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Abstract—This paper summarizes the prevailing power system
operation methods for managing the uncertainty brought by
large-scale integration of renewables and active load demand.
From the perspective of power system operations, uncertainty
management is an important problem. In this paper, the mathe-
matical models used for handling uncertainty are discussed, along
with the pros and cons as well as future development efforts of
four different operation methods. The study concludes that it is
difficult to adopt a universal operation theory for mitigating the
uncertainty in power system operations. Instead, it is necessary
to choose the most feasible operation method that matches the
specific operation requirement.

Index Terms—Management, power system operation, robust
optimization, stochastic optimization, uncertainty.

I. INTRODUCTION

THE uncertainty in power systems is a persistent issue.
In power systems, generally, the uncertainty is a state

for all the system operation, components, and the objective
environment, where it is impossible to exactly describe the
existing state, a future outcome, or more than one possible
outcome due to limited knowledge. Due to uncertainty, the
power system can be exposed to potential safety issues as
well as economic loss. Mitigating the uncertainty is desirable,
and therefore, an important research topic.

The North American Electric Reliability Corporation (N-
ERC) has published a report stating that uncertainty must
be addressed in long-term planning, calling for more robust
and flexible systems [1]. During short periods, however, the
uncertainty is absorbed by the power system operation. The
Reliability Assessment Guidebook, for instance, requires that
the uncertainty should be addressed within the assumptions,
such as load variation, generation dispatch, the effect of
loop flows as well as the status of transmission elements
[2]. Intuitively, it is more complex and critical to handle
the uncertainty in system operation rather than in planning.
In system planning, the uncertainty prediction is typically
inaccurate, often far from the actual situation, thus requiring
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a rough approximation of uncertainty that is acceptable. The
deviation of uncertainty prediction in the planning stage can
be “rescued” in the operation stage. However, the price of
uncertainty in the operation stage is higher than in the planning
stage. There are a variety of methods and theories on uncer-
tainty in power system operation that have emerged requiring
continuous study and improvement.

In traditional power systems, the uncertainty mainly ex-
ists in the electric component outages, such as unit outage,
transmission line breakdown, and breaker faults. Based on
the highly controllable power generation and accurate load
forecast, the system is operated by unit commitment (UC)
and economic dispatch (ED) with N-1 contingency [3], which
greatly reduce the uncertainty from the outage. Furthermore,
to meet the increased uncertainty, traditional systems adopt de-
terministic dispatch or worst-case dispatch methods that have
been developed by acquiring substantial capacity reserves, but
which can also increase the energy cost and emissions [4]. In
most cases, these methods guarantee power system security,
while seeing substantial improvement over the course of their
use.

In recent years, with the emergence of the smart grid, a
number of stochastic factors have begun to play an important
role in both the generation and demand side of power systems.
From the generation side, renewables, such as wind power
and solar power, are remarkably integrated into power grids.
According to the U.S. National Renewable Energy Laboratory
(NREL), renewable energy contributed approximately 10% of
total power-sector U.S. electricity supply in 2010 [5]. Among
European countries, Ireland has achieved 50% instantaneous
wind penetration with no energy storage. Denmark receives
about 20% of its electricity from wind power. Germany’s
wind-energy penetration has reached 7% of power generation
capacity and has produced as much as 22 MW of solar power
to serve about one-third of energy demand during peak hours
[6]. In China, the National Energy Administration (NEA)
announced that the total installed capacity of wind power and
photovoltaic power is 77,160 MW [7], and 19,420 MW in
2013 [8], respectively. Meanwhile, the demand side is likewise
becoming increasingly active [9], [10]. Thus, enhancements of
forecasting tools, operation practices and techniques and tools
are necessary to allow the system operator to handle increased
uncertainty related to large-scale integration of variable gen-
eration and active demand [11].

This paper discusses diverse operation techniques and meth-
ods that have emerged in recent years. The remainder of the
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paper is organized as follows. Section II is an overview
of some critical concepts in power system operation,
supported by diagrams explaining major modifications of
different operation paradigms. Section III provides general
mathematical models. Section IV presents the various
operation methods based on these models, including the
stochastic dispatch based on scenario reduction, the look-
ahead dispatch, the risk-limiting dispatch (RLD) and the
robust optimization (RO). Finally, Section V concludes this
study.

