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Abstract— Lightweight virtualization technologies have 
revolutionized the world of software development by 
introducing flexibility and innovation to this domain. 
Although the benefits introduced by these emerging solutions 
have been widely acknowledged in cloud computing, recent 
advances have led to the spread of such technologies in 
different contexts. As an example, the Internet of Things (IoT) 
and Mobile Edge Computing (MEC) benefit from container-
virtualization by exploiting the possibility of using these 
technologies not only in data centers but also on devices, which 
are characterized by fewer computational resources such as 
single-board computers. This has led to a growing trend to 
more efficiently redesign the critical components of IoT/Edge 
scenarios (e.g., gateways) to enable the concept of device 
virtualization. The possibility for efficiently deploying 
virtualized instances on single-board computers has already 
been addressed in recent studies; however, these studies 
considered only a limited number of devices and omitted 
important performance metrics from their empirical 
assessments. This paper seeks to fill this gap and to provide 
insights for future deployments through a comprehensive 
performance evaluation that aims to show the strengths and 
weaknesses of several low-power devices when handling 
container-virtualized instances. 

Index Terms—Internet of Things; Edge Computing; 
Container Virtualization; Docker; Performance Evaluation. 

I. INTRODUCTION 

 Over the last decade, the approach used to enhance the 
network efficiency and cope with the increasing number of 
connected devices to the Internet has been to move 
computation, control, and data storage into the cloud [11]. 
However, cloud computing now faces several challenges to 
meet the more stringent performance requirements of many 
application services, especially in terms of latency and 
bandwidth. Edge computing is an emerging paradigm that 
aims to increase infrastructure efficiency by delivering low-
latency, bandwidth-efficient and resilient end-user services 
[12]. This edge cloud is not intended to replace centralized 
cloud-based infrastructure in its entirety, but rather to 
complement it by increasing the computing and storage 
resources available on the edge by adopting platforms that 
provide intermediate layers of computation, networking, and 
storage [13].  

Especially in Internet of Things (IoT) scenarios, several 
edge processing tasks must be performed at the network 
edge on hardware characterized by processing, memory, 
and storage capabilities lower than is typical of server 
machines [7]. As an example, a Single-Board Computer 
(SBC) or comparable devices such as Micro-Servers can 
contain suitable hardware for performing such operations 
[28].  

However, because of the limited computational 
capabilities of such devices, it is not always possible to 
deploy processing operations at the network edge. In this 
case, data centers are necessary to manage heavier 
computational requirements. Considering the heterogeneity 
of the entire scenario, there may be divergence (e.g., in 
terms of CPU architecture) between the various nodes 
involved. Simultaneously, however, the same software may 
need to be deployed at either the edge or in the data center. 
One way to ensure that data centers and constrained edge 
entities execute complementary software arises from the 
possibility of using lightweight virtualization 
technologies—in particular, containers. Container 
virtualization allows hardware resources to be decoupled 
from software, enabling packaged software to execute on 
multiple hardware architectures. Compared to alternative 
virtualization solutions such as hypervisors, container 
technologies provide several benefits such as rapid 
construction, instantiation, and initialization of virtualized 
instances. In addition, systems that rely on containers 
benefit from higher application/services allocations because 
of the smaller dimensions of the virtual images [14]. These 
container features are well-matched to the requirements of 
IoT/Edge scenarios. 

Previous works have demonstrated the feasibility of 
using container technologies on IoT resource-constrained 
devices [6, 21]. However, the number of devices tested thus 
far has been extremely limited. For example, only the older 
version of the Raspberry Pi board has been considered as a 
suitable device. Furthermore, important performance 
metrics such as power consumption and energy efficiency 
have not been considered in previous analyses. 

By investigating the performance of container 
virtualization on a wide set of low-power edge devices for 
the IoT, the objective of this paper is to provide insights for 
optimally using SBCs during the execution of virtualized 
instances. We adopt an empirical approach to quantify the 
overhead introduced by the virtualization layer under 
computing-intensive scenarios and networking-intensive 
traffic. Additionally, power consumption, energy 
efficiency, and device temperatures are considered in our 
analysis. 
 The remainder of this paper is organized as follows. 
Section II lists the related work. Section III provides 
background information about the hardware and software 
technologies employed in our study. Section IV gives a 
detailed description of the methodology and experimental 
setup used to carry out the empirical investigation. In 
Section V, we evaluate the impact of using container 
virtualization on top of different SBCs by taking various 
aspects into consideration. Section VI concludes the paper 
and provides final remarks. 
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II. RELATED WORK 
The current literature includes several proposals for 

solutions in which virtualization technologies are employed 
at the network edge and/or on low-power nodes such as 
SBCs. However, Raspberry Pi is usually the only SBC 
considered for such deployments. Bukhary et al. in [4] 
evaluated Docker containers as an enabling technology for 
deploying an edge computing platform. The authors 
evaluated the technology in terms of (i) deployment and 
termination of services, (ii) resource and service 
management, (iii) fault tolerance, and (iv) caching 
capabilities, concluding that Docker represents a good 
solution for use in edge computing contexts. The authors of 
[5] and [6] included lightweight virtualization technologies 
in the design of an IoT gateway. Petrolo et al. [5] employed 
virtualized software to provide a dense deployment of 
services at the gateway level. Particularly interesting is their 
analysis of the possible interactions between IoT sensors 
and gateways. Such analysis suggests how the dynamic 
allocation of services, by means of containers, provides 
several benefits from a gateway performance perspective. 
In our previous work [6], we proposed a design for an IoT 
gateway that can also be efficiently employed in edge 
computing architectures. In that study, we showed how to 
efficiently and flexibly use Docker containers to customize 
an IoT platform that offers several virtualized services such 
as (i) Device Management capabilities, (ii) Software 
Defined Networking (SDN) support, and (iii) Orchestration 
and Data Management capabilities. In [7], container 
technologies were also used in a Capillary Network 
scenario. This study used Docker containers for packaging, 
deployment, and execution of software both in the cloud 
and in more constrained environments such as local 
capillary gateways. The dual purpose of these latter entities 
is to provide connectivity between short-range and cellular 
networks and to make different software components 
available for local device management and instantiation of 
distributed cloud processes. In [8] container-based 
virtualization and SBCs were identified as enabling 
technologies to enhance the provisioning of IoT Cloud 
services. Krylovskiy identified and analyzed the 
requirements for efficiently designing IoT gateways in [9]. 
The author considered the Docker containers to be suitable 
technology for meeting such requirements. In that study, 
several synthetic and application benchmarks were used to 
quantify the overhead introduced by the virtualization layer. 
However, the study's performance analysis was limited; it 
considered only the Raspberry Pi board. Furthermore, it 
lacked a comprehensive power consumption and energy 
efficiency evaluation. The cloudlet architecture proposed by 
the Carnegie-Mellon university [10], which represents an 
efficient approach for mobile-cloud computation can also 
be considered as linked to our work. Unlike the previous 
studies the granularity for virtualized instances was Virtual 
Machines (VMs). In [25], the authors proposed a 
Container-based Edge Cloud PaaS Architecture based on 
Raspberry Pi clusters, in which container technologies are 
used to favor migrating toward edge cloud architectures. 
The authors claim that the deployment of the Raspberry Pi 

