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a b s t r a c t

Rising global temperature and environmental pollution as well as the demand for energy consumption
have made finding new and affordable clean energy resources a serious challenge for governments. A
possible solution could be renewable resources such as solar, wind or geothermal energies. Restructuring
and deregulation have provided a competitive environment which makes analysis of these new energy
sources necessary. Wind farms have been receiving more attention from governments because of their
noticeable generation capability. The stochastic nature of the wind inflicts uncertainty on the output
generation of wind farms which then causes some limitations for the participation of these farms in the
electricity market. Thus, in this paper the effects of uncertainty in predicting the wind farm's power on
locational marginal price in the market have been studied. According to the advantages and disadvan-
tages of wind farm's power uncertainties, a procedure to maximize the social welfare is presented. The
studies have been done on an 8-bus network for 24 h in a day-ahead electricity market. To do this, the
farm power is predicted using Neural Network and Wavelet Transform and its uncertainties are calcu-
lated using the asymmetric Quantile Regression method.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Environmental pollution, global temperature rise, fossil fuels
shortage crisis and technology advancements have forced govern-
ments to consider using renewable resources such as solar, wind or
geothermal energies. Moreover, restructuring and deregulation
have produced a competitive economically opened environment
which in turn has naturally increased the system efficiency.
Therefore, of great importance is the investigating the economic
effects of new equipment installed in the power network in this
new environment [1]. Power generation using the wind, free and
environment-friendly and having low repair and maintenance
costs with quite high generation capability, has been increasing due
to the growth in the use of wind farms in power networks. In spite
of improvements in the generation and increased penetration in
power systems, wind farm participation in the Electricity markets
remains a real challenge because of their intermittent nature [2].

Market participants need to predict the power of wind farms for
market closure. In doing so, There are several procedures including
combining Fuzzy Logic and Neural Network, known as Fuzzy Logic-
Neural Network methods [3,4], using Kolmogorov-Zurbenko filters,
Markov-Chain model, and Wavelet Transform to eliminate tem-
poral pulsations of the wind or wind farms power [5], combining
adaptive wavelet neural network and feed-forward neural network
[6], or using wavelet transform and Radial Basis Function network
[7]. Moreover, the variation of the output power of wind turbines is
a real challenge for the safe and economic performance of power
systems; therefore, calculating uncertainty in the output power
prediction is now inevitable for beneficiaries to making decisions.

One of the most common methods of uncertainty calculation is
the Monte Carlo simulation. Unfortunately, since having a high
program running rate and requiring the probabilistic distribution,
this method is time consuming. The Point estimation technique is
another method, unlike the Monte Carlo simulation, uses multiple
points (one or two points), and thus reducing the number of cal-
culations considerably [8,9]. Additional information about different
methods of analyzing uncertainty in the predicting wind turbines
can be found in Refs. [10e12]. Another important element in the
calculation of uncertainty is prediction intervals (PIs) which,
providing a lot of information about unknown uncertainties around
the predicted points by defining specific Confidence intervals.
Several methods have been offered for establishing prediction
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Nomenclature

Indices
I Index for buses
J Index for Generators

Sets (Variables)
P Amount of active power
Ii Injected power
Pd Active power demand.
Vtþk Velocity at time t þ k
Pt Wind farm's power at time t
Ptþk Wind farm's power at time t þ k
a,b,c Cost functions' Coefficients
m Coefficient related to spot price.
Yij the ith rowand jth column of the admittancematrix
Ɵi the angle of bus i
Pijmax the maximum power flow through the line i-j.
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intervals using a Neural Network [13,14], the main drawbacks of
these methods are again being highly time consuming, requiring a
large amount of calculations and the necessity of specific proba-
bilistic distributions. Attracting a lot of attention in recent years,
Quantile Regression (QR) has been proven to be one of the most
effective methods [15]. It features fast and easy calculations, having
no need for probabilistic distributions, and not using the smart
methods like Neural Network. Uncertainty in the power generation,
risk of participating in the market and return of fund are other
factors which effect the participation of wind farms in the market.

