
Accepted Manuscript

Developing a Novel Risk-based Methodology for Multi-Criteria Decision Making in 
Marine Renewable Energy Applications

Mohammad Mahdi Abaei, Ehsan Arzaghi, Rouzbeh Abbassi, Vikram Garaniya, 
Irene Penesis

PII: S0960-1481(16)30919-3

DOI: 10.1016/j.renene.2016.10.054

Reference: RENE 8242

To appear in: Renewable Energy

Received Date: 03 June 2016

Revised Date: 29 August 2016

Accepted Date: 24 October 2016

Please cite this article as: Mohammad Mahdi Abaei, Ehsan Arzaghi, Rouzbeh Abbassi, Vikram 
Garaniya, Irene Penesis, Developing a Novel Risk-based Methodology for Multi-Criteria Decision 
Making in Marine Renewable Energy Applications,  (2016), doi: 10.1016/j.Renewable Energy
renene.2016.10.054

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to 
our customers we are providing this early version of the manuscript. The manuscript will undergo 
copyediting, typesetting, and review of the resulting proof before it is published in its final form. 
Please note that during the production process errors may be discovered which could affect the 
content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.renene.2016.10.054


ACCEPTED MANUSCRIPT

Research Highlights 

 Application of Bayesian network (BN) and influence diagram (ID) to multi-criteria 
decision making (MCDM)

 Development of a novel methodology for improvement of power generation 
efficiency in renewable energy applications 

 Integration of theoretical influencing parameters and the costs associated with power 
generation in decision making process for marine renewable energy site selection 

 Development of a utility function for representation of wave energy converter (WEC) 
implementation 
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8 Abstract

9 Research and development of alternative energy resources such as wave energy has always 

10 attracted significant attention due to their abundant and sustainable nature. The uncertainties 

11 associated with the marine environment and the significant costs required for implementation of 

12 Wave Energy Converters (WECs) require a sound decision making methodology. This paper 

13 presents a novel risk-based methodology for selecting sites for WEC installation to minimize the 

14 overall economic risk. It provides WEC developers, investors, governments and policy makers a 

15 methodology for evaluating influencing parameters for potential site locations whilst also 

16 optimizing wave energy extraction. A Bayesian network is developed to model the probabilistic 

17 influencing parameters and then it is extended to an influence diagram for estimating the 

18 expected utility of installing the WEC equipment for a selected location. To demonstrate the 

19 application of the developed methodology, three sites in the south coast of Tasmania are 

20 considered. Based on actual sea state data, the optimum location for installing WEC equipment is 

21 determined as location 2 and the economic risk associated with energy extraction is minimized 

22 by suggesting a specific wave height ( ) as a design criteria. 𝐻𝑆 = 5m

23

24

25 Key word: 
26 Decision Making, Renewable Energy, Wave Energy Converter, Bayesian Network, Influence 
27 Diagram, Expected Utility 
28
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29 1. Introduction 

30 Significant efforts are currently being invested in the research and development of clean and 

31 alternative energy resources, mainly due to the long-term detrimental emissions of fossil fuels 

32 and volatility of global oil price. The abundant resources of marine environment that covers 2/3 

33 of the planet’s surface is a viable form of renewable energy. Moreover, the practicality of power 

34 generation from the ocean in close proximity to the coastal areas yet occupying no land makes it 

35 an attractive option for supplying the world’s energy needs (Council, 2011). 

36 Wave energy is one of the major forms of marine renewable energy with potentials for 

37 significantly low emission power generation. Research has shown that the world’s biggest 

38 waves, averaging 6m and reaching up to 20m, occur most frequently in the Southern Ocean 

39 including the region south of Australia between 40o and 50o S (Cornett, 2008; Lewis et al., 2011; 

40 Mørk et al., 2010). According to Harries et al. (Harries et al., 2006), in the southern and western 

41 coastal regions of Australia, the mean power in wave fronts varies from 30 to 70 kW/m, with 

42 peaks of 100 kW/m. The greatest wave energy resource in Australia is therefore located along its 

43 southern coastline from the southwest of Western Australia to the southern coastline of Victoria 

44 and on the west coast of Tasmania, where the average inshore wave energy densities range up to 

45 84 kW/m  (Harries et al., 2006). 

46 Waves are predominantly generated by the energy transfer from atmospheric activities across the 

47 ocean. As a consequence of dispersion process, waves are separated as they travel at the ocean 

48 surface developing swells with long wavelengths. Although, swell characteristics are influenced 

49 by strong currents and interactions with seabed, they are relatively predictable regular waves and 

50 ideal for energy extraction Wave Energy Converter (WEC) devices. The dominant length and 

51 period of waves are directly related and the capacity of power generation is dependent on the 

52 amount of wave energy present in that area. Therefore, in order to improve the efficiency of 

53 power generation, it is essential to investigate the capacity of potential sites considering 

54 properties of sea state in each area. This results in reducing the economic risk associated with 

55 deployment of WEC equipment. 

