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Abstract

High performance speed sensorless control of induction motors (IMs) calls for estimation and control schemes that offer solu-
tions to parameter uncertainties as well as to difficulties involved with accurate flux/velocity estimation at very low and zero speed.
In this study, a new EKF based estimation algorithm is proposed for the solution of both problems and is applied in combination
with speed sensorless direct vector control (DVC). The technique is based on the consecutive execution of two EKF algorithms, by
switching from one algorithm to another at every n sampling periods. The number of sampling periods, n, is determined based on
the desired system performance. The switching EKF approach, thus applied, provides an accurate estimation of an increased num-
ber of parameters than would be possible with a single EKF algorithm. The simultaneous and accurate estimation of rotor, R0r and
stator, Rs resistances, both in the transient and steady state, is an important challenge in speed sensorless IM control and reported
studies achieving satisfactory results are few, if any. With the proposed technique in this study, the sensorless estimation of R0r and
Rs is achieved in transient and steady state and in both high and low speed operation while also estimating the unknown load tor-
que, velocity, flux and current components. The performance demonstrated by the simulation results at zero speed, as well as at low
and high speed operation is very promising when compared with individual EKF algorithms performing either R0r or Rs estimation
or with the few other approaches taken in past studies, which require either signal injection and/or a change of algorithms based on
the speed range. The results also motivate utilization of the technique for multiple parameter estimation in a variety of control
methods.
� 2007 Published by Elsevier Ltd.
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1. Introduction

Industry workhorse induction motors (IMs) constitute
a theoretically interesting and practically important class
of nonlinear systems and, hence, a benchmark problem
for nonlinear control [1]. IMs enjoy several inherent
advantages, like simplicity, reliability, low cost and
almost maintenance free electrical drives [2]; however,
the speed sensorless high performance control of IMs
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currently continues being a challenge due to the highly
coupled nonlinearities and multi-input, multi-output nat-
ure of the motor model. The problem has been addressed
by a variety of methods such as, field-oriented control

(FOC) or vector control [3], direct torque control (DTC)
[4], input–output linearization (feedback linearization)

controller [3,5], sliding mode control (SMC) [6] and passiv-

ity-based control (PBC) [3], each of which aims at
independent control of the torque and flux. Additional
difficulties are due to unknown load disturbances and
parameter uncertainties, mostly related to the stator
and rotor resistances varying with operating conditions.
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There are also well known problems related to high per-
formance control, particularly in the very low/zero speed
region, mainly due to lost rotor information on the sta-
tor side as well as noise and signal acquisition errors
[1,7,8]. In this regard, it is essential to design estimation
and control methods that provide robustness, predomi-
nantly against the variations of Rs;R0r and tL while also
providing solutions to problems at and around zero
speed.

Some recent studies seeking an observer based solution
to the problem of parameter variations can be listed as
follows; in Ref. [9], beside a speed estimator, a sliding
mode based flux observer and an online sliding mode
adaptation for the stator resistance is designed for DTC
of the IM, but the speed estimator and the resistance
adaptation suffer from variations of the rotor resistance
and the load torque, respectively. In the speed sensorless
study based on a speed adaptive flux observer [10], the
stator resistance has been estimated based on a two time
scale approach, while in the extended Luenberger obser-
ver (ELO) in Ref. [11], the rotor fluxes and rotor velocity
are estimated, as well as step type load torque; however,
no estimation has been conducted for the stator resis-
tance. Also, neither of the studies in Refs. [10,11] have
taken the rotor resistance into consideration. On the other
hand in Ref. [12], the angular velocity and slip frequency,
xr (reflecting the effect of the load torque) have been
taken into account in addition to the rotor resistance only
with an initial value of R0rð0Þ ¼ 0:85R0rn.