clusters represents an enabling hardware technology to 
ensure important requirements such as cost-efficiency and 
low power consumption. However, this work lacked an 
empirical investigation to support its claims. Only the 
Raspberry Pi was considered for the edge cluster 
deployment; other hardware alternatives were not 
considered. Similarly, [26] used Docker containers and 
Raspberry Pi to leverage the deployment of a framework 
for Fog Computing networks. In addition, the evaluation of 
the overhead introduced by containers in SBC was limited 
when assessing the impact of different file-system 
configurations on disk performance. Specifically, Docker 
container performances were compared with native 
executions, and the study provided estimates of the 
overhead and delays introduced by different file systems 
(AUFS, Device mapper, and OverlayFS). Finally, in [27], 
Hajji et al. presented a detailed performance evaluation to 
understand the performance of a Raspberry Pi cloud when 
handling big data applications packaged through Docker 
containers. 

Before moving on to the next section, we provide a brief 
overview on the real-world state of modern IoT 
applications. This overview can help readers understand—
in conjunction with the empirical discussion that follows in 
this paper—what kinds of applications will perform better 
in the SBCs tested here; it is based on application 
performance requirements such as low energy consumption, 
high CPU and/or RAM performance, many simultaneous 
tasks, high-speed data connections, and so forth. 

The IoT encompasses several domains including E-
health, Intelligent Transport Systems (ITS), Smart Cities, 
Smart Homes, Smart Industries, etc. [42, 43, 44]. The 
applications in these categories give rise to a considerable 
number of use cases, and their performance requirements 
vary from case to case as do the ways such applications 
interact with IoT/Edge gateways. Indeed, the number of 
interactions between an IoT device and a gateway can vary 
significantly. Some types of sensors provide measured 
values to the gateway periodically (e.g., once per hour), as 
in, for example, environment sensing, location sensing, and 
location info sharing use cases [44]. The applications used 
in the gateway to handle such scenarios must be particularly 
efficient in terms of disk I/O responsiveness. In contrast, 
other types of devices such as sensors with cameras, may 
continuously generate significant amounts of data—e.g., for 
remote control use cases. For this second group of sensors, 
the gateway operations required are rather different 
compared to the first group. For example, video 
applications usually demand high CPU processing and 
network bandwidth. Furthermore, video data might be 
characterized by a high degree of redundancy. Data 
compression applications, which are particularly 
challenging in terms of CPU and memory, can be employed 
in the gateway to reduce the amount of data that must be 
transmitted over the uplink from the gateway to the cloud 
[6]. 

The energy efficiency of key IoT/Edge entities is 
particularly crucial for battery-powered wireless sensor 
networks [41]. From this viewpoint, understanding which 
SBCs ensure the best performance/energy efficiency 
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tradeoff facilitates the design of such constrained networks. 
By considering a wide set of workloads, knowledge of the 
boards’ energy efficiencies can help in estimating the 
energy lifetime of battery-powered nodes, and help SBCs 
offer support for cases where they must be battery powered. 

Finally, recent works have revealed a growing trend 
toward designing gateways shared between different tenants 
[40]. In many cases, the container is the technology used to 
ensure isolation between different users. This represents a 
scenario in which there is a need to understand how 
IoT/Edge entities behave when receiving simultaneous 
virtualized instances and heterogeneous workloads. 

III. ENABLING TECHNOLOGIES 
In this section, we provide an overview of the different 

technologies involved in our study. 

A. Container Virtualization Technology 
Compared to hypervisors, container-based virtualization 

provides different abstraction levels regarding virtualization 
and isolation. Hypervisors virtualize hardware and device 
drivers, generating a higher overhead. In contrast, 
containers avoid such overhead by implementing process 
isolation at the operating system level [14]. A single 
container instance combines the application with all its 
dependencies; it runs as an isolated process in user space on 
the host operating system (OS), while the OS kernel is 
shared among all the containers (Fig. 1). The lack of the 
need for hardware/driver virtualization, together with the 
shared kernel feature, provide the ability to achieve a 
higher virtualized instance density because the resulting 
disk images are smaller. In our performance evaluation, we 
used Docker1 containers to package virtualized instances. 
Docker introduces an underlying container engine and a 
functional API that supports easy construction, 
management and removal of containerized applications. 
Within a Docker container, one or more 
processes/applications can run simultaneously. 
Alternatively, an application can be designed to work in 
multiple containers, which can interact with each other 
through a linking system. This also guarantees that no 
conflicts will occur with other application containers 

running on the same machine.  

 
Fig. 1. Container-based virtualization architecture. 

B. ARM-Based SBCs 
The ARM architecture is becoming increasingly 

widespread due primarily to its low-power characteristics, 
low cost, and its use in smartphones, tablets, and other 
devices. [18]. Despite these characteristics, modern ARM 
multi-core processors can compete with general purpose 
CPUs [19]. Most current ARM processors are 32-bit, 
although the use of more powerful 64-bit devices is 
growing. These hardware enhancements are enabling the 
spread of solutions such as ultra-low power clusters [20] 
based on SBCs powered by ARM architectures. 

IV. METHODOLOGY AND EXPERIMENTAL SETUP 
This section provides information about the 

methodology and experimental setup used to perform this 
empirical investigation. 

A.  Tested Single-Board Computers 
The wide range of SBCs used in our evaluation allows 

characterizing the performance and gaining a deep 
understanding of the potentialities of a wide set of devices. 
The devices selected for the analysis are described below.  
The Raspberry Pi 22 model B (RPi2) is the second 
generation of the Raspberry Pi platform (Fig. 2a). Released 
in February 2015, RPi2 increased the performance and 
other hardware characteristics compared to previous 
versions. It includes a quad-core ARM Cortex-A7 CPU and 
1 GB of RAM. 
The Raspberry Pi 33 model B (RPi3) is the third generation 
of the Raspberry Pi platform (Fig. 2e) and was released in 
2https://www.raspberrypi.org/products/raspberry-pi-2-model-b/ 
3 https://www.raspberrypi.org/products/raspberry-pi-3-model-b/ 
 
 
 

1http://www.docker.io 

TABLE I.           RASPBERRY PI AND ODROID HARDWARE FEATURES  
 Raspberry Pi 2 Model B Raspberry Pi 3 Model B Odroid C1+ Odroid C2 Odroid XU4 

Chipset Broadcom BCM2836 Broadcom BCM2837 Amlogic S805 Amlogic S905 Samsung Exynos5422 
CPU Quad Core @900MHz 

