
Survey of Standardized Protocols
for the Internet of Things

Iulia Florea, Razvan Rughinis, Laura Ruse, Dan Dragomir,
Computer Science and Engineering Department

University Politehnica of Bucharest
Bucharest, Romania

Email: iulia.florea@cti.pub.ro, {razvan.rughinis, laura.ruse, dan.dragomir}@cs.pub.ro

Abstract—Internet of Things is a growing technology,
developing in multiple fields, from smart homes to health and
industries. From a technological perspective, it enables the
development of new protocols and scenarios, since the standard
network protocol suite cannot face the growing number of
connected devices and data transmitted. This paper aims to
present several standardized protocols, at different networking
levels, developed especially for embedded devices with low
memory, low processing power and low data rate. We also
propose a smart home scenario that uses only standardized IoT
protocols.

Keywords—IoT, CoAP, MQTT, mDNS, DNS-SD, 802.15.4,
LoRaWAN, 6LoWPAN, smart home, sensor nodes, robot assistant.

I. INTRODUCTION
Recently, the Internet of Things (IoT) has become an

important research field. It can be described as a
communication system where any device can be connected to
the Internet and be able to identify itself to other objects. It can
be applied in different domains, from personal use, such as
smart homes or wearable devices to fields such as urban
environment monitoring, health care, industrial automation or
emergencies.

Generally, the IoT devices have low memory, reduced
battery capacity, reduced processing capabilities and
vulnerable radio conditions. The standard TCP/IP stack is not
suitable for this environment, so working groups have started
to adapt the existing protocols to new versions for IoT.

An addressing scheme, such as IPv6 should be taken into
consideration, since there are billions of interconnected nodes.
Multiple working groups already started to standardize IoT
specific protocols, such as 6LoWPAN (RFC 4944 and RFC
6282), IEEE802.15.4 and ZigBee describe ways of enabling
IPv6 in constrained environments. Other requirements refer to
security and privacy, since the number of Denial of Service
attacks has recently increased.

At the application layer, a common way of retrieving and
requesting data is using Web architecture, and more specific,
HTTP. This uses URIs as resource identifiers and it is based on
REST architecture to publish information. For embedded

devices, there is a Constrained RESTful Environments (CoRE)
IETF working group, that aims to develop RESTful protocols,
compatible with HTTP for resource-constrained devices. They
specified CoAP, an application-layer protocol for IoT.

In this paper, we present a survey of the most used
standardized protocols for Internet of Things. We investigate
application layer protocols (CoAP, MQTT), service discovery
protocols (mDNS, DNS-SD, uBonjour) and infrastructure
protocols (IEEE 802.15.4, 6LoWPAN, LoRaWAN). We
present different ways to integrate different application-layer
protocols such as MQTT, CoAP and HTTP. Finally, we
propose a smart home system with wireless sensor nodes and
robot assistants that use standardized IoT protocols (IEEE
802.15.4, 6LoWPAN, CoAP).

The paper is organized as follows. The second section
presents the application-layer protocols, the third the service
discovery methods, the fourth the interaction between protocols
and the fifth presents a smart home scenario, that uses only
standardized protocols. Finally, some conclusions are
summarized.

II. APPLICATION LAYER PROTOCOLS
The application layer provides the services that the users

need. These protocols handle information between gateways
in local networks and Internet, update users with latest
obtained data and carry commands from applications to end
devices.

A. CoAP
Nowadays, applications depend on the Web architecture,

using HTTP for getting information or updates. This is based
on REST (Representational State Transfer) architectural style,
that makes resources available through URIs. HTTP is rather
complex for small IoT devices, so a new protocol based on
REST was specified by IETF CoRE working group. This
protocol is called Constrained Application Protocol (CoAP), a
web transfer protocol that exchanges data between servers and
clients [1].

It uses UDP instead of TCP at the transport layer and
defines a “message layer” to deal with retransmissions. Fig.1.

2017 21st International Conference on Control Systems and Computer Science

2379-0482/17 $31.00 © 2017 IEEE

DOI 10.1109/CSCS.2017.33

190

presents the CoAP header, which has a length that varies from
4 to maximum 16 bytes [2]. The first two bits, “Ver” represents
the version of CoAP, set to 1 for now; it defines the current
version and other values are reserved for the future. The next
field, “T” is the type of Transaction. It is a 2-bit integer and its
possible values are 0, for confirmable messages, 1 for non-
confirmable, 2 for acknowledgement and 3 for reset packets.
“OC” is the Option Count, referring to the number of options
set in the packet. “Code” in an 8-bit integer, split into a 3-bit
class and a 5-bit detail. The class can indicate a request (0), a
success response (2), a client error response (4) or a server
error response (5). A code of 0.00 means an empty message.
The “Message ID” is used to detect duplicates and to match
packets of type Acknowledgement/Reset to packets of type
Confirmable / Non-Confirmable. The “Token” values are used
to pair requests to responses. This can be followed by zero or
more “Options”. If there is also a “Payload”, then a prefix
marker is present (0xFF), to separate the two last fields [3].

