the ser-
vice area, and the time granularity is 30 min. Each energy thief n
has an an in ½�0:5;9� n f0g, depending on how much more they
have reported or how much less they paid for the bill [28].

As shown in Fig. 4, the proposed LR-ETDM method can perform
well for each of the cases we consider, i.e., when there are 15 and
45 consumers in the service area. In particular, in the case of 15
consumers, it is observed that there are six consumers who have
anomaly coefficients which are not equal to 0 in Fig. 4(a). As shown
in the figure, there are four energy thieves (i.e., consumer 1, 7, 13
and 15) who only report fraction of their energy consumption
(i.e., an > 0). Meanwhile, two SMs (i.e., the 4-th and 11-th) are
out of order as the meters report more than what the consumers
actually consumed (i.e., an < 0). Based on these results, the collec-
tor can effectively detect all the energy thieves as well as the defec-
tive SMs, then computes how much less or more they have paid in
their monthly bills. Besides, we can also easily identify the nine
honest consumers in the service area who have an ¼ 0. Similar
result is observed in Fig. 4(b) for the case of 45 consumers. By iso-
lating the consumers who have anomaly coefficients not equal to 0,
we can effectively recognize the positions of energy thieves and
defective SMs in the NAN.

Besides, we also conduct simulation by using LR-ETDM when
some fraudulent consumers are cheating inconsistently and some
of them are stealing energy constantly. Specifically, some of the
dishonest consumers are stealing energy all the time and some
of them are cheating on their energy consumption only during a
certain period in a day. The results are presented in Fig. 5. As dis-
cussed earlier, the LR-ETDM algorithm becomes unstable under
this scenario. It finds five cheating consumers and a faulty SM only
but, by construction, there are five energy thieves and two faulty
SMs. In fact, the scenario is setup as follows: consumer 1, 8, 13
and 15 are cheating constantly, the 4-th SM is out of order all
the time, consumer 7 is cheating during on-peak while the 11-th
SM is out of order only during peak-hours. However, LR-ETDM
accuses the honest consumer 10 and 14 wrongly. Meanwhile, con-
sumer 4, 7 and 13 are left unidentified.



Fig. 4. Value of a obtained by LR-ETDM when a is constant.

Fig. 5. Value of a obtained by LR-ETDM when a is variable.
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7.2. Variable anomaly coefficients

Here, we conduct simulations for the situation when energy
thieves cheat on their energy reporting and/or SMs are malfunc-
tioning all the time/during a certain time (i.e., h1; h2 and h3). The
goal is to verify the viability of the proposed CVLR-ETDM in han-
dling the consistent/inconsistent cheating and malfunctioning
problems. We assume that each energy thief chooses a new anom-
aly coefficient uniformly and/or occasionally in ½�0:5;9� n f0g each
time and 40% of the consumers and/or SMs in the NAN have a non-
zero anomaly coefficient. Also, each fraudulent consumer commits
energy theft during on-peak, off-peak or all the time. In the simu-
lations, we observe consumers’ power consumption data over two
days to increase the number of observations so as to mitigate the
effect of over-fitting [43].

Consider the results for 15 consumers. In Fig. 6, black bar rep-
resents off-peak period, a (i.e., variable anomaly coefficient) and
white bar represents on-peak period, a + b (i.e., variable anomaly
coefficient). If white bar and black bar co-exist (i.e., constant
anomaly coefficient), it implies that the energy frauds occur or
defective meters exist all the time. Results in Fig. 6(a) suggest
that there are five dishonest consumers and a faulty SM in the
service area. In particular, consumer 1 and consumer 15 steal
(i.e., a > 0 and aþ b ¼ 0, where b ¼ �a) only during off-peak
period (i.e., black bar) while consumer 6 and consumer 12 steal
(i.e., a ¼ 0 and aþ b > 0) only during on-peak period (i.e., white
bar). Meanwhile, consumer 3 is stealing all the time (i.e., black
and white bar, a > 0; aþ b > 0) during both off-peak and on-
peak period. The 9-th SM is out of order all the time (i.e., black
and white bar, a < 0, aþ b < 0). In other words, if the consumer
is stealing or the SM is defective all the time, the rates of cheat-
ing/malfunctioning do not change and hence the anomaly coeffi-
cients are constant. On the other hand, when consumer cheats
inconsistently, the rates of cheating will change and hence the
anomaly coefficients are variable. Based on these findings, the
collector can calculate how much less/more the consumers have
paid by analyzing the value of the anomaly coefficients
and detection coefficients of the consumers. Similar result is
obtained for the case of 45 consumers, where the result is shown
in Fig. 6(b).

