
2169-3536 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2704444, IEEE Access

Virtualization on Internet of Things Edge Devices with
Container Technologies: a Performance Evaluation

Roberto Morabito, Ericsson Research

Abstract— Lightweight virtualization technologies have
revolutionized the world of software development by
introducing flexibility and innovation to this domain.
Although the benefits introduced by these emerging solutions
have been widely acknowledged in cloud computing, recent
advances have led to the spread of such technologies in
different contexts. As an example, the Internet of Things (IoT)
and Mobile Edge Computing (MEC) benefit from container-
virtualization by exploiting the possibility of using these
technologies not only in data centers but also on devices, which
are characterized by fewer computational resources such as
single-board computers. This has led to a growing trend to
more efficiently redesign the critical components of IoT/Edge
scenarios (e.g., gateways) to enable the concept of device
virtualization. The possibility for efficiently deploying
virtualized instances on single-board computers has already
been addressed in recent studies; however, these studies
considered only a limited number of devices and omitted
important performance metrics from their empirical
assessments. This paper seeks to fill this gap and to provide
insights for future deployments through a comprehensive
performance evaluation that aims to show the strengths and
weaknesses of several low-power devices when handling
container-virtualized instances.

Index Terms—Internet of Things; Edge Computing;
Container Virtualization; Docker; Performance Evaluation.

I. INTRODUCTION

 Over the last decade, the approach used to enhance the
network efficiency and cope with the increasing number of
connected devices to the Internet has been to move
computation, control, and data storage into the cloud [11].
However, cloud computing now faces several challenges to
meet the more stringent performance requirements of many
application services, especially in terms of latency and
bandwidth. Edge computing is an emerging paradigm that
aims to increase infrastructure efficiency by delivering low-
latency, bandwidth-efficient and resilient end-user services
[12]. This edge cloud is not intended to replace centralized
cloud-based infrastructure in its entirety, but rather to
complement it by increasing the computing and storage
resources available on the edge by adopting platforms that
provide intermediate layers of computation, networking, and
storage [13].

Especially in Internet of Things (IoT) scenarios, several
edge processing tasks must be performed at the network
edge on hardware characterized by processing, memory,
and storage capabilities lower than is typical of server
machines [7]. As an example, a Single-Board Computer
(SBC) or comparable devices such as Micro-Servers can
contain suitable hardware for performing such operations
[28].

However, because of the limited computational
capabilities of such devices, it is not always possible to
deploy processing operations at the network edge. In this
case, data centers are necessary to manage heavier
computational requirements. Considering the heterogeneity
of the entire scenario, there may be divergence (e.g., in
terms of CPU architecture) between the various nodes
involved. Simultaneously, however, the same software may
need to be deployed at either the edge or in the data center.
One way to ensure that data centers and constrained edge
entities execute complementary software arises from the
possibility of using lightweight virtualization
technologies—in particular, containers. Container
virtualization allows hardware resources to be decoupled
from software, enabling packaged software to execute on
multiple hardware architectures. Compared to alternative
virtualization solutions such as hypervisors, container
technologies provide several benefits such as rapid
construction, instantiation, and initialization of virtualized
instances. In addition, systems that rely on containers
benefit from higher application/services allocations because
of the smaller dimensions of the virtual images [14]. These
container features are well-matched to the requirements of
IoT/Edge scenarios.

Previous works have demonstrated the feasibility of
using container technologies on IoT resource-constrained
devices [6, 21]. However, the number of devices tested thus
far has been extremely limited. For example, only the older
version of the Raspberry Pi board has been considered as a
suitable device. Furthermore, important performance
metrics such as power consumption and energy efficiency
have not been considered in previous analyses.

By investigating the performance of container
virtualization on a wide set of low-power edge devices for
the IoT, the objective of this paper is to provide insights for
optimally using SBCs during the execution of virtualized
instances. We adopt an empirical approach to quantify the
overhead introduced by the virtualization layer under
computing-intensive scenarios and networking-intensive
traffic. Additionally, power consumption, energy
efficiency, and device temperatures are considered in our
analysis.
 The remainder of this paper is organized as follows.
Section II lists the related work. Section III provides
background information about the hardware and software
technologies employed in our study. Section IV gives a
detailed description of the methodology and experimental
setup used to carry out the empirical investigation. In
Section V, we evaluate the impact of using container
virtualization on top of different SBCs by taking various
aspects into consideration. Section VI concludes the paper
and provides final remarks.

R. Morabito is with Ericsson Research, Jorvas, Finland, e-mail:
roberto.morabito@ericsson.com

2169-3536 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2704444, IEEE Access

II. RELATED WORK
The current literature includes several proposals for

solutions in which virtualization technologies are employed
at the network edge and/or on low-power nodes such as
SBCs. However, Raspberry Pi is usually the only SBC
considered for such deployments. Bukhary et al. in [4]
evaluated Docker containers as an enabling technology for
deploying an edge computing platform. The authors
evaluated the technology in terms of (i) deployment and
termination of services, (ii) resource and service
management, (iii) fault tolerance, and (iv) caching
capabilities, concluding that Docker represents a good
solution for use in edge computing contexts. The authors of
[5] and [6] included lightweight virtualization technologies
in the design of an IoT gateway. Petrolo et al. [5] employed
virtualized software to provide a dense deployment of
services at the gateway level. Particularly interesting is their
analysis of the possible interactions between IoT sensors
and gateways. Such analysis suggests how the dynamic
allocation of services, by means of containers, provides
several benefits from a gateway performance perspective.
In our previous work [6], we proposed a design for an IoT
gateway that can also be efficiently employed in edge
computing architectures. In that study, we showed how to
efficiently and flexibly use Docker containers to customize
an IoT platform that offers several virtualized services such
as (i) Device Management capabilities, (ii) Software
Defined Networking (SDN) support, and (iii) Orchestration
and Data Management capabilities. In [7], container
technologies were also used in a Capillary Network
scenario. This study used Docker containers for packaging,
deployment, and execution of software both in the cloud
and in more constrained environments such as local
capillary gateways. The dual purpose of these latter entities
is to provide connectivity between short-range and cellular
networks and to make different software components
available for local device management and instantiation of
distributed cloud processes. In [8] container-based
virtualization and SBCs were identified as enabling
technologies to enhance the provisioning of IoT Cloud
services. Krylovskiy identified and analyzed the
requirements for efficiently designing IoT gateways in [9].
The author considered the Docker containers to be suitable
technology for meeting such requirements. In that study,
several synthetic and application benchmarks were used to
quantify the overhead introduced by the virtualization layer.
However, the study's performance analysis was limited; it
considered only the Raspberry Pi board. Furthermore, it
lacked a comprehensive power consumption and energy
efficiency evaluation. The cloudlet architecture proposed by
the Carnegie-Mellon university [10], which represents an
efficient approach for mobile-cloud computation can also
be considered as linked to our work. Unlike the previous
studies the granularity for virtualized instances was Virtual
Machines (VMs). In [25], the authors proposed a
Container-based Edge Cloud PaaS Architecture based on
Raspberry Pi clusters, in which container technologies are
used to favor migrating toward edge cloud architectures.
The authors claim that the deployment of the Raspberry Pi

clusters represents an enabling hardware technology to
ensure important requirements such as cost-efficiency and
low power consumption. However, this work lacked an
empirical investigation to support its claims. Only the
Raspberry Pi was considered for the edge cluster
deployment; other hardware alternatives were not
considered. Similarly, [26] used Docker containers and
Raspberry Pi to leverage the deployment of a framework
for Fog Computing networks. In addition, the evaluation of
the overhead introduced by containers in SBC was limited
when assessing the impact of different file-system
configurations on disk performance. Specifically, Docker
container performances were compared with native
executions, and the study provided estimates of the
overhead and delays introduced by different file systems
(AUFS, Device mapper, and OverlayFS). Finally, in [27],
Hajji et al. presented a detailed performance evaluation to
understand the performance of a Raspberry Pi cloud when
handling big data applications packaged through Docker
containers.

Before moving on to the next section, we provide a brief
overview on the real-world state of modern IoT
applications. This overview can help readers understand—
in conjunction with the empirical discussion that follows in
this paper—what kinds of applications will perform better
in the SBCs tested here; it is based on application
performance requirements such as low energy consumption,
high CPU and/or RAM performance, many simultaneous
tasks, high-speed data connections, and so forth.