II. OVERVIEW OF POWER SYSTEM OPERATION

A crucial objective in power system operation is to ensure
its reliability at all times, where the power balance is the most
fundamental requirement, as shown in (1).

s(t) = d(t), (1)

where s(t) and d(t) are the power supply and power demand
at time t, respectively. Additional operational constraints may
also be necessary in different operation cases. The second
critical objective of power system operation is economic
benefits, achieved by reducing operational costs.

To accomplish the above two goals, power systems are
generally operated in the context of timeframes: seconds-to-
minutes, minutes-to-hours, hours-to-days, days-to-one week
and beyond, shown in Fig. 1. In the seconds-to-minutes
timeframe, bulk power system reliability is almost entirely
controlled by automatic equipment and control systems, e.g.,
Automatic Generation Control (AGC). In the minutes-to one-
week timeframe, system operators are in charge of committing
and dispatching units to balance the bulk power system.
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Fig. 1. Timeframe for power system operation.

In the past, the major uncertainty in the day-ahead time-
frame has been in component outages, which is typically
smoothed by security constrained UC (SCUC) under N-1
contingency. In the hours-to-days timeframe, the uncertainty
is reduced by security constrained ED (SCED) under N-1
contingency. The implementation framework for Independent
System Operators (ISOs) is shown in Fig. 2 [3].

Now, the high penetration of large-scale renewables and the
active load demand lead to the injection of large amounts of
randomness into the power supply and demand side, so the
power balance equation (1) should be a stochastic equation,
rather than the deterministic one, shown in (2).

sd(t) + ss(t) = dd(t) + ds(t), (2)

where sd(t) and dd(t) are the deterministic supply and de-
mand, while ss(t) and ds(t) are the stochastic parts.
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Fig. 2. Traditional operation framework.

Therefore, the crucial problem in current operation
paradigms is how to manage the stochastic components. The
uncertainty in the system, fortunately, is not a chaotic mass
because it can be either forecasted by a probability distribution
function (PDF), or restricted in a certain interval. Based on the
availability of prediction, actions such as unit commitment and
dispatch, and reserve procurement and demand side resource
management, should be undertaken to reduce the increased un-
certainty [9]. According to this requirement, the new operation
paradigm is constructed, shown in Fig. 3.
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Fig. 3. New operation paradigm dealing with uncertainty.

Fig. 3 shows the counterpart operation paradigm in which
there are three major changes: First, meteorological and
electrical data are required and must be updated by the
Supervisory Control and Data Acquisition (SCADA) systems
in state-of-the-art forecasting. Second, SCUC and SCED
must be modified to accommodate renewable units that are
uncontrollable. Finally, N-1 contingency analysis must be
replaced by new SCUC and SCED dealing with uncertainty.

Among the three major changes in the new operation
paradigm, forecast technology (especially for variable
generation resources) is the foundation of the latter two
changes, which is highly supported by both the public and
private sectors. For example, the Independent Electricity
Service of Ontario (IESO) has established a near-term
forecasting method, while the Alberta Electric System
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Operator (AESO) has initiated a wind power forecasting pilot
project in the summer of 2006 [9].

The next two changes in Fig. 3 are in relation to specific
operating and dispatch criteria and methods, which are all
formulated upon the same mathematical principle. Thus,
before elaborating the operation methods, the following
section illustrates the general mathematical models.

III. GENERAL MATHEMATICAL MODELS

The objective of operations is to ensure the safety and
security of power systems, and to obtain higher economic
benefits. Mathematically, this objective can be converted to an
optimization problem, where safety and security are the con-
straints, and economic benefit the objective function, shown
in (3).

minimize f(x, ỹ)
s.t. hi(x, ỹ) ≤ 0, ∀i ∈ {1, · · · , n},

(3)

where x and ỹ are the vector for deterministic and stochastic
variables, respectively. f(·) is the cost function, and hi(·) is
the ith constraints.