There are also extended Kalman filter (EKF) applica-
tions in the literature for the control of IMs with velocity
sensors [13–15] and without sensors. Different from the
other methods, the model uncertainties and nonlinearities
inherent in IMs are well suited to the stochastic nature of
EKFs [16]. With this method, it is possible to make an
online estimation of states while performing simultaneous
identification of parameters in a relatively short time inter-
val [17–19] by also taking system/process and measure-
ment noises directly into account. This is the reason why
the EKF has found wide application in sensorless control
of IM’s in spite of its computational complexity. Among
recent sensorless studies using EKF estimation for IMs,
Refs. [20,21] estimate the flux and velocity, while Ref.
[22] uses an adaptive flux observer in combination with
a second order Kalman filter for the same purpose. None
of these studies estimate the load and motor resistances,
resulting in a performance that is sensitive to the variation
of these parameters. In Refs. [23–25], the velocity is esti-
mated as a constant parameter, which gives rise to a sig-
nificant estimation error in the velocity during the
transient state, especially under instantaneous load varia-
tions, although the performance is improved in the steady
state. While Refs. [23,24] are sensitive to rotor resistance
variations, Ref. [25] also estimates the rotor resistance.
However, the estimation of rotor resistance is performed
by the injection of low amplitude, high frequency signals
to the flux reference in the DVC of IMs. This has caused
fluctuations in the motor flux, torque and speed. Finally,
recent studies of the authors [26,27] estimating the velocity
via consideration of the equation of motion in the EKF
model, together with the estimation of rotor resistance
and mechanical uncertainties, demonstrate improved
results. However, the results are sensitive to variations
of stator resistance, indicating the necessity of an
approach that estimates rotor resistance and stator resis-
tance simultaneously and accurately besides the load tor-
que for high performance control in a wide operation
range, including very low/zero speed.

Among the studies reported so far on Rs and R0r estima-
tion, Ref. [12] states that simultaneous estimation of the
stator and rotor resistances gives rise to instability in the
speed sensorless case. On the other hand, in studies such
as Refs. [28,29], the stator and rotor resistances are esti-
mated by injecting high frequency signals to the flux and
magnetizing current commands while also estimating the
speed and rotor flux. However, in Ref. [28], the algorithm
identifying the resistances used in the feedback lineariza-
tion controller is applicable only when the sensorless speed
control system is in steady state but not when the load tor-
que is varying largely or when the speed command is being
changed, as stated by the authors. On the other hand, in
Ref. [29], it is stated that persistent operation at zero fre-
quency is not possible and that the proposed drive can
compete with a speed sensor equipped drive only if accu-
racy in steady state is not essential and operation under
high loads is not a requirement; Ref. [30] presents a model
reference adaptive system (MRAS) based on three models
of which one is used for estimation of the rotor time con-
stant via high frequency signal injection. The other two
models are used interchangeably by enabling the stator
resistance estimation only during short intervals during
which the rotor speed has reached steady state. As for
the remaining few studies performing Rs and R0r estimation,
as in Refs. [31–33], R0r estimation is conducted only by
adjusting its value in proportion to the estimated Rs.

The major contribution of this study is the develop-
ment of a novel EKF based estimation technique, which
aims at accurate estimation of an increased number of
parameters, both in the transient and steady state, for
sensorless IM control. The technique does not require
signal injection and/or algorithm changes for different
parameters or speed ranges, as is commonly practised
in similar past studies. It is based on two EKF algo-
rithms that are switched on and off every n sampling
periods, the output parameters and states of which are
used in the direct vector control (DVC) of IMs With this
algorithm in this study, accurate estimation of both Rs

and R0r is achieved, as a novelty in sensorless control of
IMs, together with the unknown load torque, velocity,
flux and current components. Simulation results are pre-
sented using the new algorithm for the DVC of IMs with
the switching period taken as 100 · T for the desired
transient and steady state performance. The results high-
light the significant improvement achieved with the 
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simultaneous estimation of Rs and R0r over EKF results
obtained by either Rs or R0r estimation only.

This paper is organized as follows; after the Introduc-
tion in Section 1, Section 2 gives the extended mathemati-
cal models considered at each step of the EKF estimation.
Next, Section 3 describes the development of the EKF
algorithm, followed by Section 4 presenting a brief descrip-
tion of the direct vector control (DVC) scheme. The perfor-
mance of the proposed approach is tested by simulations
with the results presented in Section 5 and finally, Conclu-
sions are listed in Section 6.