ARMv7 Cortex-A7 
Quad Core @1.2GHz 
ARMv8 Cortex-A53 

Quad Core @1.5GHz 
ARMv7 Cortex-A5  

Quad Core @2GHz 
ARMv8 Cortex-A53 

Quad Core @2GHz 
ARMv7 Cortex-A15 
Quad Core @1.4GHz 
ARMv7 Cortex-A7 

Memory 1GB LP-DDR2 
400MHz 

1GB LP-DDR2 
900MHz 

1GB DDR3 792MHz 2GB DDR3 912MHz 2GB DDR3 912MHz 

GPU Broadcom VideoCore 
IV 

Broadcom VideoCore 
IV 

2 x ARM Mali-450 
MP2 600 MHz 

3 x ARM Mali-450 
MP2 700 MHz 

ARM Mali-T628 MP6 

Ethernet 10/100 Mb/s 10/100 Mb/s 10/100/1000 Mb/s 10/100/1000 Mb/s 10/100/1000 Mb/s 
Flash Storage MicroSD MicroSD MicroSD, eMMC5.0 MicroSD, eMMC5.0 MicroSD, eMMC5.0 
Connectivity 

USB 
4× USB 2.0 Host 4× USB 2.0 Host 4× USB 2.0 Host, 

1× USB 2.0 OTG 
4× USB 2.0 Host, 
1× USB 2.0 OTG 

1× USB 2.0 Host, 
2× USB 3.0 Host 

OS Linux, Windows 10 Linux, Windows 10 Linux, Android Linux, Android Linux, Android 
Price $35 $35 $37 $40 $74 
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February 2016. It is the first model with a 64-bit CPU. The 
new model also integrates Bluetooth modules (4.1 and Low 
Energy) and Wi-Fi 802.11n (2.4 GHz).  

Odroid is a series of SBCs manufactured by Hardkernel 
Co., Ltd. Most of the Odroid systems are capable of running 
both regular Linux and Android distributions. 
Odroid C1+4 (OC1+) was released in July 2015, replacing 
Odroid C1 with improved and enhanced hardware features 
(Fig. 2b). Although OC1+ represents the most similar board 
to the RPi2 in terms of its hardware characteristics, it 
includes a faster CPU and its Network Interface Card (NIC) 
has a faster line speed. 

Odroid C25 (OC2) is the most recent Odroid SBC (released 
by Hardkernel in March 2016) and is the first Odroid model 
with a 64-bit CPU (Fig. 2c). Compared to OC1+, it includes 
additional RAM (2 GB). 
Odroid XU46 (OXU4) features an ARM Octa-Core with 
big.LITTLE computing architecture (Fig. 2d). This chipset 
is characterized by a particularly heterogeneous CPU 
architecture that features two groups of cores: four ARM 
Cortex-A7 LITTLE cores (1.4 GHz), and four ARM Cortex-
A15 big cores (2 GHz). The first group of cores reduces the 
power consumption at the expense of slower performance. 
In contrast, the second group consumes more power but 
features faster execution. The peculiarity of this architecture 
lies in the fact that if one core group is active, the other one 
is either powered down or used only if the first group 
saturates its resources. An application cannot work on both 
groups of cores at the same time. 

Table I summarizes the hardware characteristics of the 
SBCs used in our study. The most relevant differences 
between the boards occur in terms of their CPU, flash 
storage, and Ethernet capabilities.  
 From a software perspective, for the Raspberry Pi we 
used an image provided by Hypriot running Raspbian Jessie 
with the Linux kernel 4.4.10 as a base OS. This image 
provides a lightweight environment optimized for executing 
Docker container technologies on top of Raspberry Pi 
devices. For the Odroid platforms, we used the following 
Hardkernel OS stable releases: Ubuntu version 14.04 for 
OC1+, Ubuntu version 16.04 for OC2, and Ubuntu 15.10 for 
OXU4. 

All the SBCs were equipped with a 16 GB Transcend 
Premium 400x Class 10 UHS-I microSDHCTM memory card 
for storage. 

B. Setup for Virtualized Environment 
The configuration used to customize the virtualized 

environment was similar for all the SBCs under evaluation. 
Docker version 1.12.0 was used as the container technology. 
The base Docker images—which represent the basic entity 
from which Docker containers are created—used to 
virtualize the software tools used for our benchmarking tests 
were as follows: 

• ARMv7 armhf/debian image, with RPi2, OC1+, and 
OXU4. 

• ARMv8 aarch64/debian image, with OC2 and RPi3. 

In virtualization, vCPU pinning (or processor affinity) is 
a relevant aspect that influences the performance. vCPU 
pinning indicates the possibility of dedicating a physical 
CPU to a single instance or a set of virtual CPUs. Several 
vCPU pinning configurations exist. However, in the one 
selected for this analysis, each vCPU can run on any 
physical CPU core (Fig. 3). Such a configuration is 
typically termed a random setup and provides the advantage 
of higher CPU utilization [16].  

 
Fig. 3. CPU affinity setup. 

C. Testbed Setup for Power and Network Measurements 
 The power consumption of the SBCs was measured 
using an external voltage meter (USB-1608FS-Plus), 
characterized by a 16-bit resolution and a setup similar to 
the one used in [15]. 

 
Fig. 4. Testbed setup. 

The measurements involving network communications were 
performed using an Intel Core 2 Duo PC running Linux 
3.13.0 with an Intel 82567LM Gigabit Ethernet card. The 
PC was directly connected to the NIC of the SBC under test. 
Fig. 4 shows the entire testbed environment setup. 

 

4http://odroid.com/dokuwiki/doku.php?id=en:odroid-c1 
5http://odroid.com/dokuwiki/doku.php?id=en:odroid-c2 
6http://odroid.com/dokuwiki/doku.php?id=en:odroid-xu4 

 
                      (a)    (b)   (c)   (d)           (e) 

Fig. 2. Single-Board Computer under test: (a) RPi2. (b) OC1+. (c) OC2. (d) OXU4. (e) RPi3.  
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D. Workloads for the Evaluation 
As mentioned earlier, the main goal of our study was to 

understand how different SBCs react to specific workloads 
generated by applications running within Docker 
containers. Specifically, we want to characterize the 
performance from two different aspects. First, we want to 
define an upper bound for the performance of such devices 
when handling virtualized applications that challenge a 
particular segment of the underlying hardware. This kind of 
evaluation represents a key aspect because it allows us to 
verify that the virtualization layer does not generate 
excessive overhead that affects overall board performance. 
To achieve this, we used different benchmark tools to 
generate intensive CPU, Disk I/O, Memory, and Network 
I/O workloads. For the CPU and Network tests, we 
performed all the measurements using up to eight/sixteen 
guest domains. Second, we also considered heterogeneous 
virtualized instances to quantify any possible overhead 
introduced by containers; these measurements were made 
using applications that are closer to real-world workloads. 

We adopted native performance (i.e., running the 
benchmark tool without including any virtualization layer) 
as a base case to quantify the overhead. We also repeated 
each measurement target with different tools, to analyze the 
consistency between different results. The results were 
averaged over 20 runs. The tables and graphs in this paper 
show the averages of such measurements. 

V. MEASUREMENT RESULTS AND ANALYSIS 
In this section, we present the results of our performance 

analysis. The paragraph is organized into different 
subsections according to the specific workload being 
considered. 