The stochastic elements in constraints are often tackled by
stochastic programming, and robust optimization [12].

In stochastic programming, two common methods are used.
One is the discretization for the stochastic variable, usually
by Monte Carlo simulation. The general model in (3) can be
transformed into (4). The continuous variable ỹ is sampled
into m discrete variables, denoted by yj with probability
pj respectively. Thus, the objective function is altered in
expectation form, and the constraints must be matched in each
scenario. Related technology is discrete sampling and scenario
reduction.

minimize
m∑
j=1

pj × f(x, yj)

s.t. hi(x, yj) ≤ 0,∀i ∈ {1, · · · , n},∀j ∈ {1, · · · ,m}.
(4)

The second method is to take advantage of the cumulative
distribution function, where the constraints are commonly
transferred into probability constraints with an acceptable
probability level η, while the objective function is changed
to an expectation, shown in (5).

minimize E[f(x, ỹ)]
s.t. prob(hi(x, ỹ) ≤ 0) ≥ ηi,∀i ∈ {1, · · · , n}.

(5)

In robust optimization, the constraints and objective function
are often expressed as (6).

minimize
x

sup{f(x, ỹ)|̃y ∈ ε}

sup{hi(x, ỹ)|̃y ∈ ε} ≤ 0,
(6)

where ε is the interval of ỹ.
Obviously, in stochastic programming, there is a small

probability that the constraints are not met, and thus are less
reliable; however, they have significant economic benefits. In
robust optimization, the reliability can be guaranteed definitely,
with the price being worse economic benefits.

Thus, in realistic operation processes, the mathematical
model that is adopted depends on the trade-off between
economic benefits and reliability, according to different
operation requirements. The specific operation methods based
on these models are illustrated in detail in the next section.

IV. UNCERTAINTY MANAGEMENT WITH OPERATION
METHODS

A. Scenario-based Stochastic Programming

The scenario-based stochastic programming is generally
modeled using the steps in [13]–[16]. The discretization of
stochastic components is the first step. For straightforward
illustration, we regard the stochastic components, denoted by
net load l(t), to be one dimension, shown in (7). It is easy to
be extended into the high dimension.

l(t) = d(t)− s(t). (7)

Based on Monte Carlo simulation, the continuous PDF
for net load is sampled into N(t) discrete points with
different probabilities, and each discrete point is denoted by
li(t) (i ∈ {1, · · · , N(t)}).

For the second step, a scenario tree is formed [13], [16],
[17]. If the operation is concerned about the next t(t ∈
{1, · · · , T}) hours, for each period t, step one is repeated.
Thus, for the whole time horizon, the scenario tree is formed,
and each trajectory is called one scenario. For example,
provided that T = 2, N(1) = 2, and N(2) = 3, the scenario
tree is shown in Fig. 4.

t=0 t=1 t=2

Fig. 4. Illustrated scenario tree.

The next step is the problem formulation [13], [14], [17]–
[19]. For simplification, only the power balance is considered
as the constraint.

minimize c0s0 +
T∑

t=1

N(t)∑
i=1

picisi(t)

s.t. s0 = d0

si(t)− di(t) = 0

∀t ∈ {1, · · · , T},∀i ∈ {1, · · · , N(t)},

(8)

where c0, s0 and d0 are operating cost, dispatch power, and
demand at the initial time period. pi, ci, si(t), and di(t) are
the probability, operating cost, dispatch power, and demand
in scenario i. Thus, the objective function is composed of a
deterministic part in the initial stage and a stochastic part in
the subsequent stage; this is the so-called two-stage problem.
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In the initial stage, the real dispatch strategy is generated. In
the next stage, operators wait and see which scenario truly
happens, and choose the operation strategy, accordingly.

Finally, the conventional solution algorithm is decomposi-
tion techniques, such as Benders decomposition [20], [21].
Using such techniques, we can take full advantage of the par-
allel computation capabilities of computers because scenarios
are decomposed into several separate ones, which can be dealt
with equally by computers.