The need of wind farm owners and system operator to develop a
strategy covering all above factors has been investigated in several
studies. Many wind farm owners in the USA are selling their power
through a long-term contract and with a fixed price [2]. In Ref. [16]
the impact of different prediction methods on the wholesale price
of wind power has been studied. In Ref. [17] reducing unbalanced
price in short-term markets is investigated using a probabilistic
Markov model. Research done in Ref. [18] used the Quantile
Regression probabilistic power prediction method to discuss how
wind farm performance can be used to maximize the acquired in-
terest. In Ref. [19] the probabilistic distribution of unbalanced pri-
ces has been predicted and an optimized bidding procedure has
been offered to participate in the market using the Kernel density
estimation (KDE) method and the Conditional value at risk (CVAR)
technique considering uncertainty. Wind energy trading in real-
time and day-ahead markets have been studied in Ref. [20], and a
balance between the risk and the recessive expenses of the wind
farm was provided based on locational marginal price (LMP).
Having considered the penalty factor and LMP [21], formulizes the
wind farm contract optimization.

An important point that should be considered is that due to their
rather high rate of generation, wind farms can affect the losses rate
and increase congestion of the lines, affecting the generation
capability of other units and the prices of the market. Power and
uncertainty variations in the prediction complicate these affecta-
tions as well as decision making about the market. In the most
recent studies in this area [22], an optimal bidding strategy is
presented for a multi independent wind farm with the aim of
maximizing 24 h social welfare in Oligopolistic Day-Ahead. Optimal
bidding and generated scenarios for uncertainties in generated
power were modeled by the Stochastic Cournot Model and Auto
Regressive Moving Average (ARMA), respectively. This method re-
quires a lot of computation; consequently, decreasing scenario
methods are necessary for fewer calculations.

To the best of our knowledge most of the studies on wind power
and its uncertainties in the electricity market are based on the point
estimation (special value is allocated to the special value of wind)
and the scenarios (dependent on many calculations) while the ef-
fects of the upper and lower bands and the probabilistic intervals (PI)
created between the two bands in the context of the market price,
profits and losses of participants and the optimal amount for wind
power to maximize the social welfare are rarely considered [23].

Therefore, in this paper the impacts of uncertainty in predicting
wind farms power on LMP in the market considering PIs has been
studied, and a new method for an optimized amount provided by
the wind farm in order to maximize producers and consumers
profits (social welfare) has been offered. Optimal wind power tries
to achieve the maximum possible profit for winners in every hour
and the least amount of loss for the losers. In this study, the
network was analyzed using DC optimal power flow (DCOPF)
without considering the losses of the lines, and the wind farm
modeled as a negative load without assuming a specific price for its
power generation. To analyze LMP, the market has been run hourly
and the electricity market is considered as a day-ahead market. As
opposed to many references neglect the effect of network topology
(such as congestion) on the issue, network topology has been
considered in this paper since it has an effect on the process of the
issue as well as the reality. The rest of the paper is organized as
follows: in Section 3 wind farm power prediction methods are
introduced and uncertainty in predicting the power of wind farms
is studied. In Section 4 impacts of wind power and its uncertainties
on LMPs are presented. In Section 5 the issue is formulized and a
new strategy is provided so as to improve LMP and optimize social
welfare. Finally, the conclusion is provided in the last section.

2. Wind farm power predicting and uncertainty analysis

2.1. Prediction

In this paper, the wavelet transform and radial basis function
Neural network method has been used to predict wind speed [7].
The data set having been used for teaching purposes and testing the
Neural Network includes speed, direction, humidity, and temper-
ature. Considering contiguity of the turbines, locational character-
istics, and the effects of the turbines site, in Ref. [24], the non-
polynomial equations method is offered to calculate the output
power of the turbines of Tetrapolis Kefalonia wind farm located in
Greece with maximum capacity of 32.2 MW [24,25]. Using this
method, the power of the turbines was calculated using Equation
(1).

Ptþk ¼ 403:51 tanh
�
vtþk � 9:1
2:864

�
þ 0:025Pt þ 407:6 (1)

Due to Tetrapolis wind farm's high generation capacity and
more useful formula for calculating the power, this wind farm has
been studied in this research. Thewind speed is predicted bymeans
of Wavelet- Neural Network method. Therefore, the power of the
wind farm is calculated for a day using Equation (1) (11 May 2014).
Power of wind farm based on the predicted speed is shown in Fig. 1.

2.2. Calculating uncertainty in predicting the power of wind farms
using the Quantile Regression method

One of the most efficient methods for uncertainty calculations
is the Quantile Regression method. It does not use a specific



Fig. 1. Predicted wind farm power.
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distribution to calculate uncertainty in prediction and provides a
more exact rate of prediction error. Other advantages include its
low amount of calculations in action and establishing prediction
intervals without using methods like Neural Network; therefore,
the Quantile Regression method has been used in this study to
calculate uncertainty [15].