Before beginning the different subsections, Table II 
shows the power consumption of the five SBCs under test 
when in an idle state, without any virtualized entity running 
on them. The sleep Unix command was used to set the 
devices to idle, and the experiment lasted 300 seconds. 
OXU4 consumes the greatest amount of power—more than 
double the idle energy consumption of the Raspberry Pi. 

TABLE II.  POWER CONSUMPTION IN IDLE 

Device Power Consumption (Watts) 
RPi2 1.32 
RPi3 1.42 
OC1+ 2.31 
OC2 2.45 

OXU4 3.99 

A. CPU Performance 
We tested CPU performance using sysbench7. This 

stress test is designed to challenge the CPU by calculating 
prime numbers. The computation is made by dividing each 
candidate number with sequentially increasing numbers and 
verifying whether the remainder (modulo calculation) is 
zero. Fig. 5 shows the execution time (measured in seconds) 
with up to sixteen concurrent running instances–both native 
and virtualized. 

 
Fig. 5. Sysbench CPU stress test. 

From Fig. 5, three main insights can be disclosed: i) the 
container engine introduces a negligible impact on CPU 
performance, with an approximately 2% percentage 
difference in the worst case; ii) OC2 significantly 
outperforms the rest of the tested SBCs; iii) for all devices, 
performance degradation can be observed when the number 
of concurrent instances exceeds four; however, the observed 
performance degradation when the number of instances to 
be managed exceeds four units is strictly related to the CPU 
architecture of the tested devices. For all the devices 
featuring a 4-core CPU, for four instances the CPU shares its 
resources among the different instances in a fair and 
effective manner. As the number of instances increases, the 
CPU must schedule and share its resources differently 
between the running instances, as four concurrent instances 
already saturate the maximum CPU capacity. Consequently, 
increasing the number of instances produces a gradual 
performance degradation. As Fig. 5 shows, the execution 
time doubles when the number of instances rises from four 
to eight and doubles again from eight to sixteen instances, 
revealing a linear increase. However, a different trend can be 
observed for the OXU4 SBC, which embeds an 8-core CPU. 
First, it must be clarified that if the OXU4 had an embedded 
CPU with 8-cores characterized by the same CPU clock, we 
would not have observed a performance degradation for 
fewer than eight instances because the CPU would have had 
enough resources to fairly manage all the virtualized 
instances. However, as discussed earlier, the OXU4 features 
a heterogeneous 8-core CPU in which the device begins 
using the lower-speed cores only when the faster cores are 
fully saturated. This CPU's architectural peculiarity produces 
the effect of a higher execution time as soon as the group of 
lower-speed cores begins working. In any case, in contrast to 
the 4-core CPU devices, the execution time grows linearly 
only when OXU4 is managing more than eight containers, 
corresponding to the point at which the OXU4's CPU 
resources are fully saturated. 

From a power consumption perspective (Fig. 6), the 
consumption of the Raspberry Pi boards, OC1+, and OC2 
vary, ranging from 1.88W (RPi2) to 3.26W (OC2). This 
variation range highlights the high energy efficiency of these 
devices.  
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Fig. 6. Power consumption of the SBCs under evaluation while 

performing the sysbench test. 

However, there is clearly a performance/power 
consumption tradeoff that varies from device to device. This 
analysis will be discussed at a later stage. OXU4 consumes 
more power consumption compared to the other tested 
devices. Specifically, its power consumption increases 
linearly from 7W to 14W as the number of containers varies 
from one to four. This significant power consumption 
variation is due to its use of the higher-speed core group. In 
fact, it can be observed that the increase diminishes as soon 
as the lower-speed cores start handling newly allocated 
instances: this change occurs when the fifth container is 
allocated. Another interesting aspect is that power 
consumption becomes constant as soon as the number of 
concurrent instances exceeds four for all the devices (with 
the exception of OXU4, which exhibits such behavior at 
more than eight instances). As discussed above, this trend 
depends strictly on the CPU architecture. When the number 
of running containers is greater than or equal to four (eight 
for OXU4) the CPU works at its maximum capacity and its 
resources are already saturated. Consequently, allocating 
additional instances does not increase power consumption; 
instead, such increases occur at the expense of performance 
as shown in Figure 5. 
 Linpack8 tests system performance using a simple linear 
algebra problem. Specifically, this algorithm uses a random 
matrix A (of size N), and a right-hand side vector B defined 
as follows: A * X = B. Linpack provides the output result in 
MegaFLOPS (Millions of Floating Point Operations Per 
Second): 

mflops = ops / (cpu * 1000000) 
where ops denotes the number of operations per second 
performed, and cpu denotes the number of CPU cycles. In 
our evaluation, N was set to 1000. 

Fig. 7 depicts the outcomes from the Linpack test. 
Similar to the previous case, the Docker virtualization layer 
introduces no relevant overhead. 

Analysis of the results shows that the MFLOPS oscillate 
around the same values regardless of the number of running 
instances. A partial exception can be seen for OXU4, which 
shows this trend only when the number of running 
containers is larger than eight. Furthermore, in contrast with 
the sysbench test results, no performance degradation can be 
observed as the number of concurrent instances increases. 
This is because a rating based on MFLOPS is strongly 
dependent on and limited to the program being executed—

Linpack in this case. This specific test scenario shows that 
even with a high number of concurrent instances, all the 
devices can execute the Linpack test at the same efficiency 
because they produce, on average, the same number of 
MFLOPS. The reason for the initial OXU4 performance 
deterioration is again attributable to its heterogeneous CPU 
architecture. Indeed, on OXU4, the execution of the 
benchmark test is initially allocated to the faster cores. 
When the resources of the faster cores are saturated, the 
lower-speed cores are activated to handle additional 
instances but with a reduced MFLOP capacity. This 
degrades the average performance. However, when the 
number of running containers is greater than eight, the 
MFLOPS oscillate around a constant value, as observed for 
the rest of devices. It can also be observed that OXU4 
outperforms all the other SBCs. 
 With regard to power consumption, similar to the 
sysbench test, power consumption remains constant once 
four or more containers are in execution. However, the 
tested devices differ in how the power consumption 
increases from one to four instances. In particular, the 
devices featuring an ARMv7 CPU (RPi2 and OC1+) 
produce an increase of approximately 35%, while OC2 and 
RPi3, which both feature ARMv8 CPUs, generate an 
increase of roughly 50%. The CPU clock rate also 
influences SBC power consumption. In fact, among the 
ARMv8 devices, OC2 consumes an average of 1W more 
than RPi3; while among the ARMv7 devices, OC1+ results 
in a higher power consumption on the order of 0.9W. 
Therefore, these results reveal ways in which CPU 
architecture, CPU clock rate, and power consumption are 
related. 

 
Fig. 7. Linpack test results. Line chart represents the power consumption. 

B. Memory Performance 
To test RAM memory performance, we used the Unix 

command mbw9, which determines the available memory 
bandwidth by copying large arrays of data into memory. 
We also performed three other tests (memcpy, dumb, and 
mcblock). 