The IoT encompasses several domains including E-
health, Intelligent Transport Systems (ITS), Smart Cities,
Smart Homes, Smart Industries, etc. [42, 43, 44]. The
applications in these categories give rise to a considerable
number of use cases, and their performance requirements
vary from case to case as do the ways such applications
interact with IoT/Edge gateways. Indeed, the number of
interactions between an IoT device and a gateway can vary
significantly. Some types of sensors provide measured
values to the gateway periodically (e.g., once per hour), as
in, for example, environment sensing, location sensing, and
location info sharing use cases [44]. The applications used
in the gateway to handle such scenarios must be particularly
efficient in terms of disk I/O responsiveness. In contrast,
other types of devices such as sensors with cameras, may
continuously generate significant amounts of data—e.g., for
remote control use cases. For this second group of sensors,
the gateway operations required are rather different
compared to the first group. For example, video
applications usually demand high CPU processing and
network bandwidth. Furthermore, video data might be
characterized by a high degree of redundancy. Data
compression applications, which are particularly
challenging in terms of CPU and memory, can be employed
in the gateway to reduce the amount of data that must be
transmitted over the uplink from the gateway to the cloud
[6].

The energy efficiency of key IoT/Edge entities is
particularly crucial for battery-powered wireless sensor
networks [41]. From this viewpoint, understanding which
SBCs ensure the best performance/energy efficiency

2169-3536 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2704444, IEEE Access

tradeoff facilitates the design of such constrained networks.
By considering a wide set of workloads, knowledge of the
boards’ energy efficiencies can help in estimating the
energy lifetime of battery-powered nodes, and help SBCs
offer support for cases where they must be battery powered.

Finally, recent works have revealed a growing trend
toward designing gateways shared between different tenants
[40]. In many cases, the container is the technology used to
ensure isolation between different users. This represents a
scenario in which there is a need to understand how
IoT/Edge entities behave when receiving simultaneous
virtualized instances and heterogeneous workloads.

III. ENABLING TECHNOLOGIES
In this section, we provide an overview of the different

technologies involved in our study.

A. Container Virtualization Technology
Compared to hypervisors, container-based virtualization

provides different abstraction levels regarding virtualization
and isolation. Hypervisors virtualize hardware and device
drivers, generating a higher overhead. In contrast,
containers avoid such overhead by implementing process
isolation at the operating system level [14]. A single
container instance combines the application with all its
dependencies; it runs as an isolated process in user space on
the host operating system (OS), while the OS kernel is
shared among all the containers (Fig. 1). The lack of the
need for hardware/driver virtualization, together with the
shared kernel feature, provide the ability to achieve a
higher virtualized instance density because the resulting
disk images are smaller. In our performance evaluation, we
used Docker1 containers to package virtualized instances.
Docker introduces an underlying container engine and a
functional API that supports easy construction,
management and removal of containerized applications.
Within a Docker container, one or more
processes/applications can run simultaneously.
Alternatively, an application can be designed to work in
multiple containers, which can interact with each other
through a linking system. This also guarantees that no
conflicts will occur with other application containers

running on the same machine.

Fig. 1. Container-based virtualization architecture.

B. ARM-Based SBCs
The ARM architecture is becoming increasingly

widespread due primarily to its low-power characteristics,
low cost, and its use in smartphones, tablets, and other
devices. [18]. Despite these characteristics, modern ARM
multi-core processors can compete with general purpose
CPUs [19]. Most current ARM processors are 32-bit,
although the use of more powerful 64-bit devices is
growing. These hardware enhancements are enabling the
spread of solutions such as ultra-low power clusters [20]
based on SBCs powered by ARM architectures.

IV. METHODOLOGY AND EXPERIMENTAL SETUP
This section provides information about the

methodology and experimental setup used to perform this
empirical investigation.

A. Tested Single-Board Computers
The wide range of SBCs used in our evaluation allows

characterizing the performance and gaining a deep
understanding of the potentialities of a wide set of devices.
The devices selected for the analysis are described below.
The Raspberry Pi 22 model B (RPi2) is the second
generation of the Raspberry Pi platform (Fig. 2a). Released
in February 2015, RPi2 increased the performance and
other hardware characteristics compared to previous
versions. It includes a quad-core ARM Cortex-A7 CPU and
1 GB of RAM.
The Raspberry Pi 33 model B (RPi3) is the third generation
of the Raspberry Pi platform (Fig. 2e) and was released in
2https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
3 https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

1http://www.docker.io

TABLE I. RASPBERRY PI AND ODROID HARDWARE FEATURES
 Raspberry Pi 2 Model B Raspberry Pi 3 Model B Odroid C1+ Odroid C2 Odroid XU4

Chipset Broadcom BCM2836 Broadcom BCM2837 Amlogic S805 Amlogic S905 Samsung Exynos5422
CPU Quad Core @900MHz

ARMv7 Cortex-A7
Quad Core @1.2GHz
ARMv8 Cortex-A53

Quad Core @1.5GHz
ARMv7 Cortex-A5

Quad Core @2GHz
ARMv8 Cortex-A53

Quad Core @2GHz
ARMv7 Cortex-A15
Quad Core @1.4GHz
ARMv7 Cortex-A7

Memory 1GB LP-DDR2
400MHz

1GB LP-DDR2
900MHz

1GB DDR3 792MHz 2GB DDR3 912MHz 2GB DDR3 912MHz

GPU Broadcom VideoCore
IV

Broadcom VideoCore
IV

2 x ARM Mali-450
MP2 600 MHz

3 x ARM Mali-450
MP2 700 MHz

ARM Mali-T628 MP6

Ethernet 10/100 Mb/s 10/100 Mb/s 10/100/1000 Mb/s 10/100/1000 Mb/s 10/100/1000 Mb/s
Flash Storage MicroSD MicroSD MicroSD, eMMC5.0 MicroSD, eMMC5.0 MicroSD, eMMC5.0
Connectivity

USB
4× USB 2.0 Host 4× USB 2.0 Host 4× USB 2.0 Host,

1× USB 2.0 OTG
4× USB 2.0 Host,
1× USB 2.0 OTG

1× USB 2.0 Host,
2× USB 3.0 Host

OS Linux, Windows 10 Linux, Windows 10 Linux, Android Linux, Android Linux, Android
Price $35 $35 $37 $40 $74

2169-3536 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2704444, IEEE Access

February 2016. It is the first model with a 64-bit CPU. The
new model also integrates Bluetooth modules (4.1 and Low
Energy) and Wi-Fi 802.11n (2.4 GHz).

Odroid is a series of SBCs manufactured by Hardkernel
Co., Ltd. Most of the Odroid systems are capable of running
both regular Linux and Android distributions.
Odroid C1+4 (OC1+) was released in July 2015, replacing
Odroid C1 with improved and enhanced hardware features
(Fig. 2b). Although OC1+ represents the most similar board
to the RPi2 in terms of its hardware characteristics, it
includes a faster CPU and its Network Interface Card (NIC)
has a faster line speed.

Odroid C25 (OC2) is the most recent Odroid SBC (released
by Hardkernel in March 2016) and is the first Odroid model
with a 64-bit CPU (Fig. 2c). Compared to OC1+, it includes
additional RAM (2 GB).
Odroid XU46 (OXU4) features an ARM Octa-Core with
big.LITTLE computing architecture (Fig. 2d). This chipset
is characterized by a particularly heterogeneous CPU
architecture that features two groups of cores: four ARM
Cortex-A7 LITTLE cores (1.4 GHz), and four ARM Cortex-
A15 big cores (2 GHz). The first group of cores reduces the
power consumption at the expense of slower performance.
In contrast, the second group consumes more power but
features faster execution. The peculiarity of this architecture
lies in the fact that if one core group is active, the other one
is either powered down or used only if the first group
saturates its resources. An application cannot work on both
groups of cores at the same time.

Table I summarizes the hardware characteristics of the
SBCs used in our study. The most relevant differences
between the boards occur in terms of their CPU, flash
storage, and Ethernet capabilities.
 From a software perspective, for the Raspberry Pi we
used an image provided by Hypriot running Raspbian Jessie
with the Linux kernel 4.4.10 as a base OS. This image
provides a lightweight environment optimized for executing
Docker container technologies on top of Raspberry Pi
devices. For the Odroid platforms, we used the following
Hardkernel OS stable releases: Ubuntu version 14.04 for
OC1+, Ubuntu version 16.04 for OC2, and Ubuntu 15.10 for
OXU4.