Meanwhile, when a fraudulent consumer n attempts to send
zero readings all the time or during a certain period in the day
(i.e., scenarios h1 when m ¼ 0 or h3), the p-value of the an is not a
number (NaN). In such a case, the SM of the dishonest consumer
n should be inspected and replaced before our proposed algorithm
is re-invoked to obtain a more accurate regression analysis. How-
ever, the simulation results are omitted from the manuscript due
to space constraints.



Fig. 6. Value of a and (a + b) obtained by CVLR-ETDM when a is variable.
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8. Conclusion

In this work, we have designed two algorithms, namely LR-
ETDM and CVLR-ETDM, which are capable in identifying the dis-
honest consumers who are committing energy theft as well as
locating the faulty equipment, with the aim to reduce non-
technical losses due to energy thefts and metering defects in smart
grids. The two algorithms are based on linear regression. Any non-
zero anomaly coefficients are indicative of energy thefts or meter-
ing defects. We found that LR-ETDMmight be unstable when there
are inconsistent energy thefts and/or defective smart meters.
Therefore, we incorporated categorical variables into linear regres-
sion and developed CVLR-ETDM so that the algorithm can success-
fully detect consumers’ malfeasance and faulty meters even when
there are inconsistent cheating trends/faulty equipment. Simula-
tion results show that fraudulent consumers can be detected
regardless of whether they steal energy at a constant and/or vari-
able rate. As further work, we shall look into the noise tolerance
issue of the proposed algorithms and design algorithms to conceal
consumers’ smart meter consumption data for preserving their pri-
vacy while still being able to identify the locations of malicious and
defective smart meters.
Acknowledgment

Funding: This work was supported in part by the High Impact
Research Grant (D000022-16001).
References

[1] Chauhan A, Rajvanshi S. Non-technical losses in power system: a review. In:
Proceedings of 2013 international conference on power, energy and control,
ICPEC 2013; 2013. p. 558–61.

[2] Han W, Xiao Y. NFD: a practical scheme to detect non-technical loss fraud in
smart grid. In: IEEE ICC 2014-communication and information systems
security symposium. p. 605–9.

[3] Navani JP, Sharma NK, Sapra S. Technical and non-technical losses in power
system and its economic consequence in Indian economy. Int J Electron Comp
Sci Eng 2012;1:757–61.

[4] Accenture. Achieving high performance with theft analytics; 2011.
[5] McDaniel P, McLaughlin S. Security and privacy challenges in the smart grid.

IEEE Sec Privacy 2009;7:75–7.
[6] Faria L, Melo J, Padilha-Feltrin A. Spatial-temporal estimation for nontechnical

losses. IEEE Trans Power Deliv 2015;8977. pp. 1-1.
[7] Rashed Mohassel R, Fung A, Mohammadi F, Raahemifar K. A survey on

advanced metering infrastructure. Int J Electr Power Energy Syst
2014;63:473–84.

[8] McLaughlin S, Podkuiko D, McDaniel P. Energy theft in the advanced metering
infrastructure. In: Lecture notes in computer science (including subseries
lecture notes in artificial intelligence and lecture notes in bioinformatics), vol.
6027 LNCS; 2010. p. 176–87.
[9] Li F, Qiao W, Sun H, Wan H, Wang J, Xia Y, et al. Smart transmission grid: vision
and framework. IEEE Trans Smart Grid 2010;1:168–77.

[10] Wang W, Lu Z. Cyber security in the smart grid: survey and challenges. Comp
Netw 2013;57:1344–71.

[11] Yan Y, Qian Y, Sharif H, Tipper D. A survey on smart grid communication
infrastructures: motivations, requirements and challenges. IEEE Commun Surv
Tut 2013;15:5–20.