56 Recently, Wimmler et al. (2015) provides an extensive review of research on multi-criteria 

57 decision making (MCDM) applied to the renewable energy sector and storage problems such as 

58 power generation optimization, technology, policy and site selection. However, their research 

59 only reported few studies conducted about marine and offshore applications, none of which are 

60 focused on wave energy exploitation. Carballo et al. (2014) developed a tool for computing the 
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61 total energy that can be generated by any WEC in coastal locations across Rias Baixas Region, 

62 Spain. They employed a MATLAB-based tool called WEDGE (Wave Energy Diagram 

63 Generator), that can construct a high resolution energy diagram based on which a WEC-site 

64 selection can be conducted. They suggested that comprehensive decision making for wave 

65 energy exploitation requires thorough knowledge of other factors such as the installation and 

66 operational cost, energy dissipation due to seabed topography and bathymetry as well as 

67 potential environmental aspects. Fetanat and Khorasaninejad (2015) applied a fuzzy-based 

68 MCDM methodology for site selection of offshore wind farm on the Persian Gulf, Iran. Several 

69 parameters including depth, height, environmental issues, proximity to facilities and economic 

70 aspects are considered as the decision making criteria. They asserted that integrating 

71 interdependent relationships among the criteria increases the accuracy of the analysis, however, 

72 their method is inevitably influenced by uncertainty of expert judgment.  The complexity of their 

73 methodology also highlights a need for a more straightforward approach towards decision 

74 making. Khakzad and Reniers (2015b) developed a Bayesian network (BN) based methodology 

75 for calculating the risk of major accidents in chemical plants and combined the results with 

76 Analytic Hierarchy Process to design the layout of a storage plant in order to minimize the risks. 

77 Khakzad and Reniers (2015a) later adopted an influence diagram (ID) as an extension to BN for 

78 multi attribute decision analysis in a case study of fuel tank fireproofing. Their methodology is 

79 found promising for selecting the optimum decision alternative while considering several 

80 parameters such as fireproofing cost, economic and individual risks. They stated that the 

81 inclusion of more factors in the analysis is also facilitated by the developed BN based method. 

82 Other researches have used BN to decision problems in the field of medical science and biology 

83 such as mildew control and animal breeding. Image analysis and classification are other fields 

84 which are benefited from this technique. BN is designed as a knowledge representation of the 

85 problem domain, explicitly encoding the probabilistic dependence between the variables in the 

86 model. Since the model building focuses on the causal relationships between the variables, a 

87 Bayesian network automatically reveals the analyst’s intuitive and analytical understanding of 

88 the problem (Friis-Hansen, 2000). This facilitates validation of the behavior of the model and 

89 makes it easier to convey its essentials to third parties (Friis-Hansen, 2000). Another advantage 

90 of BN is that if one of the variables in the domain is observed, then the probability distributions 

91 of the remaining variables in the model are easily updated accordingly.

92 This paper is aimed at developing a novel decision making methodology for selecting a location 

93 for installing WEC devices. This methodology must incorporate technical, economic and 
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94 environmental aspects in the decision making process. As the wave energy transmission through 

95 WEC devices contributes to the power generation, parameters such as energy flux and wave 

96 breaking play a significant role in the efficiency of energy extraction process. These factors are 

97 associated with high level of uncertainty mainly due to their dependence on sea state 

98 environment with continuous fluctuations. Moreover, shipping traffic in certain areas can result 

99 in strict limitations for installation and operational activities.  This factor also varies significantly 

100 based on transportation congestion in each location. Stochastic models are therefore considered 

101 to take into account these uncertainties.  Improvement of power generation efficiency based on 

102 these stochastic variables is investigated. For this purpose, a BN is implemented to model the 

103 integrated probabilistic influencing parameters. The developed BN is then extended to an 

104 influence diagram for the decision making process. The decision-making framework considers 

105 the risk factors for marine renewable energy site selection and the costs associated with power 

106 generation. Furthermore, the case study details the process of determining locations for WEC 

107 installations in south coast of Tasmania is thoroughly discussed. 