All the SBCs were equipped with a 16 GB Transcend
Premium 400x Class 10 UHS-I microSDHCTM memory card
for storage.

B. Setup for Virtualized Environment
The configuration used to customize the virtualized

environment was similar for all the SBCs under evaluation.
Docker version 1.12.0 was used as the container technology.
The base Docker images—which represent the basic entity
from which Docker containers are created—used to
virtualize the software tools used for our benchmarking tests
were as follows:

• ARMv7 armhf/debian image, with RPi2, OC1+, and
OXU4.

• ARMv8 aarch64/debian image, with OC2 and RPi3.

In virtualization, vCPU pinning (or processor affinity) is
a relevant aspect that influences the performance. vCPU
pinning indicates the possibility of dedicating a physical
CPU to a single instance or a set of virtual CPUs. Several
vCPU pinning configurations exist. However, in the one
selected for this analysis, each vCPU can run on any
physical CPU core (Fig. 3). Such a configuration is
typically termed a random setup and provides the advantage
of higher CPU utilization [16].

Fig. 3. CPU affinity setup.

C. Testbed Setup for Power and Network Measurements
 The power consumption of the SBCs was measured
using an external voltage meter (USB-1608FS-Plus),
characterized by a 16-bit resolution and a setup similar to
the one used in [15].

Fig. 4. Testbed setup.

The measurements involving network communications were
performed using an Intel Core 2 Duo PC running Linux
3.13.0 with an Intel 82567LM Gigabit Ethernet card. The
PC was directly connected to the NIC of the SBC under test.
Fig. 4 shows the entire testbed environment setup.

4http://odroid.com/dokuwiki/doku.php?id=en:odroid-c1
5http://odroid.com/dokuwiki/doku.php?id=en:odroid-c2
6http://odroid.com/dokuwiki/doku.php?id=en:odroid-xu4

 (a) (b) (c) (d) (e)

Fig. 2. Single-Board Computer under test: (a) RPi2. (b) OC1+. (c) OC2. (d) OXU4. (e) RPi3.

2169-3536 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2704444, IEEE Access

D. Workloads for the Evaluation
As mentioned earlier, the main goal of our study was to

understand how different SBCs react to specific workloads
generated by applications running within Docker
containers. Specifically, we want to characterize the
performance from two different aspects. First, we want to
define an upper bound for the performance of such devices
when handling virtualized applications that challenge a
particular segment of the underlying hardware. This kind of
evaluation represents a key aspect because it allows us to
verify that the virtualization layer does not generate
excessive overhead that affects overall board performance.
To achieve this, we used different benchmark tools to
generate intensive CPU, Disk I/O, Memory, and Network
I/O workloads. For the CPU and Network tests, we
performed all the measurements using up to eight/sixteen
guest domains. Second, we also considered heterogeneous
virtualized instances to quantify any possible overhead
introduced by containers; these measurements were made
using applications that are closer to real-world workloads.

We adopted native performance (i.e., running the
benchmark tool without including any virtualization layer)
as a base case to quantify the overhead. We also repeated
each measurement target with different tools, to analyze the
consistency between different results. The results were
averaged over 20 runs. The tables and graphs in this paper
show the averages of such measurements.

V. MEASUREMENT RESULTS AND ANALYSIS
In this section, we present the results of our performance

analysis. The paragraph is organized into different
subsections according to the specific workload being
considered.

Before beginning the different subsections, Table II
shows the power consumption of the five SBCs under test
when in an idle state, without any virtualized entity running
on them. The sleep Unix command was used to set the
devices to idle, and the experiment lasted 300 seconds.
OXU4 consumes the greatest amount of power—more than
double the idle energy consumption of the Raspberry Pi.

TABLE II. POWER CONSUMPTION IN IDLE

Device Power Consumption (Watts)
RPi2 1.32
RPi3 1.42
OC1+ 2.31
OC2 2.45

OXU4 3.99

A. CPU Performance
We tested CPU performance using sysbench7. This

stress test is designed to challenge the CPU by calculating
prime numbers. The computation is made by dividing each
candidate number with sequentially increasing numbers and
verifying whether the remainder (modulo calculation) is
zero. Fig. 5 shows the execution time (measured in seconds)
with up to sixteen concurrent running instances–both native
and virtualized.

Fig. 5. Sysbench CPU stress test.

From Fig. 5, three main insights can be disclosed: i) the
container engine introduces a negligible impact on CPU
performance, with an approximately 2% percentage
difference in the worst case; ii) OC2 significantly
outperforms the rest of the tested SBCs; iii) for all devices,
performance degradation can be observed when the number
of concurrent instances exceeds four; however, the observed
performance degradation when the number of instances to
be managed exceeds four units is strictly related to the CPU
architecture of the tested devices. For all the devices
featuring a 4-core CPU, for four instances the CPU shares its
resources among the different instances in a fair and
effective manner. As the number of instances increases, the
CPU must schedule and share its resources differently
between the running instances, as four concurrent instances
already saturate the maximum CPU capacity. Consequently,
increasing the number of instances produces a gradual
performance degradation. As Fig. 5 shows, the execution
time doubles when the number of instances rises from four
to eight and doubles again from eight to sixteen instances,
revealing a linear increase. However, a different trend can be
observed for the OXU4 SBC, which embeds an 8-core CPU.
First, it must be clarified that if the OXU4 had an embedded
CPU with 8-cores characterized by the same CPU clock, we
would not have observed a performance degradation for
fewer than eight instances because the CPU would have had
enough resources to fairly manage all the virtualized
instances. However, as discussed earlier, the OXU4 features
a heterogeneous 8-core CPU in which the device begins
using the lower-speed cores only when the faster cores are
fully saturated. This CPU's architectural peculiarity produces
the effect of a higher execution time as soon as the group of
lower-speed cores begins working. In any case, in contrast to
the 4-core CPU devices, the execution time grows linearly
only when OXU4 is managing more than eight containers,
corresponding to the point at which the OXU4's CPU
resources are fully saturated.

From a power consumption perspective (Fig. 6), the
consumption of the Raspberry Pi boards, OC1+, and OC2
vary, ranging from 1.88W (RPi2) to 3.26W (OC2). This
variation range highlights the high energy efficiency of these
devices.

0
200
400
600
800

1000
1200
1400
1600
1800
2000

#1 #4 #8 #16

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Number of Instances

RPi2 Native RPi2 Docker
RPi3 Native RPi3 Docker
OC1+ Native OC1+ Docker
OC2 Native OC2 Docker
OXU4 Native OXU4 Docker

7http://manpages.ubuntu.com/manpages/wily/en/man1/sysbench.1.html

2169-3536 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2704444, IEEE Access

Fig. 6. Power consumption of the SBCs under evaluation while

performing the sysbench test.

However, there is clearly a performance/power
consumption tradeoff that varies from device to device. This
analysis will be discussed at a later stage. OXU4 consumes
more power consumption compared to the other tested
devices. Specifically, its power consumption increases
linearly from 7W to 14W as the number of containers varies
from one to four. This significant power consumption
variation is due to its use of the higher-speed core group. In
fact, it can be observed that the increase diminishes as soon
as the lower-speed cores start handling newly allocated
instances: this change occurs when the fifth container is
allocated. Another interesting aspect is that power
consumption becomes constant as soon as the number of
concurrent instances exceeds four for all the devices (with
the exception of OXU4, which exhibits such behavior at
more than eight instances). As discussed above, this trend
depends strictly on the CPU architecture. When the number
of running containers is greater than or equal to four (eight
for OXU4) the CPU works at its maximum capacity and its
resources are already saturated. Consequently, allocating
additional instances does not increase power consumption;
instead, such increases occur at the expense of performance
as shown in Figure 5.
 Linpack8 tests system performance using a simple linear
algebra problem. Specifically, this algorithm uses a random
matrix A (of size N), and a right-hand side vector B defined
as follows: A * X = B. Linpack provides the output result in
MegaFLOPS (Millions of Floating Point Operations Per
Second):

mflops = ops / (cpu * 1000000)
where ops denotes the number of operations per second
performed, and cpu denotes the number of CPU cycles. In
our evaluation, N was set to 1000.