[12] Xiao Z, Xiao Y, Du DHC. Exploring malicious meter inspection in neighborhood
area smart grids. IEEE Trans Smart Grid 2013;4:214–26.

[13] Nizar AH, Dong ZY, Jalaluddin M, Raffles MJ. Load profiling method in detecting
non-technical loss activities in a power utility. In: Proceedings of the first
international power and energy conference (PECon 2006). p. 82–7.

[14] Iñigo Monedero RM, Biscarri Félix, León Carlos, Guerrero Juan I, Biscarri Jesús.
Detection of frauds and other non-technical losses in a power utility using
Pearson coefficient, Bayesian networks and decision trees. Int J Electr Power
Energy Syst 2012;34:90–8.

[15] McLaughlin S, Holbert B, Fawaz A, Berthier R, Zonouz S. A multi-sensor energy
theft detection framework for advanced metering infrastructures. IEEE J Select
Areas Commun 2013;31:1319–30.

[16] Xiao Z, Xiao Y, Du D-C. Non-repudiation in neighborhood area networks for
smart grid. IEEE Commun Magaz 2013;51:18–26.

[17] Selvapriya C. Competent approach for inspecting electricity theft. Int J Innov
Res Sci, Eng Technol 2014;3:1763–6.

[18] Khoo B, Cheng Y. Using RFID for anti-theft in a chinese electrical supply
company: a cost-benefit analysis. In: Wireless telecommunications
symposium (WTS); 2011. p. 1–6.

[19] Huang S-C, Lo Y-L, Lu C-N. Non-technical loss detection using state estimation
and analysis of variance. IEEE Trans Power Syst 2013;28:2959–66.

[20] Jiang R, Lu R, Wang Y, Luo J, Shen C, Shen X. Energy-theft detection issues for
advanced metering infrastructure in smart grid. Tsinghua Sci Technol
2014;19:105–20.

[21] Nizar AH, Zhao JH, Dong ZY. Customer information system data pre-processing
with feature selection techniques for non-technical losses prediction in an
electricity market. In: 2006 International conference on power system
technology, POWERCON2006. p. 1–7.

[22] Mashima D, Cárdenas AA. Evaluating electricity theft detectors in smart grid
networks. In: Lecture notes in computer science (including subseries lecture
notes in artificial intelligence and lecture notes in bioinformatics), vol. 7462
LNCS; 2012. p. 210–29.

[23] Nagi J, Yap KS, Nagi F, Tiong SK, Koh SP, Ahmed SK. NTL detection of electricity
theft and abnormalities for large power consumers in TNB Malaysia. In:
Proceeding, 2010 IEEE student conference on research and development -
engineering: innovation and beyond, SCOReD 2010. p. 202–6.

[24] Nagi J, Yap KS, Tiong SK, Ahmed SK, Mohamad M. Nontechnical loss detection
for metered customers in power utility using support vector machines. IEEE
Trans Power Deliv 2010;25:1162–71.

[25] Nagi J, Yap KS, Tiong SK, Ahmed SK, Mohammad AM. Detection of
abnormalities and electricity theft using genetic support vector machines.
In: Proceedings/TENCON of the IEEE region 10 annual international
conference. p. 1–6.

[26] Depuru SSSR, Wang L, Devabhaktuni V, Green RC. High performance
computing for detection of electricity theft. Int J Electr Power Energy Syst
2013;47:21–30.

[27] Jokar P, Arianpoo N, Leung VCM. Electricity theft detection in AMI using
customers’ consumption patterns. IEEE Trans Smart Grid 2016;7:216–26.

[28] Salinas S, Li M, Li P. Privacy-preserving energy theft detection in smart grids: a
P2P computing approach. IEEE J Select Area Commun/Suppl 2013;31:257–67.