2. Extended mathematical models of the IM

The sensorless DVC scheme developed for IMs
requires estimation of the stator flux components, wra,
wrb, angular velocity, xm and stator current components
isa and isb, which are also measured as output. In this
study, two extended models are developed, one that
includes the rotor resistance, R0r and the other the stator
resistance, Rs. The rest of the variables are the same for
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both extended vectors, xei, used in the two EKF algo-
rithms that run consecutively. The extended models can
be given (as referred to the stator stationary frame) in
the following general form:

_xeiðtÞ ¼ f eiðxeiðtÞ; ueðtÞÞ þ wi1ðtÞ
¼ AeiðxeiðtÞÞxeiðtÞ þ BeueðtÞ þ wi1ðtÞ ð1Þ

ZðtÞ ¼ heiðxeiðtÞÞ þ wi2ðtÞ ðmeasurement equationÞ
¼ H exeiðtÞ þ wi2ðtÞ ð2Þ

Here, i = 1,2; the extended state vector xei represents the
estimated states and load torque, tL, which is included in
the extended state vector as a constant state with the
assumption of a slow variation with time; fei is a nonlin-
ear function of the states and inputs; Aei is the system ma-
trix; ue is a control input vector; Be is the input matrix;
wi1 is process noise; hei is a function of the outputs; He

is the measurement matrix; and wi2 is measurement noise.
Based on the general form in Eqs. (1) and (2), the detailed
matrix representation of the two IM models can be given
as below:

Model 1: Extended model of IM derived for the estima-
tion of Rs, (Model-Rs):

 

Model 2: Extended model of IM derived for the estima-
tion of R0r, (Model-R0r):  
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Here, pp is the number of pole pairs; Lr = rLs is the sta-
tor transient inductance; r ¼ 1� L2

m
LsL0r

is the leakage or cou-
pling factor; Ls and Rs are the stator inductance and
resistance, respectively; L0r and R0r are the rotor inductance
and resistance referred to the stator side, respectively; vsa

and vsb are the stator stationary axis components of the sta-
tor voltages, respectively; isa and isb are the stator station-
ary axis components of the stator currents, respectively;
wra and wrb are the stator stationary axis components of
the rotor flux, respectively; JL is the total inertia of the
IM and load; and xm is the angular velocity; As can be seen
from Eqs. (3) and (4) to (5) and (6), the only difference
between the two extended vectors, xe1 and xe2, are the con-
stant states Rs and R0r, respectively. Additionally, as in both
algorithms isa and isb are the measured variables, and the
measurement noises, w12 and w22, are equal.

3. Development of the EKF algorithm

An EKF algorithm is developed for estimation of the
states in the extended IM models given in Eqs. (2) and
(3) to be used in the sensorless DVC of the IM. The Kal-
man filter is a well known recursive algorithm that takes
the stochastic state space model of the system into account
together with measured outputs to achieve the optimal esti-
mation of states [34] in multi-input, multi-output systems.
The system and measurement noises are considered to be
in the form of white noise. The optimality of the state esti-
mation is achieved with the minimization of the covariance
of the estimation error. For nonlinear problems, the KF is
not strictly applicable, since linearity plays an important
role in its derivation and performance as an optimal filter.
The EKF attempts to overcome this difficulty by using a
linearized approximation where the linearization is per-
formed about the current state estimate [35]. This process
requires discretization of Eqs. (3) and (4) or (5) and (6)
as below:

xeiðk þ 1Þ ¼ f eiðxeiðkÞ; ueðkÞÞ þ wi1ðkÞ ð7Þ
ZðkÞ ¼ HexeiðkÞ þ wi2ðkÞ ð8Þ

As mentioned before, the EKF involves a linearized
approximation of the nonlinear model, Eqs. (7),(8) and
uses the current estimation of states x̂eiðkÞ and inputs
ûeðkÞ in linearization by using
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Thus, the EKF algorithm can be given in the following
recursive relations:

NiðkÞ ¼ F eiðkÞP iðkÞF eiðkÞT þ F uiðkÞDuF uxðkÞT þ Qi ð11aÞ
P iðk þ 1Þ ¼ N iðkÞ � N iðkÞH T
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e Þ
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n
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Here, Qi is the covariance matrix of the system noise,
namely model error. Dn is the covariance matrix of the out-
put noise, namely measurement noise. Du is the covariance
matrix of the control input noise (vsa and vsb), namely input 
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noise. Pi and Ni are the covariance matrix of the state esti-
mation error and extrapolation error, respectively.