Fig. 7 depicts the outcomes from the Linpack test.
Similar to the previous case, the Docker virtualization layer
introduces no relevant overhead.

Analysis of the results shows that the MFLOPS oscillate
around the same values regardless of the number of running
instances. A partial exception can be seen for OXU4, which
shows this trend only when the number of running
containers is larger than eight. Furthermore, in contrast with
the sysbench test results, no performance degradation can be
observed as the number of concurrent instances increases.
This is because a rating based on MFLOPS is strongly
dependent on and limited to the program being executed—

Linpack in this case. This specific test scenario shows that
even with a high number of concurrent instances, all the
devices can execute the Linpack test at the same efficiency
because they produce, on average, the same number of
MFLOPS. The reason for the initial OXU4 performance
deterioration is again attributable to its heterogeneous CPU
architecture. Indeed, on OXU4, the execution of the
benchmark test is initially allocated to the faster cores.
When the resources of the faster cores are saturated, the
lower-speed cores are activated to handle additional
instances but with a reduced MFLOP capacity. This
degrades the average performance. However, when the
number of running containers is greater than eight, the
MFLOPS oscillate around a constant value, as observed for
the rest of devices. It can also be observed that OXU4
outperforms all the other SBCs.
 With regard to power consumption, similar to the
sysbench test, power consumption remains constant once
four or more containers are in execution. However, the
tested devices differ in how the power consumption
increases from one to four instances. In particular, the
devices featuring an ARMv7 CPU (RPi2 and OC1+)
produce an increase of approximately 35%, while OC2 and
RPi3, which both feature ARMv8 CPUs, generate an
increase of roughly 50%. The CPU clock rate also
influences SBC power consumption. In fact, among the
ARMv8 devices, OC2 consumes an average of 1W more
than RPi3; while among the ARMv7 devices, OC1+ results
in a higher power consumption on the order of 0.9W.
Therefore, these results reveal ways in which CPU
architecture, CPU clock rate, and power consumption are
related.

Fig. 7. Linpack test results. Line chart represents the power consumption.

B. Memory Performance
To test RAM memory performance, we used the Unix

command mbw9, which determines the available memory
bandwidth by copying large arrays of data into memory.
We also performed three other tests (memcpy, dumb, and
mcblock).

Native and container performance can be considered
comparable for each tested device (Fig. 8) with the
exception of OXU4, which introduced an overhead of
around 16% during the memcpy and mcblock tests.
Comparing only the boards with 1 GB RAM, OC1+ always
outperformed RPi2. This probably occurred due to the
different RAM I/O Bus Clock frequencies and data transfer

0

2

4

6

8

10

12

14

16

#1 #4 #8 #16

Po
w

er
 C

on
su

m
pt

io
n

(W
at

ts
)

Number of Instances

RPi2 Native RPi2 Docker
RPi3 Native RPi3 Docker
OC1+ Native OC1+ Docker
OC2 Native OC2 Docker
OXU4 Native OXU4 Docker

0

5

10

15

20

25

0

50

100

150

200

250

300

350

400

#1 #4 #8 #16

Po
w

er
 C

on
su

m
pt

io
n

(W
at

ts
)

M
FL

O
PS

Number of Instances

RPi2 Native RPi2 Docker
RPi3 Native RPi3 Docker
OC1+ Native OC1+ Docker
OC2 Native OC2 Docker
OXU4 Native OXU4 Docker

8http://www.netlib.org/linpack/

9http://manpages.ubuntu.com/manpages/wily/en/man1/mbw.1.html

2169-3536 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2704444, IEEE Access

rates of the two devices (RPi2 uses LPDDR2 RAM, while
OC1+ uses LPDDR3 RAM). RPi3 performed better than
OC1+ on the memcpy and mcblock tests, but not on the
dumb test. When evaluating this latter result, it must be
considered that OC1+ has a faster data transfer rate (DDR)
than RPi3, which uses RAM memory with a higher Bus
Clock frequency. OC2 and OXU4 clearly produce higher
Average Speed results compared to the other boards. These
results can easily be explained by the larger RAM capacity
of both boards. Nevertheless, OXU4 outperforms OC2
during the memcpy and mcblock tests despite having the
same RAM hardware features. This result may be explained
by the fact that these two operations require data to move
over the system bus. The CPU may regulate data migration
over the system bus. Consequently, the greater CPU
computational resources of OXU4 compared to OC2 affect
this result. Another interesting aspect of the RAM
performance analysis comes from comparing OC1+ and
OC2. Although a significant performance difference exists
between the two boards (OC2 achieved roughly double the
average speed of OC1+) the power consumption of both
SBCs was approximately 3W.

Fig. 8. Memory RAM performance comparison. The red markers

represent power consumption.

Fig. 9. Disk I/O performance for sequential read/write tasks.

C. Disk I/O Performance
We used fio10 2.0.8 to run sequential read/write

instances for a 6 GB file stored on the MicroSD card.
Sysbench was used to test random read/write disk
operations with the embedded MultiMediaCard (eMMC).

Fig. 9 shows the sequential read and write performance
averaged over 60 seconds, using a typical 1 MB I/O block
size. Docker introduce negligible overhead in both tests for
all the tested SBCs. with the exception of the Raspberry Pi
boards, where the only significant overhead was introduced
during the sequential write test, amounting to nearly 50%
for RPi2 and approximately 37% for RPi3. We used the
disk performance analysis tool iostat11 to investigate the
reason behind these Raspberry Pi results. The iostat tool
can be used to monitor and report CPU statistics and system
I/O device loading. From an analysis of the iostat logs, we
noticed that the overhead may be caused by a high
percentage of iowait periods. According to its definition,
iowait indicates the percentage of time that the CPU is idle
while the system services an outstanding disk I/O request.
As explained in [45], a high iowait value indicates that the
system has an application problem, an inefficient I/O
subsystem configuration, or a memory shortage. The latter
is possibly the reason the aforementioned overhead occurs.
This disk stress test was performed with a high and
intensive workload; therefore, devices with lower resources
can experience issues in optimally scheduling disk-writing
operations. When managing smaller files, it is reasonable to
expect that such overhead would decrease, as was shown in
[6, 21].
As discussed earlier, Disk I/O evaluation was performed
using a MicroSD card as a storage device. However, unlike
the Raspberry Pi family, all the Odroid boards provide
integrated support for eMMC cards. This alternative storage
solution offers superior performance in terms of read/write
speed. We executed a random read/write benchmark test to
explore the higher capabilities of eMMC storage solutions.
The results are shown in Fig. 10, which shows that the
eMMC cards can reach disk speeds on the order of
hundreds of MBs per second—while for the MicroSD
cards, memory speed oscillates around a range of hundreds
of Mbs per second.

Fig. 10. Odroid boards eMMC performance test.

However, we note that disk performance is highly

dependent on the type of MicroSD card used. As
demonstrated in [46], above-average disk performance can
be achieved based on the type of MicroSD used.

0

2

4

6

8

0

500

1000

1500

2000

2500

N
at

iv
e

D
oc

ke
r

N
at

iv
e

D
oc

ke
r

N
at

iv
e

D
oc

ke
r

N
at

iv
e

D
oc

ke
r

N
at

iv
e

D
oc

ke
r

RPi2 RPi3 OC1+ OC2 OXU4

Po
w

er
 C

on
su

m
pt

io
n

(W
at

ts
)

Av
er

ag
e

Sp
ee

d
(M

iB
/s

) memcpy (MiB/s)
dumb (MiB/s)
mcblock (MiB/s)

10http://linux.die.net/man/1/fio

11http://sebastien.godard.pagesperso-orange.fr/man_iostat.html

2169-3536 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2704444, IEEE Access

D. Network Performance
The network configuration used for our test is shown in

Fig. 11. The Virtual NIC for all the running containers
shares the same network bridge, which in turn is mapped to
the physical Ethernet card. Each hardware platform
performs network operations (e.g., packet forwarding,
packet buffering, scheduling, etc.) dependent upon the
design and implementation of their different software
components (operating system, drivers, etc.), that could have
different performance impacts.