Native and container performance can be considered 
comparable for each tested device (Fig. 8) with the 
exception of OXU4, which introduced an overhead of 
around 16% during the memcpy and mcblock tests. 
Comparing only the boards with 1 GB RAM, OC1+ always 
outperformed RPi2. This probably occurred due to the 
different RAM I/O Bus Clock frequencies and data transfer 
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rates of the two devices (RPi2 uses LPDDR2 RAM, while 
OC1+ uses LPDDR3 RAM). RPi3 performed better than 
OC1+ on the memcpy and mcblock tests, but not on the 
dumb test. When evaluating this latter result, it must be 
considered that OC1+ has a faster data transfer rate (DDR) 
than RPi3, which uses RAM memory with a higher Bus 
Clock frequency. OC2 and OXU4 clearly produce higher 
Average Speed results compared to the other boards. These 
results can easily be explained by the larger RAM capacity 
of both boards. Nevertheless, OXU4 outperforms OC2 
during the memcpy and mcblock tests despite having the 
same RAM hardware features. This result may be explained 
by the fact that these two operations require data to move 
over the system bus. The CPU may regulate data migration 
over the system bus. Consequently, the greater CPU 
computational resources of OXU4 compared to OC2 affect 
this result. Another interesting aspect of the RAM 
performance analysis comes from comparing OC1+ and 
OC2. Although a significant performance difference exists 
between the two boards (OC2 achieved roughly double the 
average speed of OC1+) the power consumption of both 
SBCs was approximately 3W. 

 
Fig. 8. Memory RAM performance comparison. The red markers 

represent power consumption. 

 

 
Fig. 9. Disk I/O performance for sequential read/write tasks. 

 

C. Disk I/O Performance 
We used fio10 2.0.8 to run sequential read/write 

instances for a 6 GB file stored on the MicroSD card. 
Sysbench was used to test random read/write disk 
operations with the embedded MultiMediaCard (eMMC).  

Fig. 9 shows the sequential read and write performance 
averaged over 60 seconds, using a typical 1 MB I/O block 
size. Docker introduce negligible overhead in both tests for 
all the tested SBCs. with the exception of the Raspberry Pi 
boards, where the only significant overhead was introduced 
during the sequential write test, amounting to nearly 50% 
for RPi2 and approximately 37% for RPi3. We used the 
disk performance analysis tool iostat11 to investigate the 
reason behind these Raspberry Pi results. The iostat tool 
can be used to monitor and report CPU statistics and system 
I/O device loading. From an analysis of the iostat logs, we 
noticed that the overhead may be caused by a high 
percentage of iowait periods. According to its definition, 
iowait indicates the percentage of time that the CPU is idle 
while the system services an outstanding disk I/O request. 
As explained in [45], a high iowait value indicates that the 
system has an application problem, an inefficient I/O 
subsystem configuration, or a memory shortage. The latter 
is possibly the reason the aforementioned overhead occurs. 
This disk stress test was performed with a high and 
intensive workload; therefore, devices with lower resources 
can experience issues in optimally scheduling disk-writing 
operations. When managing smaller files, it is reasonable to 
expect that such overhead would decrease, as was shown in 
[6, 21]. 
As discussed earlier, Disk I/O evaluation was performed 
using a MicroSD card as a storage device. However, unlike 
the Raspberry Pi family, all the Odroid boards provide 
integrated support for eMMC cards. This alternative storage 
solution offers superior performance in terms of read/write 
speed. We executed a random read/write benchmark test to 
explore the higher capabilities of eMMC storage solutions. 
The results are shown in Fig. 10, which shows that the 
eMMC cards can reach disk speeds on the order of 
hundreds of MBs per second—while for the MicroSD 
cards, memory speed oscillates around a range of hundreds 
of Mbs per second. 
 

 
Fig. 10. Odroid boards eMMC performance test. 

 
However, we note that disk performance is highly 

dependent on the type of MicroSD card used. As 
demonstrated in [46], above-average disk performance can 
be achieved based on the type of MicroSD used. 
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10http://linux.die.net/man/1/fio 
 
 

11http://sebastien.godard.pagesperso-orange.fr/man_iostat.html 
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D. Network Performance 
The network configuration used for our test is shown in 

Fig. 11. The Virtual NIC for all the running containers 
shares the same network bridge, which in turn is mapped to 
the physical Ethernet card. Each hardware platform 
performs network operations (e.g., packet forwarding, 
packet buffering, scheduling, etc.) dependent upon the 
design and implementation of their different software 
components (operating system, drivers, etc.), that could have 
different performance impacts.  

We used the tool iperf312 for the network performance 
analysis. Iperf measures network performance between 
hosts, generating bidirectional data transfers of both TCP 
and UDP traffic. 
 

 
Fig. 11. Network configuration setup. 

Taking into account that the NIC uses different code 
paths when sending and receiving TCP traffic, we 
performed bidirectional tests to quantify the overhead 
produced by the virtualization layer when the SBC is both 
receiving and sending network traffic. On the tested SBCs, 
both iperf server and iperf client inside one or multiple 
Docker containers were executed.  

Docker uses NAT as its default network configuration. 
With the alternative configuration --net=host, Docker 
uses the host interface directly, avoiding NAT. This 
alternative configuration improves performance at the 
expense of security. 

In our previous work [6], we tested the --net=host 
option for each experiment and found that this setup 
eliminated any overhead, allowing the systems to achieve 
nearly native performance. However, in this study we report 
the results only with the NAT setup because that 
configuration is most commonly used in real-world 
environments. 

For the TCP traffic analysis, to improve the readability 
of the graphs, we discuss the performance of Raspberry Pi 

and Odroid separately because they are characterized by a 
different NIC speed. 

 
Fig. 12. Raspberry Pi 2 and Raspberry Pi 3 network performance while 

receiving TCP traffic. The line charts represent power consumption. 

In the case of a TCP server (Fig. 12), the container 
engine does not impact the throughput performance of RPi2 
and RPi3 when executing a single network instance. 
However, the overhead increases for the RPi2 according to 
the number of concurrent running instances (for eight 
simultaneous TCP flows, the overhead is approximately 
30%). 

 
Fig. 13. Raspberry Pi 2 and Raspberry Pi 3 network performance while 

sending TCP traffic. The line charts represent power consumption. 