The algorithm involves two main stages: prediction and
filtering. In the prediction stage, the next predicted states
f̂ eið�Þ and the predicted state error covariance matrices,
Pi(Æ) and Ni(Æ) are processed, while in the filtering stage,
the next estimated states, x̂eiðk þ 1Þ, obtained as the sum
of the next predicted states and the correction term (second
term in Eq. (11c)) are calculated.

The schematic representation of the new EKF based
switching estimation algorithm is given in Fig. 1. As can
be seen in Fig. 1, two EKF algorithms with two different
extended models are run consecutively, one for the estima-
tion of Rs and one for the estimation of R0r in this case.
Thus, both algorithms estimate the same state variables
except for the resistances; i.e. one of the EKFs estimates
the rotor resistance during one switching period and the
other estimates the stator resistance in the next switching
interval and so on. After the initialization of the states
and determination of tstart and tswicth, which is the start time
and duration of the EKF algorithms, respectively, the algo-
rithms are run by switching them on and off, consecutively
and for equal durations. The final values of Pi(k + 1) and
x̂eiðk þ 1Þ calculated at the end of each switching period
are passed over to the next EKF algorithm at the end of
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Fig. 1. Flowchart of the novel
the period as the initial values of the covariances and states
for the new switching period during which the other algo-
rithm will be running. The estimated resistance during
the previous period is also passed on to the new algorithm
and is assumed constant in the other EKF model through-
out the whole switching period during which the other
resistance value is calculated as well as the states variables.

4. Speed sensorless DVC system

Fig. 2 demonstrates the speed sensorless DVC
system based on rotor flux. Here, ĥrf stands for the posi-
tion of the flux with reference to the stationary axis,
while

_̂hrf is the angular velocity of the rotating d–q axis.
The velocity, field and torque controllers given in the
diagram are conventional proportional-integral (PI)
controllers.

5. Simulation results and observations

To test the performance of the proposed estimation
method, simulations are performed on an IM with the
rated parameters given in Table 1.

The values of the system parameters and covariance
matrix elements are very effective on the performance of
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switching EKF algorithm.  



Fig. 2. Speed sensorless DVC system.

Table 1
Rated values and parameters of the induction motor used in the experiments

P (kW) f (Hz) JL (kg m2) BL (N m/(rad/s)) pp V (V) I (A)

3 50 0.006 0.001 2 380 6.9

Rs [X] R0r½X� Ls [H] Lr [H] Lm [H] Nm [rpm] Te [N m]

2.283 2.133 0.2311 0.2311 0.22 1430 20
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the EKF estimation. In this study, to avoid computa-
tional complexity, the covariance matrix of the system
noise Qi is chosen in diagonal form, which also satisfies
the condition of positive definiteness. According to the
KF theory, the Qi, Dn (measurement error covariance
matrix) and Du (input error covariance matrix) have to
be obtained by considering the stochastic properties of
the corresponding noises [36]. However, since these are
usually not known, in most cases, the covariance matrix
elements are used as weighting factors or tuning parame-
ters. In this study, for both EKF algorithms, the tuning of
the initial values of the Pi and Qi is done by trial and
error to achieve a rapid initial convergence and the
desired transient and steady state behaviors of the esti-
mated states and parameters, while the Dn and Du are
determined taking into account the measurement errors
of the current and voltage sensors and the quantization
errors of the ADCs, as given below:

For Model-Rs;

Q1 ¼ diagf 10�9½A2� 10�9½A2� 10�9½Wb2� 10�9½Wb2�
10�4½ðrad=sÞ2� 10�4½ðN mÞ2� 10�5½X2� g

P 1 ¼ diagf 9½A2� 9½A2� 9½Wb2� 9½Wb2�
9½ðrad=sÞ2� 9½ðN mÞ2� 9½X2� g
For Model-R0r:

Q2 ¼ diagf 10�9½A2� 10�9½A2� 10�9½Wb2� 10�9½Wb2�
10�4½ðrad=sÞ2� 10�4½ðN mÞ2� 10�5½X2� g

P 2 ¼ diagf 9½A2� 9½A2� 9½Wb2� 9½Wb2�
9½ðrad=sÞ2� 9½ðN mÞ2� 9½X2� g

For both models

Dn ¼ diagf 10�6½A2� 10�6½A2� g
Du ¼ diagf 10�6½V 2� 10�6½V 2� g

and sampling time T = 100 ls.
As can be seen from the time axis in Fig. 3, seventeen

different scenarios are created to test the performance of
the estimation and control algorithm in the time interval
of 0 6 t 6 24 s. These scenarios are developed with simul-
taneous changes imposed on the stator and the rotor resis-
tance (Fig. 3a), on the velocity reference (Fig. 3b) and the
load torque values (Fig. 3c) used in the simulation model.