108 2. Application of Bayesian network in decision making

109 2.1 Bayesian Network (BN)

110 An extensive review of BN and probabilistic knowledge elicitation including wide range of 

111 applications in risk and reliability analysis is provided by Barber (2012), Scutari (2014) and 

112 Benson (2015). BNs are graphical models for reasoning under uncertainty that use causal 

113 relationships (represented by directed edges) among components of a system (represented by 

114 chance nodes). BN estimates the joint probability distribution of a set of random variables based 

115 on the conditional independencies and the chain rule, stated in Equation 1: 

𝑃(𝑋1,𝑋2,…,𝑋𝑛) =
𝑛

∏
𝑖 = 1

𝑃(𝑋𝑖∣𝑝𝑎(𝑋𝑖))
(1)

116 where  is the parent set of variable . As an example, the joint probability distribution of 𝑝𝑎(𝑋𝑖) 𝑋𝑖

117 the random variables   -  shown in Figure 1 is estimated by 𝑋1 𝑋4 𝑃(𝑋1,𝑋2,𝑋3,𝑋4) = 𝑃(𝑋1)𝑃(𝑋2)𝑃(𝑋3

118 ∣𝑋1,𝑋2)𝑃(𝑋4∣𝑋3,𝑋2)

119 Figure 1

120 In case new information becomes available for one or more chance nodes, BN is able to update 

121 the joint probability based on the Bayes’ theorem:
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𝑃(𝑋∣𝐸) =
𝑃(𝑋,𝐸)

∑
𝑋

𝑃(𝑋,𝐸)

(2)

122 Friis-Hansen (2000) provides a more detailed explanation of BN concepts and its inference 

123 algorithms. The application of BN in the field of risk and reliability is explored by many 

124 researchers (Abbassi et al., 2016; Bhandari et al., 2016; Yeo et al., 2016).

125 2.2 Influence Diagram (ID)

126 As an extension to BN, influence diagrams (ID) are formed by adding decision and utility nodes 

127 to the network (see Figure 2). 

128 Figure 2

129 Decision nodes hold a number of decision alternatives considered by the user. The parents of a 

130 decision node provide the information required for making the decision hence an edge pointing 

131 to a decision node is an information arc instead of expressing probabilistic dependence (Friis-

132 Hansen, 2000). Consisting numeric values rather than probabilities, utility nodes demonstrate the 

133 decision makers’ preference over each configuration of decision alternative and the utility’s 

134 parent nodes.  For instance, if there exists states for node  and alternatives for the decision 𝑛 𝑋4 𝑚 

135 node, the utility table requires  numeric values. The expected utility of decision alternative 𝑛 × 𝑚

136  is then estimated by Equation 3 where the decision with maximum expected utility will 𝑑𝑖

137 provide the optimum decision. 

𝐸𝑈(𝑑𝑖) = ∑
𝑋4

𝑃(𝑋4) 𝑈(𝑑𝑖,𝑋4) (3)

138 These utility values are determined based on experts’ knowledge or utility functions. Jensen and 

139 Nielsen (2007) provide an extensive information about influence diagrams which are widely 

140 used in decision making applications. To name a few, Nielsen and Sørensen (2010) used ID as a 

141 decision making tool for optimizing the operation and maintenance (O&M) costs of offshore 

142 wind turbines. Eleye-Datubo et al. (2006) illustrated the applicability of BN and ID in decision 

143 making problems through a marine vessel evacuation in an accident and a collision scenario  of a 

144 floating, production, storage and offloading installation. They asserted that IDs can assist in 

145 integration of a large number of interacting issues and their effects on the decision. They also 
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146 reported that by providing practical solutions for optimization tasks, IDs can be used as robust 

147 marine decision-support tools.

148 3. Developed Methodology

149 The risk-based decision making methodology developed in this study assists as a tool for 

150 important decision making in installation of marine renewable energy devices. The resulting 

151 decisions maximize the profitability of power generation considering the limit states of all 

152 influencing factors explained later in section 3.2. The developed methodology consists of four 

153 different steps as presented in Figure 3 and discussed in the following sections. 

154 Figure 3 

155 3.1 Influencing Parameters 

156 In order to maximize power generation efficiency, the major parameters that influence the 

157 decision making about site location are determined. As shown in Figure 3, these parameters are 

158 the energy flux, wave breaking and shipping traffic. 

159 Long-term variation of sea state must be considered as metocean criteria for design and operation 

160 of offshore structures (Vrouwenvelder, 1997) using the short-term sea state characteristic which 

161 is usually described by the variation of significant wave height ( ) and zero-crossing wave 𝐻𝑆

162 period ( ). A joint probability distribution of  and  as   is adopted from the actual 𝑇𝑧 𝐻𝑆 𝑇𝑧 𝑃(𝐻𝑆,𝑇𝑧)

163 areas between which the decision making is conducted. From this joint distribution, ) is  𝑃(𝐻𝑆

164 estimated using a Rayleigh distribution (Dean & Dalrymple, 1991) and consequently the 

165 conditional probability of  is modelled. To achieve the long-term extreme values of 𝑃(𝑇𝑧∣𝐻𝑆)

166 wave heights, Gumbel distribution given below from Sørensen (1986)  is adopted.