A similar trend can be observed in Fig. 13, which 
depicts the case when RPi2/RPi3 are acting as clients. A 
throughput degradation of approximately 26% can be 
observed when sending even four TCP flows. 
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The main findings of the TCP traffic analysis for the 
Odroid boards (Fig. 14) are summarized below. 
OC1+. For native execution, a substantial throughput 
difference exists between the server (Fig. 14a) and client 
(Fig. 14d) cases: the client throughput is approximately half 
of the server throughput. This result occurs because of the 
different send and receive code paths that the OS uses for 
TCP traffic [29]. In terms of virtualization overhead, for the 
TCP client case the containers do not introduce any relevant 
impact; however, when OC1+ is receiving TCP traffic, 
Docker introduces an overhead of approximately 50% 
compared to native execution—for a single virtual instance. 
However, the performance of OC1+ improves as the 
number of instances increases. Such behavior is attributable 
to the fact that a single TCP flow is unable to saturate a 1 
Gb/s link, while a combination of multiple streams 
overcomes this limitation [30]. 
OC2. The network performance of OC2 can be considered 
the desired outcome: both native and Docker performances 
are essentially the same (Fig. 14b–e). The only outlier can 
be identified in Fig. 14e, which depicts the overhead 
introduced by Docker when eight containers are 
simultaneously sending TCP traffic. The measured 
overhead is on the order of 10%. Such performance 
degradation is attributable to the CPU overload generated 
by managing eight concurrent virtualized streams. Fig. 14e 
shows a substantial increase in CPU context switching and 
cycles consumed compared to the native case. 
OXU4. On average, the TCP server test shows that Docker 
negligibly impacts performance compared with native 
execution (Fig. 14c). Neverthless, the overall throughput 
decreases (by up to 23%) as the number of simultaneous 
connections increases. In contrast with OC1+, the 
simultaneous presence of parallel streams does not saturate 
the 1 Gb/s link; instead, it generates a performance 
degradation due to the CPU overload produced by the 

multi-stream flow—which is similar to the OC2 client case. 
However, different from the OC2 case, we can observe 
such results for both the native and virtualized cases. In the 
TCP client test, the virtualization layer produces a 
significant overhead ranging from 27% to 70% (Fig. 14f). 
Unlike the server case, in this test, the performance 
degradation affects only the virtualized instances. 

For UDP traffic, we want to quantify the power 
consumption of the different SBCs when handling the same 
amount of sent/received traffic—90 Mb/s in our example. 
As Fig. 15 shows, the power consumption differs slightly 
from the idle power consumption reported in Table II, 
which implies that the NIC generates extremely low 
overhead when handling UDP traffic. Furthermore, no 
tangible differences can be observed between the native and 
Docker cases. 

 
Fig. 15. Power consumption of the different SBC, when 90 Mb/s of UDP 

traffic is sent/received. 

The TCP network performance analysis showed the 
existence of a non-negligible overhead introduced by 
Docker for a subset of cases in some of the tested boards 
(RPi2, OC1+, OXU4, and sin some cases, for OC2). 
Furthermore, we observed how the performance differs 
between servers and clients in such cases. To understand 
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Fig. 14. Odroid boards TCP traffic results. TCP Server: (a) OC1+, (b) OC2, (c) OXU4, TCP Client: (d) OC1+, (e) OC2, (f) OXU4. 
The line charts represent power consumption.  
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the reasons behind these results, we used the Linux 
hardware performance analysis tool Perf13 to collect 
system-level statistics. This tool reveals how hard the CPU 
works to deliver network traffic. As introduced in the result 
discussion, by analyzing the Perf logs, we discovered that 
the higher overhead generated in such SBCs is generated by 
an increasing number of CPU context switches and 
consumed cycles. This occurs because—in contrast to the 
native case—network packets must be processed by extra 
layers in a containerized environment. Another important 
insight of this analysis is related to the better network 
performance of both 64-bit CPU boards (RPi3 and OC2) 
compared to the 32-bit CPU boards (RPi2, OC1+, and 
OXU4). These results reflect the fact that Docker officially 
supports only 64-bit CPU systems; consequently, it appears 
to be better optimized for devices featuring 64-bit ARM 
architectures than those with 32-bit architectures. Finally, it 
must be pointed out that the inability to use the full capacity 
of the NIC interface in the Odroid boards has also been 
acknowledged by the manufacturer through similar 
benchmark tests [31, 32].  

From the power consumption perspective, we can draw 
some general conclusions from the above results and 
discussion that apply to all the tested devices. The devices' 
power consumption follows the trend of the native network 
throughput in every single case. An increase/decrease in 
network throughput produces a consequent power 
consumption increase/decrease; although the network 
throughput variation is not as noticeable, this behavior can 
be observed in Figs. 14a and 14f. Although this result is 
expected, it is interesting to observe how the devices' power 
consumption for the Docker case follows the same trend as 
the native case. This occurs even when relevant overhead 
introduced by the virtualization layer exists—again, this 
trend is particularly noticeable in Figs. 14a and 14f. This 
outcome represents a bottleneck: the devices cannot be as 
efficient as in the native case, but at the same time they use 
identical rates of power consumption. Therefore, this result 
does not reflect a favorable tradeoff between performance 
and power consumption. As explained previously, the 
causes behind such bottlenecks are that the OS and/or a lack 
of software optimization require too many CPU clock 
cycles and overtax your system unexpectedly, which also 
impacts the power consumption.  
E. Mixed Load Performance 

The performance evaluation presented in the previous 
subsections was conducted using benchmark software tools 
that stress a specific hardware segment of the device. This 
represents a reasonable approach because it allows us to 
define an upper bound for the performance of each portion 
of the system hardware. However, real-world applications 
challenge the hardware in a more distributed manner. 
Therefore, we performed further tests to evaluate the impact 
introduced by container technologies when the SBCs are 
handling heterogeneous workloads. This evaluation was 
conducted using the stress14 benchmark tool, which is a 
workload generator that allocates a configurable amount of 

load in the system in terms of CPU, memory, generic I/O, 
and disk operations. We defined three different workloads 
characterized by an increasing computational cost: (i) Low 
Load, (ii) Average Load, and (iii) High Load. Table III 
describes workload characteristics in more detail. 
 

TABLE III.  MIXED WORKLOAD CHARACTERIZATION 

Workload Description 
 

Low 
A load average of two is imposed on the 
system by specifying one CPU-bound process 
and one memory allocation process. 

 
Average 

A load average of three is imposed on the 
system by specifying one CPU-bound process, 
one memory allocation process, and one disk-
bound process (50 MB). 

 
 

High 

A load average of four is imposed on the 
system by specifying one CPU-bound process, 
one memory allocation process, one disk-
bound process (50 MB), and one generic I/O 
process. 

For this set of tests, the metric that we want to monitor 
is system load, which indicates the overall amount of 
computational work that a system performs and includes all 
the processes or threads waiting on I/O, networking, 
database, etc. [22]. The average load represents the average 
system load over a period of time. In the evaluation, the 
time interval was set to 300 seconds. The aim of this 
evaluation was twofold. First, it allowed us further assess 
the impact of virtualization when executing applications 
characterized by heterogeneous characteristics. 
Furthermore, it allowed us to quantify the difference 
between the average system load of the different SBCs 
when assigned the same workload. The aforementioned 
metric can be collected by means of Unix tools such as 
dstat15. Fig. 16 shows the 1-min average system load for the 
Odroid boards and RPi3. Various insights can be drawn 
from these results. First, for all the different workloads, 
native and Docker executions behave comparably. These 
results represent an important outcome: they confirm the 
lightweight characteristics of container technologies even 
when the SBC is handling mixed workloads. This result 
was confirmed when the system was assigned a High 
workload, which was defined to heavily challenge the 
system. A comparison of the different devices reveals that 
RPi3 produces the highest system load when compared to 
the Odroid boards.  