This original operation method, however, suffers from three
problems. First, there is computation complexity resulting
from the exponential growth of scenario numbers. The coun-
termeasure for this is scenario reduction, which cuts some
branches in the scenario trees [16], [22]–[24]. The merit of
scenario reduction is that computations are fast; the weakness,
on the other hand, is the potential operation bias compared to
the one generated from the complete scenario tree due to the
nonlinear characteristic of the mapping between scenarios and
operation strategy. A potential improvement is to develop the
scenario reduction based on the final operation goals, rather
than to simply approximate the complete scenario trees.

The second problem is that continuous PDF is not used,
which may lead to loss of important information. The coun-
termeasure for this is to utilize the chance-constraint in place
of the discrete scenario based constraint.

Finally, the operation strategy is static, where recourse
decisions are not considered. The forecast errors are smoothed
by fast start units and load shedding [20], while the economic
benefits are sacrificed. The countermeasure is to adopt dynam-
ic operation strategies, shown in the next part.

B. Look-ahead Dispatch

The principle of look-ahead dispatch is model predictive
control (MPC) [25]–[29]. The MPC approach deals with the
dynamic receding horizon optimization control problem [30].
Usually, MPC systems employ a stochastic model for the
uncertainty. In this way, the systematic stochastic terms can
be effectively compensated by the decisions of the system.
In addition, proper inclusion of integration in the model can
eliminate steady state error from the system outputs. The
mathematical model of look-ahead dispatch is shown in (9).

minimize f(u)
s.t. xk+1 = g(xk, uk), ∀k ∈ {1, · · · , N}

h(xk, xk+1, uk) ≤ 0,∀k ∈ {1, · · · , N}
x0 = Z(k),

(9)

where k is the index of the time period, N is the whole time
horizon, xk is the state variable in period k,u = [u1, · · · , uk]
is the vector of control variables.

In each time period, the predictions for the whole time
horizon are made, expressed by the first constraint in (9).
Based on the predictions, the control strategies are generated
by optimization (9), but only the strategy for the current period
is realized. When the time comes to the next period, a similar
control is duplicated, up until the final period. In sum, there
are k optimization problems solved.

The look-ahead dispatch is the implementation of MPC in
system operation [28]. At each operation stage, the operators
do not just wait and see, but rather they compute the optimal
operation repeatedly with updated information. The dispatch
process can be illustrated in Fig. 5. In each period, the
operators look n steps ahead, and decide the operation for
the current stage, where a two-stage problem is solved. As
time passes, the two-stage problems are solved by rolling
forward [25], [26]. The improvement of look-ahead dispatch

Look n steps ahead

Look (n-1) steps ahead

Fig. 5. Rolling operation in look-ahead dispatch.

is prominent. First, by on-line dynamic rolling, the updated
prediction information can be used. The operators do not have
to wait and see, thus the emergencies resulting in start-up of
fast response units and load shedding can be greatly decreased.
In addition, the optimization model is not limited to scenario
based, but can be extended to integrate continuous PDF by
introducing chance-constraint [31], [32].

In sum, the look-ahead dispatch dynamically operates the
system by rolling the two-stage stochastic optimization. Due
to the constant change of renewables, the time scale of two-
stage prediction is usually not long [27]. In other words, it
generally deals with short-term operation, such as ED, but not
for long-term, such as UC. In addition, because it assumes that
the system model in the following steps remains the same, the
solution of look-ahead dispatch is not global optimal, which
is one of the major concerns in risk-limiting dispatch.

C. Risk-limiting Dispatch

The risk-limiting dispatch is also a dynamic sequential
operation method. The fundamental idea of risk-limiting dis-
patch is to restrict the risk for the final operation objective
through stages of operation [4], [9], [33]–[35]. Therefore, in
risk-limiting dispatch, there are a series of recourse decisions
inserted between the initial stage and the final goal stage,
and the final goal stage can be either a single time point, or
a time horizon. Furthermore, the global optimal scheduling
strategy can be found in risk-limiting dispatch, providing
enough prediction information.