As is well known, it is difficult to obtain the initial value
of the rotor resistance in a squirrel cage IM, but that of the
stator resistance can easily be determined by the DC test.
Therefore, it is assumed that the initial value of the stator
resistance is known at the outset of the scenarios, while
the estimation of the other parameters and all the states
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is started with an initial value of zero, as a more reasonable
approach. Thus, the EKF algorithm for the Model-R0r is
given a start, and after tstart = 1[s], as shown in Fig. 3,
the two EKF algorithms are used consecutively by switch-
ing from one to the other at the end of a constant time
interval of duration, tswitch, in order to estimate the rotor
and stator resistances besides all the other variables
required by the control scheme. For the desired transient
and steady state performance criteria of this system, the
tswitch is selected as 100 · T (T is sampling period). The
switching duration, tswitch is determined based on the fol-
lowing procedure:
(i) Tune Pi vs. Qi until the desired estimation perfor-
mance is achieved by each EKF algorithm; namely
EKF-bRs and EKF-bR0r.

(ii) After the tuning stage, increase tswitch = n · T (where
n = 1,2,3. . . and T is sampling period) by increasing
n, until the desired estimation performance is
reached.

In this study, the tswitch is increased to 100 · T in order to
achieve an improved performance in the transient and
steady states under unmatched variations of Rs and R0r,
which is the most challenging case for both EKF algo- 



M. Barut et al. / Energy Conversion and Management 48 (2007) 3120–3134 3127 
rithms. Intervals with unmatched variations describe inter-
vals during which, while one type of resistance is being esti-
mated, the other one is given a major variation. In this
study, the best ‘‘n’’ is also determined under unmatched
variations with the following scenario, given in Fig. 3, in
which EKF-bR0r is switched on at t = 2.01 [s] when
Rs : 2 * Rsn! Rsn, or similarly, EKF-bRs is switched on at
t = 4[s] when R0r : R0rn ! 2 � R0rn.

The resulting system performance for all scenarios is
given with Fig. 4a representing the velocity estimate, n̂m,
Fig. 4b depicting the velocity error, ðnref

m � n̂mÞ and
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Fig. 4. Simulation results for the estimation of velocity obtained with the switch
of the velocity controller input, (c) Variation of the estimation error of nm; enm
Fig. 4c giving the estimation error, nm � n̂m. The variation
of the applied and estimated load torque is given in
Fig. 5a with Fig. 5b representing the estimation error,
(tL � t̂LÞ for this variable. The variations related to Rs are
given in Fig. 6a and b with the former plot representing
the actual and estimated variations of the Rs, while the lat-
ter plot represents the estimation error, Rs � bRs. As for the
rotor resistance, R0r, the actual and estimated variation of R0r
with the initial value of zero and the estimation error,
R0r � bR0r are demonstrated with Fig. 7a and b, respectively.
Finally, Fig. 8a, b and c represent the estimated flux mag-
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nitude, j~̂wrj, the error between the reference and actual

(estimated) flux magnitude, j~wrjr � j~̂wrj and the flux estima-

tion error, ðj~wrj � j~̂wrjÞ, respectively. Finally, the system
performance in the zero speed range under the scenarios
given in Fig. 9a is demonstrated in Fig. 9b for the estima-
tion error, nm � n̂m and in Fig. 9c for the variation of the
estimated hrf, which is the position of the flux with refer-
ence to the stator stationary axis.