We used the tool iperf312 for the network performance
analysis. Iperf measures network performance between
hosts, generating bidirectional data transfers of both TCP
and UDP traffic.

Fig. 11. Network configuration setup.

Taking into account that the NIC uses different code
paths when sending and receiving TCP traffic, we
performed bidirectional tests to quantify the overhead
produced by the virtualization layer when the SBC is both
receiving and sending network traffic. On the tested SBCs,
both iperf server and iperf client inside one or multiple
Docker containers were executed.

Docker uses NAT as its default network configuration.
With the alternative configuration --net=host, Docker
uses the host interface directly, avoiding NAT. This
alternative configuration improves performance at the
expense of security.

In our previous work [6], we tested the --net=host
option for each experiment and found that this setup
eliminated any overhead, allowing the systems to achieve
nearly native performance. However, in this study we report
the results only with the NAT setup because that
configuration is most commonly used in real-world
environments.

For the TCP traffic analysis, to improve the readability
of the graphs, we discuss the performance of Raspberry Pi

and Odroid separately because they are characterized by a
different NIC speed.

Fig. 12. Raspberry Pi 2 and Raspberry Pi 3 network performance while

receiving TCP traffic. The line charts represent power consumption.

In the case of a TCP server (Fig. 12), the container
engine does not impact the throughput performance of RPi2
and RPi3 when executing a single network instance.
However, the overhead increases for the RPi2 according to
the number of concurrent running instances (for eight
simultaneous TCP flows, the overhead is approximately
30%).

Fig. 13. Raspberry Pi 2 and Raspberry Pi 3 network performance while

sending TCP traffic. The line charts represent power consumption.

A similar trend can be observed in Fig. 13, which
depicts the case when RPi2/RPi3 are acting as clients. A
throughput degradation of approximately 26% can be
observed when sending even four TCP flows.

0

0.5

1

1.5

2

2.5

3

0
10
20
30
40
50
60
70
80
90

100

#1 #2 #4 #8

Po
w

er
 C

on
su

m
pt

io
n

(W
at

ts
)

Th
ro

ug
hp

ut
 (M

bp
s)

Number of Instances

RPi2 Native RPi2 Docker
RPi3 Native RPi3 Docker
RPi2 Power Native RPi2 Power Docker
RPi3 Power Native RPi3 Power Docker

12https://iperf.fr/

2169-3536 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2704444, IEEE Access

The main findings of the TCP traffic analysis for the
Odroid boards (Fig. 14) are summarized below.
OC1+. For native execution, a substantial throughput
difference exists between the server (Fig. 14a) and client
(Fig. 14d) cases: the client throughput is approximately half
of the server throughput. This result occurs because of the
different send and receive code paths that the OS uses for
TCP traffic [29]. In terms of virtualization overhead, for the
TCP client case the containers do not introduce any relevant
impact; however, when OC1+ is receiving TCP traffic,
Docker introduces an overhead of approximately 50%
compared to native execution—for a single virtual instance.
However, the performance of OC1+ improves as the
number of instances increases. Such behavior is attributable
to the fact that a single TCP flow is unable to saturate a 1
Gb/s link, while a combination of multiple streams
overcomes this limitation [30].
OC2. The network performance of OC2 can be considered
the desired outcome: both native and Docker performances
are essentially the same (Fig. 14b–e). The only outlier can
be identified in Fig. 14e, which depicts the overhead
introduced by Docker when eight containers are
simultaneously sending TCP traffic. The measured
overhead is on the order of 10%. Such performance
degradation is attributable to the CPU overload generated
by managing eight concurrent virtualized streams. Fig. 14e
shows a substantial increase in CPU context switching and
cycles consumed compared to the native case.
OXU4. On average, the TCP server test shows that Docker
negligibly impacts performance compared with native
execution (Fig. 14c). Neverthless, the overall throughput
decreases (by up to 23%) as the number of simultaneous
connections increases. In contrast with OC1+, the
simultaneous presence of parallel streams does not saturate
the 1 Gb/s link; instead, it generates a performance
degradation due to the CPU overload produced by the

multi-stream flow—which is similar to the OC2 client case.
However, different from the OC2 case, we can observe
such results for both the native and virtualized cases. In the
TCP client test, the virtualization layer produces a
significant overhead ranging from 27% to 70% (Fig. 14f).
Unlike the server case, in this test, the performance
degradation affects only the virtualized instances.

For UDP traffic, we want to quantify the power
consumption of the different SBCs when handling the same
amount of sent/received traffic—90 Mb/s in our example.
As Fig. 15 shows, the power consumption differs slightly
from the idle power consumption reported in Table II,
which implies that the NIC generates extremely low
overhead when handling UDP traffic. Furthermore, no
tangible differences can be observed between the native and
Docker cases.

Fig. 15. Power consumption of the different SBC, when 90 Mb/s of UDP

traffic is sent/received.

The TCP network performance analysis showed the
existence of a non-negligible overhead introduced by
Docker for a subset of cases in some of the tested boards
(RPi2, OC1+, OXU4, and sin some cases, for OC2).
Furthermore, we observed how the performance differs
between servers and clients in such cases. To understand

0

1

2

3

4

5

6

RPi2 RPi3 OC1+ OC2 OXU4 RPi2 RPi3 OC1+ OC2 OXU4

Server Client

Po
w

er
 C

on
su

m
pt

io
n

(W
at

ts
) Native

Docker

 (a) (b) (c)

 (d) (e) (f)

Fig. 14. Odroid boards TCP traffic results. TCP Server: (a) OC1+, (b) OC2, (c) OXU4, TCP Client: (d) OC1+, (e) OC2, (f) OXU4.
The line charts represent power consumption.

2169-3536 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2704444, IEEE Access

the reasons behind these results, we used the Linux
hardware performance analysis tool Perf13 to collect
system-level statistics. This tool reveals how hard the CPU
works to deliver network traffic. As introduced in the result
discussion, by analyzing the Perf logs, we discovered that
the higher overhead generated in such SBCs is generated by
an increasing number of CPU context switches and
consumed cycles. This occurs because—in contrast to the
native case—network packets must be processed by extra
layers in a containerized environment. Another important
insight of this analysis is related to the better network
performance of both 64-bit CPU boards (RPi3 and OC2)
compared to the 32-bit CPU boards (RPi2, OC1+, and
OXU4). These results reflect the fact that Docker officially
supports only 64-bit CPU systems; consequently, it appears
to be better optimized for devices featuring 64-bit ARM
architectures than those with 32-bit architectures. Finally, it
must be pointed out that the inability to use the full capacity
of the NIC interface in the Odroid boards has also been
acknowledged by the manufacturer through similar
benchmark tests [31, 32].

From the power consumption perspective, we can draw
some general conclusions from the above results and
discussion that apply to all the tested devices. The devices'
power consumption follows the trend of the native network
throughput in every single case. An increase/decrease in
network throughput produces a consequent power
consumption increase/decrease; although the network
throughput variation is not as noticeable, this behavior can
be observed in Figs. 14a and 14f. Although this result is
expected, it is interesting to observe how the devices' power
consumption for the Docker case follows the same trend as
the native case. This occurs even when relevant overhead
introduced by the virtualization layer exists—again, this
trend is particularly noticeable in Figs. 14a and 14f. This
outcome represents a bottleneck: the devices cannot be as
efficient as in the native case, but at the same time they use
identical rates of power consumption. Therefore, this result
does not reflect a favorable tradeoff between performance
and power consumption. As explained previously, the
causes behind such bottlenecks are that the OS and/or a lack
of software optimization require too many CPU clock
cycles and overtax your system unexpectedly, which also
impacts the power consumption.
E. Mixed Load Performance

The performance evaluation presented in the previous
subsections was conducted using benchmark software tools
that stress a specific hardware segment of the device. This
represents a reasonable approach because it allows us to
define an upper bound for the performance of each portion
of the system hardware. However, real-world applications
challenge the hardware in a more distributed manner.
Therefore, we performed further tests to evaluate the impact
introduced by container technologies when the SBCs are
handling heterogeneous workloads. This evaluation was
conducted using the stress14 benchmark tool, which is a
workload generator that allocates a configurable amount of

load in the system in terms of CPU, memory, generic I/O,
and disk operations. We defined three different workloads
characterized by an increasing computational cost: (i) Low
Load, (ii) Average Load, and (iii) High Load. Table III
describes workload characteristics in more detail.