To specify the major features, Fig. 6 shows the operation
strategies for the whole time horizon. Here the final operation
goal is the power balance for real time t. At the initial stage,
the operation strategy, either a UC or ED, is generated. As
time goes by, at the recourse stages, the operation strategies
are made with the updated prediction information that can be
viewed mathematically as the conditional probability. Then,
in real time, the final strategy prevents potential emergencies.
The mathematical model is shown in (10).
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Fig. 6. Risk-limiting dispatch with recourse decisions.

minimize E{
n∑

i=1

cisi}

s.t. p{
n∑

i=1

si + w = d|Yn} ≥ η,
(10)

where si is the dispatch power in stage i, Yn is the prediction
information in stage n, η is the risk level, d is the load, and
w is the wind power.

For the first feature of the model, shown in (10), theoreti-
cally, the risk constraints for each stage should be added into
the optimization model; however in [9], it has been proven
that the risk bounds in previous stages are the subset of the
ones in the final stage. In other words, considering the risk
constraint in the final stage is enough, which greatly reduces
the computation complexity. Moreover, the risk index can be
varied according to specific operation requirements. Thus, the
feature of using risk constraint brings about more flexibility
to the operating problem.

For the second feature, [9], [35] and [36] use dynamic
programming to arrive at the analytical solution, where the
solution form is very simple and elegant. Furthermore, [35]
and [36] have given the analytical solution for the time horizon
including n recourse stages. Ideally, the increasing frequency
of recourse stages leads to more accurate and economically
beneficial operation decisions because recourse decisions can
largely reduce the expensive and fast start-up units as well as
load shedding.

In the last feature, the operation strategy is global optimal,
as long as the prediction information provides the conditional
probability for the distribution of renewables [9]. The objective
function of risk-limiting dispatch is a conditional expectation,
varying with the conditional probability; thus the global opti-
mal solution can be found by dynamic programming, in which
the specific or fixed objective function is not required.

As with the current risk-limiting dispatch model in [9], there
are two main simplifications. First, the risk constraint LOLP
is set to be 0; thus the probability constraint is regressed.
If the confidence level can be reduced a little, the dispatch
cost must be decreased. Even under extreme circumstances,
while the net load can be matched by flexible emergency
measures, such as load shedding, the expectation dispatch cost
will reduce. Second, the current theory is being realized on a
single bus system, whereas the network influence is regressed.
In realistic systems, the network constraint limits the output
of controllable generation, which calls for improvement.

In [37], an analytical solution is found when the units’
generation bound is taken into consideration, while the trans-
mission capacity is still neglected. In [38]–[40], the influence

of the network is considered. Assuming there is at most one
congestion line, the network can be replaced by a single bus
system, plus the two buses, and one line system; the analytical
solution can then be derived. The model is a two-stage
stochastic form, where the recourse stage is not considered,
and the operation reliability and economics are determined in
a day-ahead market. Thus, they are not as reliable and cost-
saving as multi-stages dispatch, and the probability constraint
is also regressed.

Despite the restriction of current risk-limiting dispatch, their
merits are remarkable, and thus the idea of risk-limiting has
been extended in different topics [41]–[45]. Reliability and
flexibility are balanced well, which in turn helps to realize the
basic operational goal: safety and economic benefits.

D. Robust Optimization

Since RO only requires moderate knowledge of the uncer-
tainty and its solution immunizes against any realization of the
uncertainty set, RO applications in power system operation
have been extensively studied. Due to the consideration of
computational tractability, robust linear programming (RLP)
has become an area of interest. Normally, rather than the basic
non-adjustable RLP, the more complex Adjustable Robust
Linear Optimization (ARLP) [46] is employed to reduce the
degree of conservatism and to cooperate with the multistage
nature of problems in power systems. ARLP includes some
“here and now” decisions to be determined before the uncer-
tainty reveals itself, and some “wait and see” decisions to be
determined after the uncertain data are known. Usually, a two-
stage optimization problem is modeled. Benders decomposi-
tion is one of the major algorithms for solution methodology
development.