𝑃(𝐻𝑚│ℎ𝑠,𝑇𝑧) = 𝑒𝑥𝑝( ‒ 𝜈0𝑇𝑧 𝑒𝑥𝑝[ ‒
1
2(ℎ𝑠

𝜎 )2]) (4)

167 where ,  and  is the -th JONSWAP spectral moment.  is the standard 𝜈0 =
𝑚2

𝑚0
 𝜎 = 𝑚0 𝑚𝑖, 𝑖 = 0, 2 𝑖 𝜎

168 deviation of wave heights.

169 To design an offshore structure for the purpose of energy extraction, it is necessary to consider 

170 the energy dissipation due to wave breaking. To maximize the amount of energy available for 

171 extraction, the location of the wave breaking line must be predicted. For this purpose, the 
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172 distance from the shore to the breaking line , which depends on the bathymetry of seabed and 𝑋𝑏

173 the wave characteristics is estimated using Equation (5) by Dean and Dalrymple (1991),

𝑋𝑏 =
1

𝑚𝑔
1

5𝐾
4

5
(𝐻𝑚

2𝐶0 𝐶𝑜𝑠 𝜃0

2 )2
5 (5)

174 where  is the sea bathymetry slope, is the acceleration due to gravity, is a coefficient for 𝑚 𝑔 𝐾 

175 considering the effect of seabed slope on the wave breaking height and equals  according 𝐾 = 0.8

176 to Dean & Dalrymple (1991) and  for normally incident waves.  is the wave phase 𝜃0 = 0° 𝐶0

177 velocity estimated as   assuming that  where and  are the water depth and 𝐶0 =
𝑔𝑇𝑧

2𝜋 ℎ/𝜆 >  0.5 ℎ 𝜆

178 wave length, respectively.

179 It is also assumed that the shipping traffic exponentially reduces as the distance from the shore 

180 increases, hence to model this parameter exponential distributions are considered.  

181 3.2 Limit state function 

182 According to Kamphuis (2010), limit state functions are widely used in the context of 

183 probabilistic design with failure function . In this methodology, however, the concept of 𝐺 = 𝑅 ‒ 𝐿

184 limit state is applied to determine the probability of the event in which is a function of 𝐺 ≤ 0 𝐿 

185 stochastic variables such as  and  while  represents a pre-defined threshold constant value.  𝐻𝑆 𝑇𝑧 𝑅

186 Thus, limit state functions are defined to assess the variation of energy flux, wave breaking and 

187 shipping congestion in different locations as;

𝐺𝐸𝑛𝑒𝑟𝑔𝑦 𝐹𝑙𝑢𝑥 = 𝐸𝑡ℎ ‒ 𝐸.𝐶𝑔 (6)

𝐺 𝑊𝑎𝑣𝑒 𝐵𝑟𝑒𝑎𝑘𝑖𝑛𝑔 = 𝑋𝑡ℎ ‒ 𝑋𝑏 (7)

𝐺𝑆ℎ𝑖𝑝𝑝𝑖𝑛𝑔 𝑇𝑟𝑎𝑓𝑓𝑖𝑐 = 𝐷𝑡ℎ ‒ 𝐷𝑡𝑟 (8)

188 where ,  and  are constant thresholds; is the average energy per unit length ; 𝐸𝑡ℎ 𝑋𝑡ℎ 𝐷𝑡ℎ 𝐸 =
1
8𝜌𝑔𝐻2

𝑠 

189 is the wave group velocity and  is the variable distance from the shoreline. 𝐶𝑔 =
𝑔

2𝜋𝑇𝑧 𝐷𝑡𝑟

190 3.3 Utility Analysis

191 For establishment of the decision making process, the influencing parameters are ranked by their 

192 level of contribution to power production in each location. As presented in Table 1, the ranking 

193 process can be performed for any number of factors and location alternatives, however, in this 

194 paper energy flux, wave breaking and shipping traffic are only considered. 
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195 Table 1

196 Consequently, a utility function based on the profit making potentials is derived expressing the 

197 preference of stakeholders over all the decision alternatives as: 

 
𝑈𝑡𝑖𝑙𝑖𝑡𝑦 = {𝐶𝑃(1 ‒ 𝐶𝐶)𝛾𝑃          𝑓𝑜𝑟 ℎ𝑖𝑔ℎ 𝑒𝑛𝑒𝑟𝑔𝑦 𝑧𝑜𝑛𝑒

𝐶𝐿𝛾𝐿                            𝑓𝑜𝑟 𝑙𝑜𝑤 𝑒𝑛𝑒𝑟𝑔𝑦 𝑧𝑜𝑛𝑒 � (9)