The power and its related uncertainty for a 95% confidence level
are depicted in hourly average in Fig. 2.
3. Impact of wind power and uncertainties on LMPs

3.1. LMP formulation

Social welfare is the difference between the costs of the gener-
ated C(P) energy and the consumers benefits B(P):

Social Welfare ¼
X

BðPÞ � CðPÞ (2)

The clearing price is determined by optimizing this function
with the Independent System Operator (ISO) considering the con-
straints of the system. In most cases there is either no specific
formula for B(P) or it is very complex. As a consequence, B(P) is
neglected and the following function is minimized (according to
the negative sign) [26]:
Fig. 2. Uncertainty in predicted pow
min

 Xn
i¼1

CiðPÞ
!

(3)

where Ci(P) is the cost function of every generator and is usually
explained with Ci ¼ aP2 þ bP þ c, in which n is the number of
generators and P is the generated power. Equation (3) can be solved
based on DCOPF [27]. In this situation the Lagrange function of
optimization problem is derived as follows:

l ¼
Xn
i¼1

CðIiÞ þ
Xn
i¼1

pi

2
4Ii �Xn

j¼1

Yij
�
qi � qj

�35þ
Xn
i¼1

Xn
j¼1

mij

h
Pmax
ij

� Yij
�
qi � qj

�i
(4)

In (8) pi is the LMP for the bus i.
It should be noted that according to DC load flow, cost of power

loss have been neglected and the calculated price included prices of
slack bus and congestion of the lines. Since losses price has a
negligible effect on LMP in comparison with slack bus price and
transmission line congestion, it has been neglected and DCOPF has
been used [28e32].
er with 95% confidence level.
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3.2. Network configuration

The studied network is an 8-bus transmission system which is
depicted in Fig. 3 [33]. Cost of power generated by wind farm has
been neglected and the wind farm is like a load with negative value
injecting power into the network. The results of power prediction
and uncertainties in the previous sections have been used for the
simulation.

3.3. Bringing wind energy in electricity market

The day-ahead market has been run hourly using the results of
the predicted uncertain power and the scale factor of the loads
curve of the day (shown in Fig. 4.). Through optimization method
(DCOPF), could calculate the amount of power plants' generation,
LMPs and Lagrange factors relating to the stipulated sum of the
power of the nodes. In Fig. 5. LMPs are shown within 24 h and in
different situations of uncertainties.

According to Fig. 5a., the most expensive and the cheapest buses
are buses 2 and 1, respectively. The price of the cheap buses did not
change with the use of a wind farm with the predicted power. On
the other hand, the price of the expensive buses is reduced to the
least amount of LMP within 24 h and remained stable (Fig. 5b.). In
other words, applying a cheap energy generation source made no
change in the cheap buses, but lowered the price of expensive buses
as much as possible. As it does not hold a noticeable amount of
Fig. 3. Single line diagram
energy, the lower band of the power of the wind farm did not affect
the LMPs much; it only lowered the LMPs slightly as seen in
(Fig. 5c). According to Fig. 5d., applying the upper band of the
predicted power had no effect on the price of buses 1, 5 and 6
similar to the previous cases, but it did fix the price of buses 3, 4, 7
and 8 on the least possible value; and it has decreased the price of
the bus connected with the wind farm to a negative value in an
interval with noticeable power. In consumer's point of view, bus 2
has ideal price, but not for the farm owner.

The amount of money paid by consumers to consume energy
can be calculated by using Equation (5), and the cost of energy
generation for power plants as well as the earned revenues can be
calculated by using Equation (6).

Cost Demandi ¼ pi � Pdi (5)

RevenueGj
¼ pi � Pj � CostGj

i ¼ 1; :::::; 8 j

¼ 1; :::::; 6 CostGj
¼ aP2j þ bPj þ c (6)

Figs. 6 and 7 show the amount of the power plants' revenue and
consumers' payments, respectively.

As shown in Figs. 5b and 6b., when the amount of wind farm
power is equal of predicted power, the LMP in all buses decreased
while revenues increased to themaximumpossible value among all
the plants. Also, G2 and G6 similar to other generators, not only did
of 8-bus test system.