TABLE III. MIXED WORKLOAD CHARACTERIZATION

Workload Description

Low
A load average of two is imposed on the
system by specifying one CPU-bound process
and one memory allocation process.

Average

A load average of three is imposed on the
system by specifying one CPU-bound process,
one memory allocation process, and one disk-
bound process (50 MB).

High

A load average of four is imposed on the
system by specifying one CPU-bound process,
one memory allocation process, one disk-
bound process (50 MB), and one generic I/O
process.

For this set of tests, the metric that we want to monitor
is system load, which indicates the overall amount of
computational work that a system performs and includes all
the processes or threads waiting on I/O, networking,
database, etc. [22]. The average load represents the average
system load over a period of time. In the evaluation, the
time interval was set to 300 seconds. The aim of this
evaluation was twofold. First, it allowed us further assess
the impact of virtualization when executing applications
characterized by heterogeneous characteristics.
Furthermore, it allowed us to quantify the difference
between the average system load of the different SBCs
when assigned the same workload. The aforementioned
metric can be collected by means of Unix tools such as
dstat15. Fig. 16 shows the 1-min average system load for the
Odroid boards and RPi3. Various insights can be drawn
from these results. First, for all the different workloads,
native and Docker executions behave comparably. These
results represent an important outcome: they confirm the
lightweight characteristics of container technologies even
when the SBC is handling mixed workloads. This result
was confirmed when the system was assigned a High
workload, which was defined to heavily challenge the
system. A comparison of the different devices reveals that
RPi3 produces the highest system load when compared to
the Odroid boards.

15http://dag.wiee.rs/home-made/dstat/

13https://perf.wiki.kernel.org/index.php/Main_Page/
14http://people.seas.harvard.edu/~apw/stress/

2169-3536 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2704444, IEEE Access

Fig. 16. Average system load (1-min) for three different heterogenous

workloads.

Fig. 17. SBC power consumption when executing the Low and High

mixed workloads.

The difference increases with the workload complexity.
Compared to the Odroid boards, RPi3 introduces a higher
average system load. This increase is approximately 40%
for the low and average workloads, and approximately 45%
for a high workload. Fig. 17 shows the power consumption
increase for the low and high workloads. The highest rise is
produced by OXU4, on the order of 18%. For OC1+ and
OC2, the increase is approximately 14%, although the base
power consumption is higher in OC2 (which consumes
roughly 1 W more than OC1+). In addition, the RPi3
generates a power consumption increase on the order of
17% when handling extremely different workloads.

F. Energy Efficiency Evaluation

In the preceding subsections, we used the term “power
consumption” to indicate the device’s average power
consumption while handling a specific workload. In this
section, we want to evaluate the energy efficiency of the
tested hardware to assess which SBC is the most energy
efficient.

In this context, energy consumption can be defined as
the power consumption of a device over time:

energy = power∫ dt [Joule] (1)

To determine the energy of an SBC, we must consider
the amount of computational work the SBC performs when
executing a particular task. The computational work varies

according to the hardware segment analyzed and the
benchmark tool used to characterize its performance.

Table IV summarizes all the performance metrics used
in our empirical investigation.

TABLE IV. BENCHMARK METRICS SUMMARY

Hardware Benchmark Tool Performance Metric

CPU sysbench # of events/seconds
linpack MFLOPS

Memory mbw MiB/s
stream MB/s

Disk I/O fio, sysbench Mb/s
Network iperf3 Mb/s

Similar to [17], regardless of the considered metric and the
particular test, we can conventionally and indistinctly
define transactions per time
unit as the number of transactions per second (tps):

n tps=
p

m

transaction

second
 (2)

Also, as stated in [17], “Because of the transactions’
dependency on the specific application scenario, only
results from the same benchmark are comparable. Such
performance figures must always be qualified by the
respective benchmark.”

In our context, the energy efficiency expresses how
efficiently an SBC completes a specific task using a certain
amount of energy. Energy efficiency can be defined as
follows:

energy efficiency =
number of transactions

energy consumption
 (3)

It can also be defined as the amount of work done per time
unit given a certain amount of power:

energy efficiency =
tps

Watts
 (4)

Based on the above definition, the higher the energy
efficiency is, the better an SBC transforms electricity into
effective computation.

Fig. 18 depicts the energy efficiency of the different
SBCs. The graphs show the percentage difference with
respect to the SBC that performs most efficiently on each
test, from an energy perspective.

To improve the readability of the graph, we consider
only native performance because we have already
empirically demonstrated that containers introduce no
significant overhead for most tests.

The following insights were revealed from this analysis.
(i) CPU. SBC efficiency changes as the number of

concurrent instances increases. The behavior of the
OXU4 board is particularly interesting; it the most
efficient SBC when a single instance is running but the
least efficient when processing eight simultaneous
instances (Fig. 18a).

(ii) Memory. The results of the memory stress (Fig. 18b)
show that OC2+ is the most energy efficient board
regardless of the benchmark tool used (stress or mbw);

0

1

2

3

4

5

6

7

OC1+ OC2 OXU4 RPi3

Av
er

ag
e

Sy
st

em
 L

oa
d

Native Low Docker Low
Native Average Docker Average
Native High Docker High

0

1

2

3

4

5

6

7

8

9

10

OC1+ OC2 OXU4 RPi3

Po
w

er
 C

on
su

m
pt

io
n

(W
at

ts
) Native Low

Docker Low
Native High
Docker High

2169-3536 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2704444, IEEE Access

the other SBCs behave differently depending on the
software used to perform the test.

(iii) Disk I/O. Similar to the memory case, the energy
efficiency also varies in the disk I/O analysis based on
the type of operation performed by the device (Fig.
18c). OC2 is the most efficient for sequential read
operations, while RPi2 is the most efficient for
sequential write operations.

(iv) Network. The results of the TCP network performance
analysis were similar for most of the SBCs (RPi2,
RPi3, and OXU4). Particularly interesting is that, in
contrast to the TCP client test (Fig. 18d), OC1+
outperforms all the other boards in the TCP server
evaluation (Fig. 18e). Finally, the UDP evaluation
shows that the Raspberry boards are more efficient
when compared to the Odroid boards (Fig. 18f). This
result is expected based on the analysis discussed in the
previous subsection.
Fig. 19 shows the energy efficiency results of the mixed

workload performance analysis. OC1+ performs best
because it considers the tradeoff between managing
heterogeneous workloads and power consumption.
However, the other boards also guarantee a medium-high
level of efficiency.

Fig. 19. SBC energy efficiency when executing the Mixed Load Test

(Low and High workload configurations).

G. Container Activation Time Analysis
We also evaluated the variation in a container’s

activation time when the SBC is managing a workload that
gradually becomes more complex. Activation time
represents an issue for heavier types of system
virtualization (i.e., Virtual Machines) on a server because
booting a VM can require minutes depending on the server
load. Container activation time was evaluated for server
machines in [23]; however, a full characterization of
container activation time on low-power nodes is lacking.

For this evaluation, we used stress to allocate
increasing loads to the different systems. We tested the
activation time in four different cases: when the SBCs are
in idle state and then when two, four, or eight CPU-bound
processes are imposed on the system. Fig. 20 shows the
results of this evaluation. The RPi3 is the device that
maintains the activation time within a very short range—on
average between 1300 ms and 1400 ms—even when
handling heavier workloads. The Odroid boards showed no
relevant difference between idle and the stress -c 2
case.

Fig. 20. Container activation time for OC1+, OC2, OXU4, and RPi3 under

different workloads.

However, heavier workloads impact the activation time of
the different Odroids differently. The percentage increase

0

500

1000

1500

2000

2500

3000

3500

4000

4500

OC1+ OC2 OXU4 RPi3

A
ct

iv
at

io
n

Ti
m

e
(m

s)

Idle
Stress -c 2
Stress -c 4
Stress -c 8

 (a) (b) (c)

 (d) (e) (f)

Fig. 18. Energy Efficiency Results: (a) CPU, (b) Memory, (c) Disk I/O. Network I/O: (d) TCP Client, (e) TCP Server, (f) UDP.