In power system operation, robust unit commitment might
be the most extensively studied topic among RO applications
[47]–[53]. In [47], an adaptive robust unit commitment that
has two stages is proposed. First, the nodal net injection
uncertainty is considered in which decisions are divided into
two groups, binary variables of commitment related deci-
sions and continuous variables of dispatch related decisions.
“Budget of uncertainty” is then used to control the extent of
conservatism. As the “budget” reduces, the solution becomes
less conservative since a smaller uncertainty set is considered.
However, the robustness against uncertainty also decreases,
and the problem of how to determine a reasonable “budget”
arises. Some publications propose similar models with addi-
tional considerations. In [49], wind uncertainty correlations are
included. In [52], especially the uncertainty of wind power and
the buffer effect of pumped storage hydro are handled. And in
[54], natural gas congestion is considered in the wind-thermal
system. Readers can refer to [53] for more modeling details
of robust unit commitment.

Although the application of ARLP already decreases the
conservativeness compared to the non-adjustable ALP, many
studies to further reduce the conservativeness of RO are
executed. Reference [48] discusses multiple approaches of
uncertainty set construction, aiming at reducing the conser-
vativeness while maintaining the same degree of robustness.
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It points out that the spatial and temporal correlations between
uncertain parameters, and split uncertainty set can be modeled.
However, according to [55], this is more a tradeoff between
robustness and conservatism.

References [50] and [56] apply a different decision-making
philosophy, i.e., the maximum regret criterion, to evaluate a
robust feasible solution to select the robust optimal solution.
The regret of a decision in a specific scenario is its cost minus
the least cost among all decisions; moreover, the maximum
regret of a decision is introduced since there exist plenty
of possible scenarios. This can be a meaningful modifica-
tion since the same level of robustness against uncertainty
is maintained. However, according to [56], compared with
the normal maximum cost criterion, the performance of this
method depends on the construction of an uncertainty set
and the preference of the decision-maker. In [51], a unified
stochastic and robust unit commitment model is proposed that
will take advantage of the two optimization methodologies and
overcome their respective limitations, namely, computational
challenges for stochastic optimization (SO) and conservatism
for RO. The objective function consists of stochastic and
robust parts with adjustable weights in this work. Based
on preference, one can adjust the weights. More attention,
however, should be paid to the combination of SO and RO
for more investigations.

With respect to the potential development, the very first
one is the construction of the uncertainty set. Until now,
the basic box set, ellipsoidal set, split uncertainty set, and
discrete scenario-based uncertainty set could be handled with
additional considerations such as spatial and temporal corre-
lations. Methods for uncertainty set construction of different
problems could also be found. Nevertheless, there is a need
for more studies on this topic to more accurately represent the
actual information, as methods for uncertainty set construction
also greatly influence the level of conservatism. Moreover, the
possible combination of SO and RO is worth studying due to
their complementary characteristics. Reference [51] provides
one kind of possible combination. Another opportunity is
that the theory of RO can provide computationally tractable
approximations for chance-constrained uncertain linear pro-
gramming problems.

Finally, to justify the application of RO, more precise
interpretations of the robust optimal solution obtained by RO
should be presented based on the detailed situations of the
actual problems and when compared to other methodologies.

V. CONCLUSION

Power system operation is always a battle between
reliability and economic benefits, especially with the influx of
uncertainty resulting from the high penetration of renewables
generation. For the four prevailing operation methods,
the weight between reliability and economic benefits are
different. In scenario-based stochastic programming, the
reliability method can be secured exhaustively in all selected
scenarios. In the look-ahead dispatch, the operation method
is conducted dynamically, which reduces the dispatch cost

through fast response units and load shedding. As with
the risk-limiting dispatch method, by introducing stages of
recourse decision, operation strategies can become more
economical, flexible, and user-friendly as UC and ED are
combined, and risk is customized. Finally, robust optimization
ensures system safety and security at the price of expensive
operating costs. Accordingly, creating a universal operation
theory is hardly feasible. Rather, dispatch methods should be
matched to the specific operation requirements.
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