15http://dag.wiee.rs/home-made/dstat/ 
 

13https://perf.wiki.kernel.org/index.php/Main_Page/ 
14http://people.seas.harvard.edu/~apw/stress/ 
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Fig. 16. Average system load (1-min) for three different heterogenous 

workloads. 

 
Fig. 17. SBC power consumption when executing the Low and High 

mixed workloads. 
 
The difference increases with the workload complexity. 
Compared to the Odroid boards, RPi3 introduces a higher 
average system load. This increase is approximately 40% 
for the low and average workloads, and approximately 45% 
for a high workload. Fig. 17 shows the power consumption 
increase for the low and high workloads. The highest rise is 
produced by OXU4, on the order of 18%. For OC1+ and 
OC2, the increase is approximately 14%, although the base 
power consumption is higher in OC2 (which consumes 
roughly 1 W more than OC1+). In addition, the RPi3 
generates a power consumption increase on the order of 
17% when handling extremely different workloads. 
 
F. Energy Efficiency Evaluation 

In the preceding subsections, we used the term “power 
consumption” to indicate the device’s average power 
consumption while handling a specific workload. In this 
section, we want to evaluate the energy efficiency of the 
tested hardware to assess which SBC is the most energy 
efficient. 

In this context, energy consumption can be defined as 
the power consumption of a device over time: 

energy = power∫ dt [Joule]  (1) 

To determine the energy of an SBC, we must consider 
the amount of computational work the SBC performs when 
executing a particular task. The computational work varies 

according to the hardware segment analyzed and the 
benchmark tool used to characterize its performance.  

Table IV summarizes all the performance metrics used 
in our empirical investigation.  

TABLE IV.  BENCHMARK METRICS SUMMARY 

Hardware Benchmark Tool Performance Metric 

CPU sysbench  # of events/seconds 
linpack MFLOPS 

Memory mbw MiB/s 
stream MB/s 

Disk I/O fio, sysbench  Mb/s 
Network iperf3 Mb/s 

 
Similar to [17], regardless of the considered metric and the 
particular test, we can conventionally and indistinctly 
define transactions per time  
unit as the number of transactions per second (tps): 

n tps= 
p

m

transaction

second
 (2) 

Also, as stated in [17], “Because of the transactions’ 
dependency on the specific application scenario, only 
results from the same benchmark are comparable. Such 
performance figures must always be qualified by the 
respective benchmark.” 

In our context, the energy efficiency expresses how 
efficiently an SBC completes a specific task using a certain 
amount of energy. Energy efficiency can be defined as 
follows: 

energy efficiency = 
number of transactions

energy consumption
  (3) 

It can also be defined as the amount of work done per time 
unit given a certain amount of power: 

energy efficiency = 
tps

Watts
  (4) 

Based on the above definition, the higher the energy 
efficiency is, the better an SBC transforms electricity into 
effective computation. 

Fig. 18 depicts the energy efficiency of the different 
SBCs. The graphs show the percentage difference with 
respect to the SBC that performs most efficiently on each 
test, from an energy perspective. 

To improve the readability of the graph, we consider 
only native performance because we have already 
empirically demonstrated that containers introduce no 
significant overhead for most tests. 

The following insights were revealed from this analysis. 
(i) CPU. SBC efficiency changes as the number of 

concurrent instances increases. The behavior of the 
OXU4 board is particularly interesting; it the most 
efficient SBC when a single instance is running but the 
least efficient when processing eight simultaneous 
instances (Fig. 18a). 

(ii) Memory. The results of the memory stress (Fig. 18b) 
show that OC2+ is the most energy efficient board 
regardless of the benchmark tool used (stress or mbw); 
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the other SBCs behave differently depending on the 
software used to perform the test.  

(iii) Disk I/O. Similar to the memory case, the energy 
efficiency also varies in the disk I/O analysis based on 
the type of operation performed by the device (Fig. 
18c). OC2 is the most efficient for sequential read 
operations, while RPi2 is the most efficient for 
sequential write operations. 

(iv) Network. The results of the TCP network performance 
analysis were similar for most of the SBCs (RPi2, 
RPi3, and OXU4). Particularly interesting is that, in 
contrast to the TCP client test (Fig. 18d), OC1+ 
outperforms all the other boards in the TCP server 
evaluation (Fig. 18e). Finally, the UDP evaluation 
shows that the Raspberry boards are more efficient 
when compared to the Odroid boards (Fig. 18f). This 
result is expected based on the analysis discussed in the 
previous subsection. 
Fig. 19 shows the energy efficiency results of the mixed 

workload performance analysis. OC1+ performs best 
because it considers the tradeoff between managing 
heterogeneous workloads and power consumption. 
However, the other boards also guarantee a medium-high 
level of efficiency.  

 
Fig. 19.  SBC energy efficiency when executing the Mixed Load Test 

(Low and High workload configurations).  

G. Container Activation Time Analysis 
We also evaluated the variation in a container’s 

activation time when the SBC is managing a workload that 
gradually becomes more complex. Activation time 
represents an issue for heavier types of system 
virtualization (i.e., Virtual Machines) on a server because 
booting a VM can require minutes depending on the server 
load. Container activation time was evaluated for server 
machines in [23]; however, a full characterization of 
container activation time on low-power nodes is lacking. 

For this evaluation, we used stress to allocate 
increasing loads to the different systems. We tested the 
activation time in four different cases: when the SBCs are 
in idle state and then when two, four, or eight CPU-bound 
processes are imposed on the system. Fig. 20 shows the 
results of this evaluation. The RPi3 is the device that 
maintains the activation time within a very short range—on 
average between 1300 ms and 1400 ms—even when 
handling heavier workloads. The Odroid boards showed no 
relevant difference between idle and the stress -c 2 
case.  

 
Fig. 20.  Container activation time for OC1+, OC2, OXU4, and RPi3 under 

different workloads. 

However, heavier workloads impact the activation time of 
the different Odroids differently. The percentage increase 
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Fig. 18. Energy Efficiency Results: (a) CPU, (b) Memory, (c) Disk I/O. Network I/O: (d) TCP Client, (e) TCP Server, (f) UDP. 
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between the idle and the stress -c 8 case is 20% for 
the OC1+, 61.57% for the OC2, and 181% for the OXU4. 
The OXU4 SBC substantially increases the activation time 
as the complexity of its workload increases. This result is 
consistent with the energy efficiency analysis, which 
showed the lower efficiency of OXU4 when managing 
heavy workloads and/or several concurrent instances. 
However, considering all the available results, container 
activation time remains below 2000 ms in most cases. This 
represents a significant result if we consider the reduced 
hardware capabilities of SBCs. Moreover that activation 
time can be further reduced through alternative container-
engine setups [23]. 