2169-3536 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2704444, IEEE Access

between the idle and the stress -c 8 case is 20% for
the OC1+, 61.57% for the OC2, and 181% for the OXU4.
The OXU4 SBC substantially increases the activation time
as the complexity of its workload increases. This result is
consistent with the energy efficiency analysis, which
showed the lower efficiency of OXU4 when managing
heavy workloads and/or several concurrent instances.
However, considering all the available results, container
activation time remains below 2000 ms in most cases. This
represents a significant result if we consider the reduced
hardware capabilities of SBCs. Moreover that activation
time can be further reduced through alternative container-
engine setups [23].

H. Board temperature measurements
The temperatures reached by each SBC during the

execution of the different benchmark tests is another
interesting parameter that deserves to be analyzed.
Temperature can be relevant in scenarios where SBCs are
used on a large scale such as replacing server machines
with SBC clusters, which can provide a better energy
efficiency/monetary cost tradeoff as demonstrated in [24,
25]. Here, we want to estimate the maximum temperature
reached by the different devices, which can help when
designing efficient cooling systems for clusters of SBCs.
The vcgencmd measure_temp command returns the
CPU temperature of the Raspberry Pi, while the CPU
temperature of the Odroid boards can be accessed using the
command line
/sys/devices/virtual/thermal/temp.

It is worth mentioning that, by default, RPi2 and RPi3
are passively cooled boards that do not include any heat
sink or fan, while the Odroid boards require auxiliary
components to ensure an effective cooling system. The
processors on the OC1+ and OC2 boards have a relatively
small area to dissipate heat. Therefore, both boards use a
heat sink to improve heat dissipation. The OXU4 uses a
software-controlled fan in addition to the heat sink. . Table
V shows the temperature of each SBC when in an idle state.

TABLE V. BOARD TEMPERATURE AT IDLE

Device Temperature (°C)
RPi2 36
RPi3 51
OC1+ 70
OC2 54

OXU4 60

As in the previous subsection, we show only a subset of
the full results (Fig. 21). The CPU analysis allows us to
understand how the temperature increases as the number of
concurrent virtualized instances (denoted by CPU #1 and
CPU #8) increases. The RPi3 exhibits the highest
temperature increase—approximately 25%. The
temperature increase for the Odroid boards varies between
15% for OC1+ and OC2 to 19% for OXU4, and the RPi2
exhibits the same behavior. In the Memory I/O test, we
included the results of both mbw and stream tests to
determine whether any connection exists between
temperature increases and the use of different benchmark
tools. Regardless of the memory benchmark tool used, the
boards’ temperatures are roughly equivalent. The same
logic applies to both the disk I/O and network analysis. For
the former, we wanted to detect any potential difference
between read and write disk operations and for the latter,
we wanted to detect any potential differences when the
devices were sending or receiving TCP traffic.

VI. CONCLUSIONS
The main goal of this paper was to conduct an extensive

performance evaluation to assess the feasibility of running
virtualized instances on a broad range of low-power nodes
such as SBCs. The motivation behind this study lies in the
increasing employment of such devices in specific Edge-
IoT scenarios.

Our in-depth analysis of the empirical characteristics of
SBCs generated fundamental insights about the
performance of such devices, including the following:

 Employing container-virtualization technologies on
SBCs produces an almost negligible impact in terms of
performance when compared to native executions. This
result remains valid even when running several
virtualized instances simultaneously.

 By considering the tradeoff between performance and
power consumption (energy efficiency) under a wide set

Fig. 21. Maximum temperatures reached by the SBCs when executing different computing tasks.

2169-3536 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2704444, IEEE Access

of workloads, we empirically demonstrated the energy
efficiency of the SBCs. Energy efficiency represents a
crucial aspect in scenarios in which the devices are
battery powered. Indeed, from our study is possible to
estimate the battery duration of a device based on
expected workload characteristics.

 Overall, the Odroid C2 outperforms all the other tested
devices in most of the performance tests.

 The Odroid boards can efficiently manage data-
intensive applications (e.g., Big Data applications)
thanks to their support for eMMC cards, which improve
performance considerably compared to MicroSD.

 The Odroid C2 and the Odroid XU4 are the most
suitable boards for executing memory-intensive
applications, thanks to their higher RAM capacities.

 In general, the network performance analysis showed
that 64-bit CPU devices do not introduce any tangible
overhead compared to 32-bit CPU devices.

 Raspberry Pi boards are highly efficient when handling
low volumes of network traffic—especially UDP traffic.
This result can be useful in creating efficient IoT
gateway designs that are specifically intended for
executing lightweight IoT applications, e.g., the
Constrained Application Protocol (CoAP) and Message
Queuing Telemetry Transport (MQTT) protocols.

 By considering the limited resources of SBCs compared
to server machines, we showed that the container
activation time required by SBCs remains relatively
small even when the SBCs are overloaded.

 The maximum temperatures reached by the various
tested boards varies depending on the applied workload.

The choice of one device rather than another may vary
based on the different requirements of service providers and
applications. Therefore, the empirical insights achieved by
this study can aid in efficiently designing integrations of the
analyzed devices in different scenarios according to specific
requirements of different Edge-IoT applications.

For the sake of completeness, it is worth highlighting
that although our study has shown how container-based
virtualization can represent an efficient and promising way
to enhance the features of IoT architectures, several aspects
still deserve further investigation, especially studies that
improve our understanding of where this technology can be
applied most efficiently. As an example, referring to the
works mentioned in Section II, the advantages that accrue
from executing containerized applications on IoT/Edge
gateways are clear. However, there is still a lack of research
to evaluate the interactions among multiple gateways while
considering that Docker does not currently fully provide
support to perform live container migrations between
different entities. Furthermore, in such more complex
scenarios, whether the strict requirements of many IoT
applications can still be preserved should also be
investigated.

The mobility of edge entities in several IoT/Edge use
cases is another aspect that should be considered. Such
scenarios introduce even more strict requirements in terms

of latency. In [33], Farris et al. proposed an approach for
provisioning ultra-short latency applications in MEC
environments by exploiting the potential of container
technologies. The proposed framework supports proactive
service migrations only for stateless applications. The
authors included a set of challenges that future research
needs to address. Examples are support for stateful
applications, a problem closely related to the lack of full
support for live container migration, and defining specific
policies aimed at optimizing container management.

Many concerns have been expressed about the level of
security guaranteed by applications developed within
containers [34]. One of the main concerns was due to the
lack of namespace isolation, which made dockerized
applications more vulnerable. The latest released versions
of Docker include several security enhancements to cope
with these issues [36]. Nonetheless, Docker continuously
provides detailed guidelines for developing safer Docker
ecosystems [37, 38]. A further effort to ensure better
security in dockerized systems is represented by the
collaboration between Docker and the Center for Internet
Security, which has led to the release of the Docker Security
Benchmark, a developer’s tool that can check for a wide
variety of known security issues within virtualized
applications [39].

Referring specifically to IoT contexts, it is crucial to
encourage the development of more specific security
mechanisms that consider the strict requirements of IoT
applications/scenarios but do not impair the lightweight
features of container-based technologies. From this point of
view, several Linux-Docker-based frameworks have
already been proposed as solutions that can enhance IoT
security [35].

ACKNOWLEDGMENTS
This work is partially funded by the FP7 Marie Curie

Initial Training Network (ITN) METRICS project (grant
agreement No. 607728). The author would like to thank
Nicklas Beijar for his helpful feedback, and the reviewers
for their insightful comments on the paper, as these
comments led to an improvement of the work.

REFERENCES
[1] Patel, M., et al. "Mobile-Edge Computing Introductory Technical

White Paper."White Paper, Mobile-edge Computing (MEC) industry
initiative (2014).

[2] Bonomi, Flavio, et al. "Fog computing and its role in the internet of
things."Proceedings of the first edition of the MCC workshop on
Mobile cloud computing. ACM, 2012.

[3] Coady, Yvonne, et al. "Distributed cloud computing: Applications,
status quo, and challenges." ACM SIGCOMM Computer
Communication Review 45.2 (2015): 38-43.

[4] B. I. Ismail et al., "Evaluation of Docker as Edge computing
platform," Open Systems (ICOS), 2015 IEEE Confernece on, Melaka,
2015, pp. 130-135.

[5] Petrolo, Riccardo, et al. "The design of the gateway for the Cloud of
Things."Annals of Telecommunications (2016): 1-10.