Fig. 1. CoAP Header

Some of the most important features provided by CoAP are
resource observation, referring to subscriptions to interesting
published data, block-wise resource transport (exchanging
transceiver data with partial updates, to avoid overhead),
security, together with DTLS, resource discovery, based on
well-known URIs [2]. One of the most important advantages is
that it can interact with HTTP, through proxies. It is possible to
build intermediates that run CoAP on one side and HTTP on
the other. Since there are equivalent methods, requests and
response codes, it is straightforward to statically map between
the two protocols. They both use URIs for identification:
“coap://” and “http://”. Reverse proxies can also be enabled,
that make standard HTTP clients able to transparently access
CoAP servers. Is is also possible to map a single HTTP request
to a multicast CoAP request. The responses are aggregated into
a single HTTP response and sent to the client [1].

Regarding the CoAP options, some of the most important
are Block, Observe and Discovery. The first one is used in case
of larger packets. Generally, CoAP messages from light or
temperature sensors imply small payloads, but in case of
updating firmware, larger packets are necessary. CoAP does
not rely on IP fragmentation and it uses the Block option. This
means that multiple packets are sent in request-response pairs.
It enables a server to be completely stateless and handle each
transfer separately. Observe is an option sent by clients in
request. Instead of sending multiple GET messages to obtain
information on a resource, they can specify this option and
receive asynchronous messages every time it changes. In
machine-to-machine environments, the devices should be able
to discover resources, in a similar way to HTTP “/index/”
pages. For this /.well-known/scheme” page is available.

Resource descriptions are also standardized and they can be
found at “/well-knows/core” URIs and can be accessed through
GET packets [1].

B. MQTT
Message Queue Telemetry Transport (MQTT) is a

messaging protocol that aims to connect embedded devices
with applications and middleware, standardized in 2003, by
OASIS [4]. It is built on top of the TCP layer and it is suitable
for low resource devices. It consists of three elements,
subscriber, publisher and broker. The publisher is the one that
sends data and it forwards through the Broker through
subscribers.

The broker also acts as a security mechanism, being able to
authorize both entities. Since it uses little resources, it is
commonly used in machine-to-machine messaging, in health
care, monitoring or Facebook notifications [2].

The header of an MQTT message has a variable length,
between 1 to 4 bytes. The first two bits are fixed, then the
“Message Type” can get one of the following values:
CONNECT(1), CONNACK(2), PUBLISH(3), SUBCRIBE(8)
or others. The next field is the “DUP” flag. If it is set, then the
message is a duplicate and the server may have received it
earlier. There are three levels of “QoS” for PUBLISH
messages that can be found in the header. The “Retain” field
tells the broker to keep the message and send it to subscribers
as a first message [2].

Every client, published or subscriber, sends a “CONNECT”
message to the Broker to establish a connection. In order to
keep the connection alive, the client must send periodical
messages to the broker, either data or ping. In the
“CONNECT” message, the client can send a “will” message,
that would be published by the broker in case it doesn't get any
keep alive messages from the client. They can send
“PUBLISH” messages, containing a topic and a message, or
they can send “SUBSCRIBE” messages to receive packets.
Also, the clients can send “UNSUBSCRIBE” to stop receiving
messages on a certain topic and they acknowledge every packet
they send [5].

There are two major specifications, MQTT and MQTT-SN.
The later was defined for sensor networks and was optimized
for low bandwidth, battery operated devices and high link
failures. There are several differences between the two
implementations. First of all, in MQTT-SN the “CONNECT”
message is split between one mandatory and two optional
messages, used to transfer the “Will” topic and message to the
server. In the “PUBLISH” message, the topic names were
replaced with IDs. Before this, registration messages were sent
to get, from the server, a unique ID for a specific topic. In this
case, the clients should also be informed in advance by the
corresponding IDs. Also, pre-defined topics or short names
can be added, to skip registration. These are two byte long and
they are known in advance by both clients and publishers. A
discovery procedure was added for clients to get the network
address of an operating gateway that communicates with the
broker. “Will” topics and message are persistent in case of
MQTT-SN, and the clients can modify them during a session.

191

If the devices are in sleep mode, the messages directed to them
are stored at the server and sent when they wake up [6].