198 where is profit coefficient proportional to  per unit energy generated.  and  are cost 𝐶𝑃 𝐻2
𝑠𝑇𝑧 𝐶𝐶 𝐶𝐿

199 and loss coefficients, respectively.  Cost coefficient  grows exponentially by increasing the 𝐶𝐶

200 distance from the shore mainly due to the higher costs associated with energy extraction in more 

201 extreme sea states.  is profit ratio defined by   in which is adopted from Table 1 and 𝛾𝑃

∑𝑚 ≤ 𝑛
𝑗 = 1 𝛽 𝑘𝑗

∑𝑛
𝑖 = 1𝐶𝑘𝑖

𝐶𝑘𝑗

202  is ranking of parameters with positive effect on power generation for locations . 𝛽𝑘𝑗 1,2…,𝑘

203 Similarly,  is loss ratio defined by .𝛾𝐿  1 ‒
∑𝑚 ≤ 𝑛

𝑗 = 1 𝛽 𝑘𝑗

∑𝑛
𝑖 = 1𝐶𝑘𝑖

204 3.4 Decision model for optimal site selection

205 Most previous approaches to renewable energy site selection (Baysal et al., 2011; Defne et al., 

206 2011) usedAnalytical Hierarchy Process (AHP) or Fuzzy Logic for the decision making process.  

207 Increasing the number of influencing factors can result in a highly intractable MCDM (Multi 

208 Criteria Decion Making) process. The BN and ID employed in this study, however, is capable of 

209 integrating techno-economic factors in wave energy exploitation such as wave energy dissipation 

210 and the level of energy flux based on the concepts explained in section 3.1 3.1 and 3.2 . 

211 Moreover, socio-economic aspects including operation and maintenance costs can also be 

212 incorportated into the BN. The probabilistic model considers the conditional dependency of sea 

213 state parameters  and  to analyze the maximum wave heights probability. The effect of sea 𝐻𝑆 𝑇𝑧

214 state joint distribution on the influence parameters is then assessed. Consequently, the decision 

215 making process which specifies whether the WEC equipment can be installed at that location is 

216 carried out by extending the BN to an influence diagram illustrated in Figure 4. The decision 

217 node in Figure 4 contains two decision alternatives as “Install” and “No Install”. The utility node 

218 is conditional on the influencing parameters and the states of decision node and holds a utility 

219 table based on each configuration of its parents’ nodes. A comparison amongst the estimated 

220 expected utilities enables the decision maker to select the WEC site location with optimum 

221 power generation efficiency.

222 Figure 4
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223 4. Application of the developed methodology: A case study of Tasmania

224 4.1 Scenario development 

225 To demonstrate the application of developed methodology, a case study is adopted to select the 

226 sites for WEC installation in Tasmanian waters. As illustrated in Figure 5, three sites in the south 

227 coast of Tasmania are proposed as the studied locations, since the amount of wave energy 

228 potential that exist in Tasmania Coastal regions is reported to be one of the greatest in the world 

229 (Harries et al., 2006). The locations were all considered in the south coast of Tasmania in a close 

230 proximity to illustrate the strength of the developed methodology in determining the optimum 

231 location. In order to analyze the potential power generation in each location, six different sea 

232 state thresholds are studied. According to Gadonneix et al. (2010) southern Australia has world-

233 class potentials for marine energy extraction. This capacity is due to the wave generation by 

234 global westerly wind belt with an almost infinite fetch. In this region, waves with more than 

235 5.5m of height can consistently propagate without shoaling which results in a significantly less 

236 wave energy dissipation (Mueller et al., 2010). 

237

238 Figure 5

239 4.2 Sea State Modeling

240 Actual field data from CSIRO (2016) incorporating a joint distribution of significant wave height 

241 ( ) and zero-crossing wave period ( ) for each location is adopted. The joint distribution of (𝐻𝑆 𝑇𝑧 𝐻𝑆

242 in location 1 is depicted in Figure 6 along with calculated energy flux illustrated as contours. ,𝑇𝑧) 

243 In this figure, the highlighted grids represent the more probable occurrence of significant wave 

244 heights m to m, conditional on wave periods s to s. A detailed calculation of maximum 1  6 7  11

245 wave height probability distribution is discussed in Section 3.1.