[6] R. Morabito, N. Beijar " Enabling Data Processing at the Network
Edge through Lightweight Virtualization Technologies," To appear
in Sensing, Communication, and Networking - Workshops (SECON
Workshops), 2016 13th Annual IEEE International Conference on,
London, 2016.

2169-3536 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2704444, IEEE Access

[7] Novo Oscar, et al. "Capillary Networks – Bridging the Cellular and
IoT Worlds". Internet of Things (WF-IoT), 2015 IEEE World Forum
on. IEEE, 2015.

[8] Celesti, Antonio, et al. "Exploring Container Virtualization in IoT
Clouds." 2016 IEEE International Conference on Smart Computing
(SMARTCOMP). IEEE, 2016.

[9] Krylovskiy, Alexandr. "Internet of Things gateways meet linux
containers: Performance evaluation and discussion." Internet of
Things (WF-IoT), 2015 IEEE 2nd World Forum on. IEEE, 2015.

[10] Satyanarayanan, Mahadev, et al. "The case for vm-based cloudlets in
mobile computing." IEEE pervasive Computing 8.4 (2009): 14-23.

[11] H. Freeman and T. Zhang, "The emerging era of fog computing and
networking [The President's Page]," in IEEE Communications
Magazine, vol. 54, no. 6, pp. 4-5, June 2016.

[12] Chang, Hyunseok, et al. "Bringing the cloud to the edge." Computer
Communications Workshops (INFOCOM WKSHPS), 2014 IEEE
Conference on. IEEE, 2014.

[13] Byers, Charles C., and Patrick Wetterwald. "Fog Computing
Distributing Data and Intelligence for Resiliency and Scale
Necessary for IoT: The Internet of Things (Ubiquity symposium)."
Ubiquity 2015.November (2015): 4.

[14] Roberto Morabito, Jimmy Kjällman, and Miika Komu. "Hypervisors
vs. Lightweight Virtualization: a Performance Comparison." Cloud
Engineering (IC2E), 2015 IEEE International Conference on. IEEE,
2015.

[15] Kaup Fabian,et al. "PowerPi: Measuring and modeling the power
consumption of the Raspberry Pi." Local Computer Networks (LCN),
2014 IEEE 39th Conference on. IEEE, 2014.

[16] C. Xu; Z. Zhao; H. Wang; R. Shea; J. Liu, "Energy Efficiency of
Cloud Virtual Machines: From Traffic Pattern and CPU Affinity
Perspectives," in IEEE Systems Journal , vol.PP, no.99, pp.1-11

[17] Schall, Daniel, Volker Hoefner, and Manuel Kern. "Towards an
enhanced benchmark advocating energy-efficient
systems." Technology Conference on Performance Evaluation and
Benchmarking. Springer Berlin Heidelberg, 2011.

[18] Smith, Brad. "ARM and Intel battle over the mobile chip's
future." Computer41.5 (2008): 15-18.

[19] Rajovic, Nikola, et al. "Tibidabo: Making the case for an ARM-based
HPC system." Future Generation Computer Systems 36 (2014): 322-
334.

[20] PicoCluster is Big Data in A Tiny Cube. [Online]. Available at:
https://www.picocluster.com/, last accessed 09/July/2016

[21] R. Morabito, "A performance evaluation of container technologies on
Internet of Things devices," 2016 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), San Francisco,
CA, USA, 2016, pp. 999-1000.

[22] R. Walker, “Examining load average,” Linux Journal, vol. 2006, no.
152, p. 5, 2006.

[23] Harter, Tyler, et al. "Slacker: fast distribution with lazy docker
containers." 14th USENIX Conference on File and Storage
Technologies (FAST 16). 2016.

[24] Tso, Fung Po, et al. "The glasgow raspberry pi cloud: A scale model
for cloud computing infrastructures." 2013 IEEE 33rd International
Conference on Distributed Computing Systems Workshops. IEEE,
2013.

[25] Pahl, Claus, et al. "A container-based edge cloud PaaS architecture
based on Raspberry Pi clusters." Future Internet of Things and Cloud
Workshops (FiCloudW), IEEE International Conference on. IEEE,
2016.

[26] Bellavista, Paolo, and Alessandro Zanni. "Feasibility of Fog
Computing Deployment based on Docker Containerization over
RaspberryPi." Proceedings of the 18th International Conference on
Distributed Computing and Networking. ACM, 2017.

[27] Hajji, Wajdi, and Fung Po Tso. "Understanding the Performance of
Low Power Raspberry Pi Cloud for Big Data." Electronics 5.2
(2016): 29.

[28] R. Morabito, "Inspecting the Performance of Low-Power Nodes
during the Execution of Edge Computing Tasks," 2017 IEEE
Consumer Communications and Networking Conference (CCNC),
Las Vegas, NV, 2017, pp. 148-153.

[29] Felter, Wes, et al. "An updated performance comparison of virtual
machines and linux containers." Performance Analysis of Systems
and Software (ISPASS), 2015 IEEE International Symposium on.
IEEE, 2015.

[30] Leitao, Breno Henrique. "Tuning 10Gb network cards on
Linux." Proceedings of the 2009 Linux Symposium. 2009.

[31] Odroid C1. [Online]. Available at:
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G
141578608433, last accessed 11/Mar/2017.

[32] Odroid XU4. [Online]. Available at:
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G
143452239825, last accessed 11/Mar/2017.

[33] Farris, I., et al. "Providing ultra�short latency to user�centric 5G
applications at the mobile network edge." Transactions on Emerging
Telecommunications Technologies (2017).

[34] Security Risks and Benefits of Docker Applications Containers.
[Online]. Available at: https://zeltser.com/security-risks-and-
benefits-of-docker-application/, last accessed 17/Mar/2017.

[35] The Future of IoT: Containers Aim to Solve Security Crisis.
[Online]. Available at: https://www.linux.com/news/future-iot-
containers-aim-solve-security-crisis, last accessed 17/Mar/2017.

[36] DOCKER ENGINE 1.10 SECURITY IMPROVEMENTS. [Online].
Available at: https://blog.docker.com/2016/02/docker-engine-1-10-
security/, last accessed 21/Mar/2017.

[37] Introduction to Container Security – Understanding the isolation
properties of Docker. [Online]. Available at:
https://www.docker.com/sites/default/files/WP_IntrotoContainerSecu
rity_08.19.2016.pdf, last accessed 21/Mar/2017.

[38] Docker security. [Online]. Available at:
https://docs.docker.com/engine/security/security/, last accessed
21/Mar/2017.

[39] CIS Docker 1.12.0 Benchmark. [Online]. Available at:
https://benchmarks.cisecurity.org/tools2/docker/CIS_Docker_1.12.0_
Benchmark_v1.0.0.pdf, last accessed 21/Mar/2017.

[40] Morabito, Roberto, et al. "Enabling a lightweight Edge Gateway-as-
a-Service for the Internet of Things." Network of the Future (NOF),
2016 7th International Conference on the. IEEE, 2016.

[41] Aziz, Azrina Abd, et al. "A survey on distributed topology control
techniques for extending the lifetime of battery powered wireless
sensor networks." IEEE communications surveys & tutorials 15.1
(2013): 121-144.

[42] ETSI, “Technical report 103 055,” Technical report, 2011. [Online].
Available at:
http://www.etsi.org/deliver/etsi_tr/103000_103099/103055/01.01.01
_60/tr_103055v010101p.pdf, last accessed 24/Mar/2017.

[43] Al-Fuqaha, Ala, et al. "Internet of things: A survey on enabling
technologies, protocols, and applications." IEEE Communications
Surveys & Tutorials 17.4 (2015): 2347-2376.

[44] Chen, Shanzhi, et al. "A vision of IoT: Applications, challenges, and
opportunities with china perspective." IEEE Internet of Things
journal 1.4 (2014): 349-359.

[45] Summary for moitoring disk I/O. [Online]. Available at:
https://www.ibm.com/support/knowledgecenter/en/ssw_aix_71/com.i
bm.aix.performance/summ_mon_disk_io.htm, last accessed
18/Feb/2017.

[46] microSD Card Benchmarks. [Online]. Available at:
https://www.pidramble.com/wiki/benchmarks/microsd-cards, last
accessed 21/Feb/2017