Fig. 4. Load scale factor.
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not receive any benefits but also had negative profits most of the
time, and as this is not favorable for them, they did not contribute
to the market during these periods. In other words, this amount of
wind power cannot proper for the social welfare. From the con-
sumers' point of view (Fig. 7 b.) there was a reduction in energy
payments, so this offer is more acceptable to them. The reduction in
LMPs were not equal in every bus and the reduction was consid-
erably more in some buses than others.

If the lower bound of wind farm power injected to the power
(Fig. 6 c.), according to the least amount of the power, the plants'
profit was not considerably affected in comparison to the absence
of wind power. It is noteworthy that even though the least amount
of wind power has been offered, the wind farm still made its profit
due to the high price of the bus 2.

Upper bound of the predicted power not only caused negative
profits for G2 and G6 but also thewind farm experienced a financial
loss during most periods of the day despites having considerable
produced power. The wind farm's loss was considerably more than
the other plants. This situation is not acceptable to the wind farm
owner and the other ones. However, fromD2, D3, D4 and D5's point
of view the payments reached the minimum possible value, similar
to the situation in Fig. 7 b. D1 in bus 2 -where the wind farm is
connected-obtained the maximum profit in most periods of the
time due to negative LMP.

In order to clarify the impact of wind farm on the market, the
total 24 h profits and payments have been considered from other
viewpoint. As it can be seen from Fig. 6 aed and the amount of
power produced by power plants G1 to G6 which is resulted from
DCOPF, G2 and G6 produced the majority of required market's
power and made profits in all four scenario a-d and other power
plants made loss most times. Based on the mentioned reasons two
power plants G2 and G6 with wind farm have been examined from
producers' profit point of view. For this purpose, their 24-h profit in
the day ahead market are calculated according to Fig. 6 aed and
shown in Table 1. The consumers' payment in 24 h are shown in
Table 2.

According to Table 1 the amount of total profit of power plants is
maximized in the applied predicted wind power scenario, and the
wind farm received the maximum profit among all scenarios. On
the other hand, this led to negative profit for other two plants and
this is not good for the owner of these two power plants, so
applying the predicted power does not seem appropriate from their
viewpoint. By applying the predicted upper band, all the producers
made loss and could not be regarded as a desired case for them. In
two scenarios, without wind farm and applying the lower band of
wind power, the values were relatively close together; whereas the
wind farm gained relatively high profit along with other producers
and profit of other two power plants reduced in the lower band
power scenario. However, the profit increased 526.7$ compared to
the without wind farm scenario. From analysis it is concluded that
the applying the lower band of wind farm would be the most
desirable mode for producers and wind farm.

Regarding Table 2 and from the consumers' viewpoint, applying
the upper band of predicted power would provide the condition so
appropriate that the amount of their payment has decreased
23633$ in comparison towithout wind farm scenario. It can be seen
that applying a specific range of wind power is suitable from point
of view of producers or consumers. In order to achieve a better
analysis of the results an index is defined as follows (payment and
revenue difference index):

PRDI ¼
X24
h¼1

0
@X5

j¼1

PaymentDj;h

1
A�

X24
h¼1

0
@ X

j¼2;6

RevenueGj;h

þ RevenueWF;h

1
A (7)

From (7) it can be concluded that the more 24 h revenue or the
less total 24 h payment is achieved, the less the PRDI would be. As
this index reduces, the condition would be desirable for market
participants respectively. Therefore, the ideal situation would be
realized when the first term is minimized and the second term is
maximized. The index would not be defined in the scenarios, such
as applying the lower band or anticipated power, in which the
profit is negative and improper. Otherwise a negative penalty factor
should be multiplied in the second term to define this index. The
amount of PRDI for two acceptable forms of wind power (without
wind farm and lower band of predicted wind power) are calculated
as 58055($), 54087.3($), respectively. With regard to resulted
values, applying the lower band is better for both producers and
consumers.

According to Fig. 5 aed, the injected amount for the wind farms
power in the market affects the LMPs. As can be easily seen in
Figs. 6 and 7, Tables 1 and 2, if the wind farm injected high power
the consumers will make the most profit in the market. In the case
of lower band of power both the wind farm and the consumers will
make profit. The rest of the power plants, however, will have a loss.
In fact, a wind farm has the power to affect the market and com-
petitions (social welfare). Moreover, since a wind farm is consid-
ered as a negative load and the network consumes all it generates,
in the market it needs to behave in away that keeps both producers
and consumers satisfied and help to maximize the social welfare.
Also, the wind farm owner has an interval of power values with