[29] Salinas S, Li M, Li P. Privacy-preserving energy theft detection in smart grids.
Annual IEEE communications society conference on sensor, mesh and ad hoc
communications and networks workshops, vol. 1. p. 605–13.

http://refhub.elsevier.com/S0142-0615(16)31638-6/h0010
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0010
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0010
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0015
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0015
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0015
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0025
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0025
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0030
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0030
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0035
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0035
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0035
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0045
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0045
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0050
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0050
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0055
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0055
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0055
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0060
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0060
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0065
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0065
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0065
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0070
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0070
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0070
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0070
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0075
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0075
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0075
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0080
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0080
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0085
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0085
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0095
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0095
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0100
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0100
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0100
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0105
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0105
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0105
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0105
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0115
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0115
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0115
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0115
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0120
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0120
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0120
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0125
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0125
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0125
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0125
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0130
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0130
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0130
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0135
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0135
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0140
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0140
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0145
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0145
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0145


240 S.-C. Yip et al. / Electrical Power and Energy Systems 91 (2017) 230–240
[30] Fang X, Misra S, Xue G, Yang D. Smart grid - the new and improved power grid:
a survey. IEEE Commun Surv Tut 2012;14:944–80.

[31] Liu J, Xiao Y, Gao J. Achieving accountability in smart grid. IEEE Syst J
2014;8:493–508.

[32] Sahoo K, Nikovski S, Muso DN, Tsuru T. Electricity theft detection using smart
meter data. In: Innovative smart grid technologies conference (ISGT). IEEE
Power & Energy Society; 2015. p. 1–5.

[33] Amral N, Ozveren CS, King D. Short term load forecasting using multiple linear
regression. In: 2007 42nd International universities power engineering
conference. p. 1192–8.

[34] Schneider A, Hommel G, Blettner M. Linear regression analysis: part 14 of a
series on evaluation of scientific publications. Deutsches Arzteblatt Int
2010;107:776–82.

[35] Rodriguez G. Linear models for continuous data. Princeton Stat 2013.
[36] Studenmund AH. Using econometrics: a practical guide; 2006.
[37] Artes M. Statistical errors. Medicina clinica 1997;109:606–7.
[38] Chambers M, Dinsmore TW. Advanced analytics methodologies driving

business value with analytics. 1st ed. Pearson Education, Inc.; 2014.
[39] Pedhazur EJ. Multiple regression in behavioral research, volume 3; 1997.
[40] Starkweather J. Categorical variables in regression: implementation and

interpretation; 1997 <http://researchsupport.unt.edu/class/Jon/Benchmarks/
CategoricalRegression_JDS_June2010.pdf> [accessed August 9, 2016].

[41] Skrivanek S. The use of dummy variables in regression analysis; 2009.
[42] Irish Social Science Data Archive (ISSDA); 2009 <http://www.ucd.ie/

issda/data/commissionforenergyregulationcer/> [accessed August 9, 2016].
[43] Tetko IV, Livingstone DJ, Luik AI. Neural network studies. 1. Comparison of

overfitting and overtraining. J Chem Inf Comp Sci 1995;35:826–33.

http://refhub.elsevier.com/S0142-0615(16)31638-6/h0150
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0150
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0155
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0155
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0165
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0165
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0165
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0170
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0170
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0170
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0175
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0185
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0190
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0190
http://researchsupport.unt.edu/class/Jon/Benchmarks/CategoricalRegression_JDS_June2010.pdf
http://researchsupport.unt.edu/class/Jon/Benchmarks/CategoricalRegression_JDS_June2010.pdf
http://www.ucd.ie/issda/data/commissionforenergyregulationcer/
http://www.ucd.ie/issda/data/commissionforenergyregulationcer/
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0215
http://refhub.elsevier.com/S0142-0615(16)31638-6/h0215

	Detection of energy theft and defective smart meters in smart grids using linear regression
	1 Introduction
	2 Related work
	2.1 State-based detection
	2.2 Classification-based detection

	3 Architecture of smart grid in neighborhood area network
	3.1 Electrical network
	3.2 Communication network

	4 Linear regression model for detecting energy theft and defective smart meters
	5 Estimating anomaly coefficients using linear regression
	5.1 Multiple linear regression
	5.2 Student’s t-statistic and two-tailed p-value approach
	5.3 The LR-ETDM algorithm

	6 Estimating variable anomaly coefficients using categorical variable method
	6.1 Categorical variables in regression: dummy coding
	6.2 The CVLR-ETDM algorithm

	7 Performance evaluation
	7.1 Constant anomaly coefficients
	7.2 Variable anomaly coefficients

	8 Conclusion
	Acknowledgment
	References