Analyzing the simulation results, the following observa-
tions are made:
� In spite of no a priori information on the estimated

states and parameters, except for the stator resistance ini-
tialization in the interval of 0–1[s], the estimation perfor-
mances of the switching EKFs are quite good, even
under challenging variations of the velocity reference and
the load torque as well as matched and unmatched resis-
tance variations.
� As mentioned before, the estimation and control algo-

rithms are challenged with the unmatched variations. Even
under extreme conditions, it has been demonstrated that
the proposed estimation algorithm combined with the sens-
orless DVC performs quite well as can been seen at
t = 2.01[s] and t = 4[s] under the scenarios given in
Fig. 3. On the other hand, with matching algorithms and
parameter variations, better transient and steady state per-
formances are obtained with the proposed algorithm, as
can be seen at t = 14[s] when Rs : 2 * Rsn! Rsn, while Rs

estimation is on and at t = 16.01[s] when
R0r : 2 � R0rn ! R0rn while R0r estimation is active.
� The new estimation technique has performed quite

well also in the problematic zero speed operation [37], as
can been seen in the time interval of 18[s] 6 t 6 22[s] for
the scenarios given in Fig. 3 and in the interval of
2[s] 6 t 6 17[s] for the scenarios given in Fig. 9a. More-
over, it has been observed that the source of the estimation
error of the velocity, enm ¼ nm � n̂m, in the time interval
11[s] 6 t 6 17[s] is the step shaped extreme variations of
the R0r;R

0
r : R0rn ! 2 � R0rn, or R0r : 2 � R0rn ! R0rn, which also

affect the estimation of tL, especially when tL = 0 [N m]
and nm = 0[rpm]. However, this error also converges to
zero as can be seen in Fig. 9b. Additionally, in the time
interval 7[s] 6 t 6 17[s] in Fig. 9c, which constitutes the
dc condition, it can be observed that the proposed estima-
tion technique has performed well under the most challeng-
ing operation condition inherent to the speed sensorless
control of IMs.
� The tL is considered constant in the EKF extended

models, and the algorithm is challenged with a linear tL

variation in the time interval 11[s] 6 t 6 13[s]. In spite of
this mismatch, satisfactory results have been obtained with
the new technique.  
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� The proposed scheme also facilitates indirect evalua-
tion of uncertainties that have the same variation as a state
or parameter that is being estimated. In this study, the vis-
cous friction (Fv = bL xm) is taken into account in the sim-
ulation model representing the system but not in the
extended model; thus, the estimated tL as a constant state
is expected to include also the viscous friction value once
the steady state is reached. This fact can be demonstrated
easily as follows:

In the intervals, 1[s] 6 t 6 7[s], 13[s] 6 t 6 18[s] and
23[s] 6 t 6 24[s], during which both the velocity reference
and load torque are given positive constant values, the
error in the torque estimation is etL
ffi �0:1571 or etL ¼

�0:0021. In the interval, 9[s] 6 t 6 11[s], where both the
velocity and torque reference are given negative values,
the error is found to be etL ¼ 0:1571. Thus, considering
the viscous friction coefficient bL = 0.001 used in the model
and the interval 1[s] 6 t 6 2[s] (high speed range), the
actual angular velocity is calculated as

xmð1Þ ¼ x̂mð1Þ þ exmð1Þ ¼ 2pð1500:5� 0:3223Þ=60

¼ 157:0982 ½rad=s�
In the steady state, etL should be equal to the friction taken
into account in the model; hence,  
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etL ¼
! �bLxmð1Þ

� 0:1571¼! �0:001� 157:0982

� 0:1571½N m� ffi �0:1570982 ½N m� ð12Þ

which is almost equal to the etL in Fig. 5(b) at t = 2[s].
Similar analysis can be conducted in the interval

16[s] 6 t 6 18[s] (the very low speed range) during which

xmð1Þ ¼ x̂mð1Þ þ exmð1Þ

¼ 2pð19:8785� 0:1875Þ=60 ¼ 2:0620½rad=s� ð13Þ
etL ¼
! �bLxmð1Þ

� 0:0021¼! �0:001� 2:0620

� 0:0021½N m� ffi �0:0020620½N m�

ð14Þ

This fact should also be taken into consideration in the
evaluation of the load torque estimation. By inspecting
the tL estimation, it can be observed that linear variations
and reversals of tL give rise to some estimation error for rel-
atively short transient durations; however, in the intervals
with constant velocity reference and constant tL, this error
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is much lower and almost zero once the Fv component is
subtracted from tL.
� Simulations are performed to compare the perfor-