Fig. 5. LMP in different condition. a. without wind power, b. with predicted power, c. with lower band of wind power, d. with upper band of wind power.
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high confidence level (95%) for an hour instead of a single value and
each of these values will be possible for that hour. Therefore, a
method has to be offered that enables an independent system
operator (ISO) to decide for the participants. In other words, the
system operator has to decide for the electricity market using an
interval of the generated power from the wind farm owner and
calculate the optimized LMPs to reach the maximum social welfare.
In other words, there is a unique probability for the likelihood of
each value occurring between the upper and lower bound (PI);
hence, the scheduling of the each selected PI value causes some to
make more profits and some to lose more. Optimal decision of the
predicted wind power must be done in such a way that selection
among the PI (in each hour) maximizes the social welfare and
satisfies these conditions:

1 All the winner participants who made their maximum profit in
accordance with the special selected value of PI must obtain the
same profit.

2 All the losers who made their minimum loss in accordance with
the special selected value of PI must obtain the same loss.

4. Social welfare maximizing strategy considering
uncertainty

All points between the upper and the lower bands of the wind
farm attained in a particular hour produce LMP and several LMPs
may be assumed for every bus, each of which has a specific prob-
ability. Among these many points one optimized point has to be
chosen that favors both producers and consumers. To do this, a new
objective function was suggested to maximize the social welfare.
The amount of power a wind farm can produce is probabilistic, and
if it is not able to generate the scheduled power at the appointed
time it will have to pay a penalty. To make a model of the error rate
in the amount of power a wind farm produces the probability of
each possible point has to be determined. Due to the high level of
confidence considered in uncertainty calculation, power probabil-
ity is very high in the upper and the lower bands (95%) and very low
elsewhere. Thus, forbearing outside this interval, themethod below
was suggested to attribute a probability to each point. The spacing
between the upper and the lower bands in every hour is divided
into N equal parts.

1) The point relating to the predicted power was used as the
reference point of the calculations. The highest amount of
probability, 95%, was attributed to this point. The reason for
doing this is that this point was attained through advanced and
accurate methods of prediction, so its probability has to be more
than that of the other points.

2) Starting from the reference point and going up, the size of one of
the N equal parts is added to the value of the reference point in
each step. But in turn, it loses 5% of its probability.

3) The same as step 2 but going down this time. The size of one of
the N equal parts as well as 5% of probability is taken from the
reference point.

4) Steps 2 and 3 are repeated until reaching the upper and lower
bands boundaries to assign the spacing between bands and the
intervals of probability.

The diagram of the suggested method is shown in Fig. 8. In the
previous section, it was found that wind farms produced clean and
low cost energy and reduced the LMPs. Due to these advantages
and making the assumption that wind farms behave like a load, all
thewind power injected to the network in every hour, whichwould
be determined by the operator's decision must be used by the
consumers. If an error occurs in the presentation of the scheduled
power, the wind farm must be punished with a penalty factor.
Indeed, (1-Probability) shows the maximum failure to reach the
offered power. This lack of power must be taken over in the spot
market. In order to supply energywith a spotmarket, its price could
follow Equation (8) in every hour.

Spot priceðtÞ ¼ m�Max ðLMPðtÞiÞ i ¼ 1;2; :::; 8 (8)

LMP (t)i is the LMP at hour t in bus i.
The money required to provide for the lack of the energy from

the spot market must be taken from all the participants. Accord-
ingly, the objective function below was suggested to calculate the
optimized power of a wind farm.

Min

"X8
i¼1

CiðPðtÞÞ þ Penalty factorðtÞ

� Windfarm powerðtÞ � ð1� ProbabilityðtÞÞ
þ Windfarm powerðtÞ � ð1� ProbabilityðtÞÞ

� Spot priceðtÞ
#

(9)

Having resolved the optimization problem, the amount of wind
farm power needed to keep both consumers and power plant and
wind farm owners satisfied (maximize the social welfare) in every
hour and to ensure network security was calculated. Supposing the
penalty factor to be 5($/MWh), the m factor to be 1.1 for every hour
and N ¼ 20, and minimizing Equation (9), the amount of optimized
wind farm power, optimized LMP, and the generation of other
power plants have been calculated.

Fig. 9 a. represents the amount of the wind farm power
appointed by the system operator for every hour. The amount of the
LMP of different buses is shown in Fig. 9 b. Applying the suggested
optimized amounts led to minimizing the bus prices, as applying
the upper band of the farm power does, but the price of bus 2 was
no longer negative for any extended amount of time. In some in-
tervals, however, the price was inevitably negative, but these in-
tervals are very short compared to intervals that did not so. This
means that hours of making profit for the farm have increased.