246

247 Figure 6

248 4.3 Wave breaking and shipping traffic Modeling

249 Wave breaking occurrence probability is estimated using Equations 4, 5 and 7 considering 

250 stochastic variables ,  and . The bathymetry slope  is normally distributed as                  𝐻𝑚 𝑇𝑧   𝑚 𝑚
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251  (Navionics, 2015) while shipping traffic in the analysis area is 𝑚~𝑁(𝜇 = 0.5%, 𝜎 = 0.025%)

252 assumed to be exponentially distributed with .   𝐷𝑡𝑟~𝐸𝑥𝑝(𝜇 = 1km)

253  

254 4.4 Cost Analysis

255 Decision making parameters, energy flux, wave breaking and shipping traffic are ranked based 

256 on expert judgment using integer values for each location alternative, as shown in 𝐶𝑘𝑖 ∈  [1,10] 

257 Table 2. 

258 Table 2

259 Using the specified utility functions in Equation 9, a utility table used for two decision 

260 alternatives (install or do not install WEC equipment) and each configuration of influencing 

261 factors is presented and developed in Table 3. The positive utility values for “No Installation” 

262 corresponds to the case that the capitals are invested in other profitable fields. 

263 Table 3

264 The constructed influence diagram is presented in Figure 7 that incorporates the acquired sea 

265 environment data from location 2 as well as the predefined utility values presented in the 

266 previous section.

267 Figure 7

268 Previously, researchers (Baysal et al., 2011; Defne et al., 2011; Zhang et al., 2014) adopted 

269 expert judgment based methods such as AHP and Fuzzy Logic to integrate various influence 

270 factors considering their level of effectiveness on the decision (Baysal et al., 2011; Defne et al., 

271 2011; Zhang et al., 2014). However, physical aspects such as hydrodynamic features of sea 

272 environment and the interdependency between the influencing factors are not precisely 

273 considered to optimize energy extraction efficiency. Moreover, in this study, the expert judgment 

274 is not used to incorporate the effect of each criteria on decision making and instead relative 

275 mathematical concepts are adopted. 

276 An area with larger wave heights is expected to have higher potentials for wave energy 

277 generation. However, due to the associated costs with the design and operation of the equipment, 

278 it is necessary to determine the maximum expected utility for each decision alternative. Figure 8 

279 present the estimated utility values for installing and not installing WEC equipment in location 1-

280 3 with respect to six sea state thresholds, . The expected utility for the   𝐻𝑆 = 1,3,5,7,9,11m

281 installation of the equipment in each location and the difference of the expected utility between 
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282 installing and not installing the equipment is optimised at wave heights of 5m ( ). That  𝐻𝑆 = 5m

283 means the wave heights of 5m can be adopted for power generation with acceptable economic 

284 risks. In the figures, the estimation of negative expected utilities for large wave heights is due to 

285 the excessive cost associated with the installation and maintenance of equipment in such sea 

286 states. The extensive investments required does not justify to aim for energy exploitation from 

287 waves with larger wave heights (i.e. ). The expected utility of installing the WEC  𝐻𝑆 > 5m

288 devices is compared amongst all the locations. As shown in Figure 8, location 2 has the 

289 maximum expected utility highlighting the optimum site location for 𝐸𝑈𝑀𝑎𝑥(𝐿𝑜𝑐2) = 1.19𝐸 + 05, 

290 WEC equipment implementations. That is, considering the adopted sea state data and local 

291 shipping congestion from southern Tasmania WEC devices can efficiently extract more energy at 

292 the location 2. Installation and operation of WEC devices in other locations (i.e. 1 and 3) will be 

293 less costly due to closer proximity to shore, however, the significant wave energy potentials in 

294 location 2 should not be disregarded. In fact, the advantage of this methodology is finding the 

295 balance between potential energy extraction and associated costs to find the optimum decision.

296

297 Figure 8 
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299 5. Conclusion 

300 This paper presents a novel methodology for decision making in marine renewable energy 

301 applications. The developed methodology has the general applicability in MCDM for selecting 

302 the most suitable sites for implementation of WEC devices. This methodology is able to conduct 

303 a sound decision making process that incorporates the uncertainty associated with the influencing 

304 parameters in the marine environment including energy flux, wave breaking and shipping traffic. 

305 For this purpose, a Bayesian network-based model is developed to determine the probabilities of 

306 the influencing parameters.

307 The BN is then extended to an influence diagram for estimating the expected utility for each 

308 decision alternatives whether to install the WEC in a given location or not. As a case study, three 

309 sites in south coast of Tasmania are considered. Based on actual sea state data, the optimum 

310 location (location 2) is determined with maximized expected utility   𝐸𝑈𝑀𝑎𝑥(𝐿𝑜𝑐2) = 1.19𝐸 + 05

311 compared to locations 1 and 3. The economic risk associated with energy extraction is also 

312 minimized by suggesting a maximum significant wave height (  ) for equipment  𝐻𝑆 = 5m

313 installation in this location. The priority of this model is to select the optimum location for 

314 deployment of WEC equipment, however, the developed methodology can be readily integrated 

315 with other reliability models to enable the effect of structural failures in decision making.