mance of the switching EKF algorithm with individual
EKF-bRs (with Rs estimation only) and individual EKF-bR0r
(with R0r estimation only) for both high and low velocity
operation. As can be seen in Fig. 10, two switching dura-
tions are considered for this purpose: 1 · T and 100 · T,
the latter of which gives rise to a lower estimation error,
enm ¼ nm � n̂m. As the highest velocity estimation error
has occurred at the rated load torque, tLn , this value is con-
sidered in the simulation model for the comparative scenar-
ios. Also, it is demonstrated that the initial performance of
the switching operation is independent of the initial value
of the Rs estimation, which is taken as 0 and Rsn in the
simulations to demonstrate this property.
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Inspection of the results demonstrates the improved per-
formance of the new algorithms in both high and low
velocity ranges. The performance deterioration of the indi-
vidual EKF-bRs and EKF-bR0r algorithms, particularly when
the speed reference approaches zero, is also obvious, as can
be seen with the calculations at 6[s] based on the data given
in Fig. 10a:

For nr
m ¼ 1500[rpm]

enmð%Þof EKF-bR0r ¼ 75:6375
1500
� 100 ¼ 5:0425%[rpm]

enmð%Þof EKF-bRs ¼ �62:4519
1500

� 100 ¼ �4:1635%[rpm]
enm ð%Þof the proposed method ¼ 0:2718

1500
� 100 ¼ 0:0181%

[rpm]

For nr
m ¼ 100[rpm]
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enmð%Þof EKF-bR0r ¼ 21:5239
100
� 100 ¼ 21:5239%[rpm]

enmð%Þof EKF-bRs ¼ �64:0109
100

� 100 ¼ �64:0109%[rpm]
enmð%Þ of the proposed method ¼ 0:1178

100
� 100 ¼ 0:1178%

[rpm]

6. Conclusion

In this study, a switching EKF algorithm is developed
for the estimation of two parameters that are critical for
the high performance sensorless control of IMs, namely,
Rs and R0r. The estimation of these two parameters is often
reported as a challenge in sensorless IM control. The
switching algorithm developed to this aim also estimates
the uncertain load torque and velocity as well as the flux
and current components. In this study, the proposed algo-
rithm is run in combination with the speed sensorless direct
vector control (DVC) of IMs; however, it could be used
with a variety of other methods applied for the sensorless
control of IMs.

Besides the proper updates of Rs and R0r that improve the
flux and speed estimation, the performance of the switching
algorithm also benefits from the estimation of velocity via
the equation of motion, as opposed to its estimation as a
constant as in most past studies. This approach helps
restore the lost rotor information on the stator side, hence
improving the very low/zero speed operation. This aspect
of the study is an extension of the authors’ previous
research presented in Refs. [26,27].

The performance of the algorithm is tested in the very
low and zero speed region and also evaluated with 17 sce-
narios developed by giving step type and linear variations
to the load torque and angular velocity reference. The
robustness of the algorithm to stator resistance, Rs, and
rotor resistance, R0r variations is tested with step type
changes imposed on Rs and R0r. As a result, the estimation
of both Rs and R0r with the new algorithm has yielded a bet-
ter performance in comparison to individual EKF-bRs and
EKF-bR0r algorithms, which conduct Rs or R0r estimation
only.

The system performance is observed to be quite good
under step type variations and reversals in the load torque
and step/linear changes and reversals in the angular veloc-
ity. The system has also demonstrated the expected robust-
ness to step type variations forced on the Rs and R0r, and
acceptable errors are obtained even with the linear varia-
tions and reversals of the load torque. The estimation of
the load torque, tL, as a constant state in this algorithm,
also accounts for mechanical uncertainties, which is the vis-
cous friction torque in this case, thereby improving the esti-
mation performance.

Finally, an important advantage of the proposed
method over previous methods is that Rs and R0r estima-
tions can be performed both in transient and steady states
without signal injection and/or algorithm changes based on
parameters or speed. Other multiple model based methods,
such as Refs. [28–30] are executable only during steady
state and cannot handle large load torque or speed varia-
tions, as also stated by their authors. Moreover, when con-
sidering studies such as Refs. [31–33], it should be noted
that adjusting the value of R0r with respect to the estimated
Rs means using only an approximate value of the actual R0r,
which does not include frequency based variations in R0r.
Thus, the proposed switching EKF method addresses all
the above deficiencies by demonstrating a good perfor-
mance under large uncertainties and load/speed variations
in the transient and steady states.
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