H. Board temperature measurements 
The temperatures reached by each SBC during the 

execution of the different benchmark tests is another 
interesting parameter that deserves to be analyzed. 
Temperature can be relevant in scenarios where SBCs are 
used on a large scale such as replacing server machines 
with SBC clusters, which can provide a better energy 
efficiency/monetary cost tradeoff as demonstrated in [24, 
25]. Here, we want to estimate the maximum temperature 
reached by the different devices, which can help when 
designing efficient cooling systems for clusters of SBCs. 
The vcgencmd measure_temp command returns the 
CPU temperature of the Raspberry Pi, while the CPU 
temperature of the Odroid boards can be accessed using the 
command line 
/sys/devices/virtual/thermal/temp. 

It is worth mentioning that, by default, RPi2 and RPi3 
are passively cooled boards that do not include any heat 
sink or fan, while the Odroid boards require auxiliary 
components to ensure an effective cooling system. The 
processors on the OC1+ and OC2 boards have a relatively 
small area to dissipate heat. Therefore, both boards use a 
heat sink to improve heat dissipation. The OXU4 uses a 
software-controlled fan in addition to the heat sink. . Table 
V shows the temperature of each SBC when in an idle state. 

 
 
 
 
 

TABLE V.  BOARD TEMPERATURE AT IDLE 

Device Temperature (°C) 
RPi2 36 
RPi3 51 
OC1+ 70 
OC2 54 

OXU4 60 

As in the previous subsection, we show only a subset of 
the full results (Fig. 21). The CPU analysis allows us to 
understand how the temperature increases as the number of 
concurrent virtualized instances (denoted by CPU #1 and 
CPU #8) increases. The RPi3 exhibits the highest 
temperature increase—approximately 25%. The 
temperature increase for the Odroid boards varies between 
15% for OC1+ and OC2 to 19% for OXU4, and the RPi2 
exhibits the same behavior. In the Memory I/O test, we 
included the results of both mbw and stream tests to 
determine whether any connection exists between 
temperature increases and the use of different benchmark 
tools. Regardless of the memory benchmark tool used, the 
boards’ temperatures are roughly equivalent. The same 
logic applies to both the disk I/O and network analysis. For 
the former, we wanted to detect any potential difference 
between read and write disk operations and for the latter, 
we wanted to detect any potential differences when the 
devices were sending or receiving TCP traffic. 

VI. CONCLUSIONS 
The main goal of this paper was to conduct an extensive 

performance evaluation to assess the feasibility of running 
virtualized instances on a broad range of low-power nodes 
such as SBCs. The motivation behind this study lies in the 
increasing employment of such devices in specific Edge-
IoT scenarios. 

Our in-depth analysis of the empirical characteristics of 
SBCs generated fundamental insights about the 
performance of such devices, including the following: 

 Employing container-virtualization technologies on 
SBCs produces an almost negligible impact in terms of 
performance when compared to native executions. This 
result remains valid even when running several 
virtualized instances simultaneously. 

 By considering the tradeoff between performance and 
power consumption (energy efficiency) under a wide set 

 
Fig. 21. Maximum temperatures reached by the SBCs when executing different computing tasks. 
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of workloads, we empirically demonstrated the energy 
efficiency of the SBCs. Energy efficiency represents a 
crucial aspect in scenarios in which the devices are 
battery powered. Indeed, from our study is possible to 
estimate the battery duration of a device based on 
expected workload characteristics.  

 Overall, the Odroid C2 outperforms all the other tested 
devices in most of the performance tests. 

 The Odroid boards can efficiently manage data-
intensive applications (e.g., Big Data applications) 
thanks to their support for eMMC cards, which improve 
performance considerably compared to MicroSD. 

 The Odroid C2 and the Odroid XU4 are the most 
suitable boards for executing memory-intensive 
applications, thanks to their higher RAM capacities. 

 In general, the network performance analysis showed 
that 64-bit CPU devices do not introduce any tangible 
overhead compared to 32-bit CPU devices. 

 Raspberry Pi boards are highly efficient when handling 
low volumes of network traffic—especially UDP traffic. 
This result can be useful in creating efficient IoT 
gateway designs that are specifically intended for 
executing lightweight IoT applications, e.g., the 
Constrained Application Protocol (CoAP) and Message 
Queuing Telemetry Transport (MQTT) protocols. 

 By considering the limited resources of SBCs compared 
to server machines, we showed that the container 
activation time required by SBCs remains relatively 
small even when the SBCs are overloaded. 

 The maximum temperatures reached by the various 
tested boards varies depending on the applied workload.  

The choice of one device rather than another may vary 
based on the different requirements of service providers and 
applications. Therefore, the empirical insights achieved by 
this study can aid in efficiently designing integrations of the 
analyzed devices in different scenarios according to specific 
requirements of different Edge-IoT applications. 

For the sake of completeness, it is worth highlighting 
that although our study has shown how container-based 
virtualization can represent an efficient and promising way 
to enhance the features of IoT architectures, several aspects 
still deserve further investigation, especially studies that 
improve our understanding of where this technology can be 
applied most efficiently. As an example, referring to the 
works mentioned in Section II, the advantages that accrue 
from executing containerized applications on IoT/Edge 
gateways are clear. However, there is still a lack of research 
to evaluate the interactions among multiple gateways while 
considering that Docker does not currently fully provide 
support to perform live container migrations between 
different entities. Furthermore, in such more complex 
scenarios, whether the strict requirements of many IoT 
applications can still be preserved should also be 
investigated. 

The mobility of edge entities in several IoT/Edge use 
cases is another aspect that should be considered. Such 
scenarios introduce even more strict requirements in terms 

of latency. In [33], Farris et al. proposed an approach for 
provisioning ultra-short latency applications in MEC 
environments by exploiting the potential of container 
technologies. The proposed framework supports proactive 
service migrations only for stateless applications. The 
authors included a set of challenges that future research 
needs to address. Examples are support for stateful 
applications, a problem closely related to the lack of full 
support for live container migration, and defining specific 
policies aimed at optimizing container management. 

Many concerns have been expressed about the level of 
security guaranteed by applications developed within 
containers [34]. One of the main concerns was due to the 
lack of namespace isolation, which made dockerized 
applications more vulnerable. The latest released versions 
of Docker include several security enhancements to cope 
with these issues [36]. Nonetheless, Docker continuously 
provides detailed guidelines for developing safer Docker 
ecosystems [37, 38]. A further effort to ensure better 
security in dockerized systems is represented by the 
collaboration between Docker and the Center for Internet 
Security, which has led to the release of the Docker Security 
Benchmark, a developer’s tool that can check for a wide 
variety of known security issues within virtualized 
applications [39]. 

Referring specifically to IoT contexts, it is crucial to 
encourage the development of more specific security 
mechanisms that consider the strict requirements of IoT 
applications/scenarios but do not impair the lightweight 
features of container-based technologies. From this point of 
view, several Linux-Docker-based frameworks have 
already been proposed as solutions that can enhance IoT 
security [35]. 
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