316  Acknowledgements

317 Authors thankfully acknowledge the financial support provided by National Centre for Maritime 

318 Engineering and Hydrodynamic (NCMEH) at the Australian Maritime College (AMC). 

319

A
C

C
E
P
TE

D
 M

A
N

U
S
C

R
IP

T



ACCEPTED MANUSCRIPT

320 References

321 Abbassi, R., Bhandari, J., Khan, F., Garaniya, V., & Chai, S. (2016). Developing a Quantitative 
322 Risk-based Methodology for Maintenance Scheduling Using Bayesian Network. Chemical 
323 Engineering Transactions, 48, 235-240.

324 Barber, D. (2012). Bayesian reasoning and machine learning: Cambridge University Press.

325 Baysal, M. E., Sarucan, A., Kahraman, C., & Engin, O. (2011). The selection of renewable 
326 energy power plant technology using fuzzy data envelopment analysis. Paper presented at the 
327 Proceedings of the 2011 World Congress on Engineering.

328 Benson, M. (2015). Bayesian Networks Handbook: Clanrye International.

329 Bhandari, J., Arzaghi, E., Abbassi, R., Garaniya, V., & Khan, F. (2016). Dynamic risk‐based 
330 maintenance for offshore processing facility. Process Safety Progress.

331 Carballo, R., Sánchez, M., Ramos, V., Taveira-Pinto, F., & Iglesias, G. (2014). A tool for 
332 combined WEC-site selection throughout a coastal region: Rias Baixas, NW Spain. Applied 
333 Energy, 135, 11-19. 

334 Cornett, A. M. (2008). A GLOBAL WAVE ENERGY RESOURCE ASSESSMENT. Paper 
335 presented at the International Offshore and Polar Engineering Conference, Vancouver, BC, 
336 Canada.

337 Council, C. E. (2011). Marine Energy Fact Sheet. Retrieved from 

338 CSIRO, A. R. E. A. (2016). Australian Wave Energy Atlas.   Retrieved from 
339 http://nationalmap.gov.au/renewables/

340 Dean, R. G., & Dalrymple, R. A. (1991). Water wave mechanics for engineers and scientists. 

341 Defne, Z., Haas, K. A., & Fritz, H. M. (2011). GIS based multi-criteria assessment of tidal 
342 stream power potential: A case study for Georgia, USA. Renewable and Sustainable Energy 
343 Reviews, 15(5), 2310-2321. 

344 Eleye-Datubo, A. G., Wall, A., Saajedi, A., & Wang, J. (2006). Enabling a powerful marine and 
345 offshore decision-support solution through bayesian network technique. Risk Analysis, 26(3), 
346 695-721. doi:10.1111/j.1539-6924.2006.00775.x

347 Fetanat, A., & Khorasaninejad, E. (2015). A novel hybrid MCDM approach for offshore wind 
348 farm site selection: a case study of Iran. Ocean and Coastal Management, 109. 

349 Friis-Hansen, A. (2000). Bayesian Networks as a Decision Support Tool in Marine Applications. 
350 (PhD), Technical University of Denmark.   

351 Gadonneix, P., de Castro, F. B., de Medeiros, N. F., Drouin, R., Jain, C., Kim, Y. D., Ferioli, J., 
352 Nadeau, M.-J., Sambo, A., & Teyssen, J. (2010). Survey of energy resources: Focus on shale gas. 
353 World Energy Council. 

354 Harries, D., McHenry, M., Jennings, P., & Thomas, C. (2006). Hydro, tidal and wave energy in 
355 Australia. International journal of environmental studies, 63(6), 803-814. 

A
C

C
E
P
TE

D
 M

A
N

U
S
C

R
IP

T



ACCEPTED MANUSCRIPT

356 Jensen, F. V., & Nielsen, T. D. (2007). Bayesian Networks and Decision Graphs. New York: 
357 Springer.

358 Kamphuis, J. W. (2010). Introduction to coastal engineering and management (Vol. 30): World 
359 Scientific.

360 Khakzad, N., & Reniers, G. (2015a). Cost-effective allocation of safety measures in chemical 
361 plans with regard to land use planning Safety Science. 

362 Khakzad, N., & Reniers, G. (2015b). Risk-based design of process plants with regard to domino 
363 effects and land use planning Journal of Hazardous Materials, 299. 

364 Lewis, A., Estefen, S., Huckerby, J., Musial, W., Pontes, T., & Torres-Martinez, J. (2011). Ocean 
365 Energy. In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. 
366 Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, & C. von Stechow (Eds.), IPCC Special Report 
367 on Renewable Energy Sources and Climate change Mitigation. Cambridge, United Kingdom and 
368 New York, NY, USA: Cambridge University Press.