C. CoAP versus MQTT
Thangavel et al. [7] perform a comparison between the two

protocols running in the same environment. The middleware is
extensible, having support for existing and future application
protocols, it provides a common API to access different
functionalities and it is adaptive, so in the future it will be able
to choose a running protocol based on the constraints. In the
first test, the influence of packet loss on delay was considered.
At a loss rate lower that 20%, MQTT has little delay, but in
case of higher rates, CoAP performs better. This happens
because CoAP runs over UDP, has its own retransmission
scheme and avoids the overhead implied by TCP
retransmissions. The second test computes the total amount of
data transferred in case of different values for packet loss. In
case of CoAP there is less data re-sent and the higher values
are obtained in MQTT when the QoS level 2 is set, because it
requires a four-way handshake. Another test was performed to
compare the overhead for different message sizes. When the
packet loss is low, CoAP generates less overhead, regardless
the message size. In case of higher rates and larger packets,
MQTT generates less overhead. This can be explained by the
fact that there is a higher risk of losing large packets when
using UDP than in case of TCP [7].

III. SERVICE DISCOVERY PROTOCOLS
In the Internet, the most extended discovery architecture is

based on Domain Name Server (DNS), but this is not a suitable
option for the Internet of Things, because IoT devices join or
leave networks more often. So, two extensions have been
developed, called DNS-SD (Service Discovery) and mDNS
(multicast DNS).

The challenges that they must face, related to Internet of
Things, are scalability, since there is an estimation that, in
2020, there will be almost 50 billion devices connected,
dynamism, for wearable smart devices, that can easily switch
connections, devices in sleep mode, leading to a limitation for
queries addressed to endpoints and payload size, as less data is
transferred.

Local directories should be extended to give information on
other domains where resources are available. Also, directories
should support multicast, for queries such as “turn off all lights
in the room”, where all the endpoints are treated as one. The
access to directories should be done in an already known
manner and a common description should be used for services
and attributes [8].

A. mDNS and DNS-SD
mDNS (RFC6762) [9] is a service that can perform the task

of a DNS server. In a local network, every client has a cache
where it keeps the pairing between names and addresses. Every
time a device wants to get name information, it sends a
multicast query and waits for a response. The targeted machine
sends a multicast response in the network and all the devices
that receive it save the pairing in their local cache. It has the

advantage that there is no need for a dedicated server and it
also adapts easily to changes in the network [2].

DNS-SD (RFC6763) [10] is a solution proposed by IETF
ZeroConf WG that re-uses and extends the capabilities of the
DNS. It uses the same types of queries (AAA, PTR) and
enables locating and publishing services in a network [9]. For
instance, clients that want to get printer services in the network
use DNS-SD. They have firstly to get the names of the devices
that provide the required service, then they use mDNS to get
the address. It is essential to first find the hostname, because
the IP addressed may change. The main drawback of these two
protocols is the need to keep cache entries in devices with low
memory. Bonjour and Avahi are two well-known
implementations based on DNS.

B. uBonjour
uBonjour is a lightweight service that combines mDNS and

DNS-SD for addressing and discovering services available in a
network. It provides standardized discovery and self-
configuration without any hardcoded addresses, both necessary
in IoT. It implements the standards defined by DNS protocols
and systems are able to discover each other without any
gateway. When an IoT node requests for a service, it is added
in the database and they are deleted when getting a “service
unavailable” message [11].

Resolving hostnames is based on mDNS, meaning that a
multicast request is sent. The device responses with an A
record, containing the address. This message will be
broadcasted to all listening devices. In case of services, a
multicast PTR record is sent. If the service name is found, then
a broadcast message containing the address and the port is sent.
Otherwise, a timeout is triggered [11].

In order to publish a service, an IoT node has to send four
standard DNS records and each application has to register an
address, a hostname and a port. To remove a service, the device
has to send a PTR record having the TTL set to 0. Updating a
service implies re-sending the four records with new data.
Eight service registration are supported per device [11].

Further optimizations can be obtained by minimizing data
traffic, by using two methods. The first one, Known Answer
Suppression. If a node already has an older response to a query
and it wants to get newer information, it sends a query that
contains not only the question, but also the data it already has.
The responder doesn't send anything if the correct information
is already in the query. Otherwise, it sends updates. The other
is Duplicate Question Suppression. If a host wants to send a
query and it sees that another host is sending the same request,
then it should wait for the broadcast response [12].

Another optimization is One-Way Traffic, which puts a
device in passive mode. It publishes services periodically and
responds to incoming requests. So, it avoids active resolving of
hostnames and parsing queries from other devices.