The amount of power plant revenue is shown in Fig. 9 c. As can
be seen, power plants G2 and G6 have the same behavior (Fig. 6 a.)
after applying the suggested optimized amounts. Nevertheless, the
wind farm have made a noticeable profit except in special intervals.
The intervals in which the farm makes profit will significantly in-
crease, and vice versa.

WF-max in Fig. 9 c shows the wind farm's profit when the
calculated wind power with the special probability occurred. WF-
min shows the wind farm's profit when there was an error set to
(1-probabilty) and the penalty factor was imposed on the wind
farm's profit. The amount of money paid by the customers is shown
in Fig. 9 d. In consumers' view (D2 to D5) their payments reached
the lowest amount among the explained situations (similar to the
state of selecting the predicted power) and they made a profit.
Considering the optimized value, in bus 2's view negative intervals
have decreased which is good for the wind farm, but there are still
negative intervals inwhich D1makes profit. In other words, the ISO
has considered the profits of both sides and maximized the social
welfare. Also, in positive intervals D1's payments have decreased
comparing to the discussed situations which is again in D1's favor.

For comparison with analysis of previous section and investi-
gating the effectiveness of proposed method, total 24 h profit, total
consumers' payment, and PRDI index in this mode are given in
Table 3.

According to Table 3 total consumers' payment are dropped



Fig. 6. Power plants' revenue in different condition. a. without wind power, b. with predicted power, c. with lower band of wind power, d. with upper band of wind power.
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Fig. 7. Consumers' payment in different condition. a. without wind power, b. with predicted power, c. with lower band of wind power, d. with upper band of wind power.
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Table 1
Total revenue of power plants in 24 h for different wind farm power.

Scenarios Total revenue of power plants ($)

G2 G6 WF Total

Without wind power 2997.8 1056.2 0 4054
Predicted power �361.91 �75.1 10776 10339
Lower band of wind power 1658.3 593.8 2328.6 4580.7
Upper band of wind power �307.96 �109 �3718.05 �4135.01

Table 2
Total consumers' payment in 24 h for different wind farm power.

Scenarios Without wind power Predicted power Lower band of wind power Upper band of wind power

Total Payment ($) 62109 53082 58668 38476

Fig. 8. Flowchart of wind power probability appropriation in PI intervals at each hour.
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considerably and has come closer to the upper band of wind power.
The wind farm received considerable profit in the both case of with
and without occurrence of errors, and total received profits of other
plants were acceptable and they are in the range of applied pre-
dicted powermodewhich is favorable for all producers. PRDI values
are shown in Fig. 10. PRDI values of both optimized cases (WF-min,
WF-max) have been significantly reduced in comparisonwith non-
optimized scenarios. Therefore, this reduction indicates the effec-
tiveness of the proposed method in participants' satisfaction and
decreasing the index.
5. Conclusion
In this paper, the impact of uncertainty in predicting the power
of wind farms on LMP in the electricity market was studied, and an
optimal strategy for maximizing the social welfare under un-
certainties was proposed. The effects of uncertainty in the pre-
dicted power of wind farms on LMP based on prediction intervals



Fig. 9. a. Optimum amount of wind power, b. LMP in optimum value of wind power, c. Profit of power plants achieved in the optimum value of wind power, d. Money paid by the
costumers in optimum value of wind power.
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Table 3
Total 24 h revenue and payment for Optimum amount of wind power.

Wind farm's total revenue($) Total revenue of power plants ($) PRDI ($) Total payment ($)

WF-max WF-min WF-max WF-min WF-max WF-min

4178.4 3830.4 4434.67 4086.67 41275.33 40927.33 45362

Fig. 10. PRDI in different conditions.

H. Dehghani et al. / Renewable Energy 101 (2017) 907e918918
and Quantile Regression were first studied. As it is seen, applying
points between the upper and the lower bands of the prediction
interval cause profit for some participants and loss for others. A
new objective function was then provided for optimizing the value
of the wind farm's power so as to maximize social welfare (to in-
crease profit and decrease loss). Using this objective function, tried
to maintain the advantages of the points between the upper and
the lower bands and lessen their disadvantages as much as
possible. The results of the simulations confirmed the effectiveness
of the suggested method.
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