369 Mørk, G., Barstow, S., Kabuth, A., & Pontes, M. T. (2010). ASSESSING THE GLOBAL WAVE 
370 ENERGY POTENTIAL. Paper presented at the International Conference on Ocean, Offshore 
371 Mechanics and Arctic Engineering (OMAE), Shanghai, China.

372 Mueller, M., Jeffrey, H., Wallace, R., & von Jouanne, A. (2010). Centers for marine renewable 
373 energy in Europe and North America. Oceanography, 23(2), 42. 

374 Navionics. (2015). Navioncs The Leader in Electronics [bathymetry Maps].   Retrieved from 
375 http://www.navionics.com/en

376 Nielsen, J. J., & Sørensen, J. D. (2010). Bayesian networks as a decision tool for O&M of 
377 offshore wind turbines. Paper presented at the Fifth International ASRANet Conference.

378 Scutari, M. (2014). Bayesian network structure learning, parameter learning and inference.

379 Sørensen, J. D. (1986). Structural Reliability Theory Reliability Based Optimization of Structural 
380 Elements: The University of Aalborg Denmark.

381 Vrouwenvelder, T. (1997). JCSS probabilistic model code. Structural Safety, 19(3), 245-251. 
382 doi:10.1016/S0167-4730(97)00008-8

383 Wimmler, G., Hejazi, G., Fernandes, E. d. O., Moreira, C., & Connors, S. (2015). Multi-criteria 
384 decision support methods for renewable energy systems on islands Clean Energy technologies, 3. 

385 Yeo, C., Bhandari, J., Abbassi, R., Garaniya, V., Chai, S., & Shomali, B. (2016). Dynamic risk 
386 analysis of offloading process in floating liquefied natural gas (FLNG) platform using Bayesian 
387 Network. Journal of Loss Prevention in the Process Industries, 41, 259-269.

388 Zhang, L., Zhou, D.-Q., Zhou, P., & Chen, Q.-T. (2014). Modelling policy decision of 
389 sustainable energy strategies for Nanjing city: A fuzzy integral approach. Renewable Energy, 62, 
390 197-203. 

391
392

A
C

C
E
P
TE

D
 M

A
N

U
S
C

R
IP

T



ACCEPTED MANUSCRIPT

Figure Captions:

Figure 1 A schematic Bayesian network

Figure 2 A schematic of influence diagram (Decision and Utility nodes are added to BN)

Figure 3 Developed methodology for decision making process in installation of wave energy 

converters

Figure 4 Developed influence diagram for WEC site selection

Figure 5 Three site locations considered for WEC installation in south coast of Tasmania

Figure 6 Sea state joint distribution with respect to calculated energy flux contour

Figure 7 WEC site selection in southern Tasmania using influence diagram (ID)

Figure 8 Expected utility of installing and not installing WEC equipment in Location 1 (a), 

Location 2 (b) and Location 3 (c). Estimations are made for six different sea state thresholds
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Table 1. Ranking decision making influence parameters for different locations
                                                                        

Location 
Influencing 
parameter

𝐿𝑜𝑐1 … 𝐿𝑜𝑐𝑘

𝛼1  𝐶11 …   𝐶𝑘1

…  …

 
…

 

𝛼𝑛  𝐶1𝑛 …  𝐶𝑘𝑛
𝑛

∑
𝑖 = 1

𝐶1𝑖 …
𝑛

∑
𝑖 = 1

𝐶𝑘𝑖

. 

Table 2. Rankings of decision making influence parameters for locations 1,2 and 3
                                                                        

Location 
Influencing parameter

Loc 1 Loc 2 Loc 3

Energy Flux 8 10 8

Wave Breaking 4 2 4

Shipping Traffic 1 1 3

Total 13 13 15

Table 3. Utility values for different configurations and decision alternatives

Low Energy Flux
 Wave Break No Wave Break

Traffic Free Traffic FreeSea 
State

Install No 
Install Install No 

Install Install No 
Install Install No 

Install
 𝐻𝑆 = 1m -2.2E+03 4.3E+01 -2.0E+03 4.3E+01 -1.5E+03 4.3E+01 -1.3E+03 4.3E+01

High Energy Flux
Wave Break No Wave Break

Traffic Free Traffic FreeSea 
State

Install No 
Install Install No 

Install Install No 
Install Install No 

Install
 𝐻𝑆 = 1m 2.2E+03 1.3E+03 2.5E+03 1.5E+03 3.3E+03 2.0E+03 3.6E+03 2.2E+03

A
C

C
E
P
TE

D
 M

A
N

U
S
C

R
IP

T