IV. INFRASTRUCTURE PROTOCOLS
At the physical and media access layer, the standardized

protocols are designed for different needs. Part of them are

192

specialized for local networks, which require low distances
and low power. They are addressed especially to smart
buildings or homes. Others can offer a high range, being able
to supply the needs of smart cities or industrial environments.

A. IEEE 802.15.4
The IEEE 802.15.4 [13] standard was especially designed

for low-power, short-range and low-bit rate embedded devices.
The IEEE 802.15 working groups aims to keep the hardware
costs low, to spread the protocol compatibility among sensors.
The protocol describes the physical layer and the media access
control sublayer [14].

The physical layer is responsible with activation and
deactivation of the radio transceiver, receiving and transmitting
data and selecting a channel and listening on it. At this layer,
there are two supported frequencies. The low-band (868/915
MHz), that uses binary phase shift key modulation and the high
band (2.4GHz) that uses offset quadrature phase shift keying
modulation. There are 27 available channels, 11 in low band
and 16 in high band. The raw bit rates are 20-40kbps in low
band and 250kbps in high band. By using these modulations
and spreading techniques, the transmissions are robust and
noise resistant [15].

At the MAC layer, CSMA/CA is enabled, together with
optional time slot structure and security. Every time a device
wants to send data, the medium is checked by the PHY layer. If
it is occupied, the transmission is postponed for a certain period
of time [14].

The transmission units are called Physical Protocol Data
Unit for Layer 1 and MAC Protocol Data Unit. The PPDU
header has two fields, then the payload is added. The SYNC
field is used for clock synchronization and the PHY field
contains the length of the payload. In the MAC frame, the first
two bytes indicate the type of the frame [14]. There are four
types of frames defined in the standard. The first ones, beacon
frames are used by coordinators to describe the way the
channels can be accessed. Then, there are data frames and
acknowledgements sent as responses for control and data
packets. The last, control frames are used for network
management, such as associations or disassociations [15]. The
next flag, the sequence number, is used by acknowledgements
and refers to the received frame. Then, there are addressing
pieces of information, related to source, destination addresses
and security. The last two bytes represent the checksum, used
for data integrity.

 The devices are classified into two categories: full
function (FFD) and reduced function devices (RFD). A RFD
can communicate only with an FFD, while an FFD can
communicate with both types. The latter have, generally, the
role of coordinators. They keep a routing table and are
responsible with network creation and maintenance. The
standard topologies in 802.15.4 include star, with a central FFD
and several RFDs that communicate with it, peer-to-peer
(mesh), where there is a coordinator, several FFDs and RFDs
and cluster, having a coordinator, a FFD and several RFDs [2].

An interesting situation happens when 802.11 and 802.15.4
devices run in the same area and they use the 2.4 GHz
frequency. Two situations were analyzed. The first case is the

one when 802.11b transmissions interfere with 802.15.4
communications. The degradation is higher if the frequencies
are not shifted with 7MHz. Also, there are more errors for
larger packets. In the second case, wireless 802.11b/g
transmissions are interfered. Here, there are errors when the
WiFi packets are larger than 600bytes and the offset between
central frequencies is 2MHz [15].

Security is provided at the MAC layer, using AES-128 with
CCM mode of operation. It supports 8 levels of security, where
0 means unsecured, levels 1 to 3 provide only integrity and
authentication, while levels 4 to 7 also provide data
confidentiality [13].

B. 6LoWPAN
6LowPAN is developed by an IETF working group

especially for small networks and embedded devices
interconnected by IEEE 802.15.4 in RFC4944 [16]. It
maintains an IPv6 network, but with compressed headers. A
new layer is added, between the network and data link,
responsible with fragmentation, reassembly, header
compression and data link layer routing for multi hop [16].

The first byte of the encapsulation header identifies the next
header. The first three bits are used for indication, while the
others have different purposes, depending on the header type.
If they are 00x, then this is not a 6LoWPAN frame and are
used if case of protocols co-existence. 010 means
Uncompressed or HC1 compressed and the type of the address
can be determined by the last 5 bits. 10x means that the next
header is a mesh header and the next 5 bits are used for routing.
11x is a fragmentation header [16].

HC1 is the main compression technique defined in
RFC4944 [16]. It is used for packets containing link layer
addresses and it removes the common fields, such as Version,
TC, Flow label, it doesn't send the link layer addresses (which
can be computed from 802.15.4 header), and the standard
prefix length. The next header field is limited to TCP, UDP and
ICMP [16]. RFC 6282 adds two new compression techniques,
LOWPAN_IPHC and LOWPAN_NHC. The first one uses 13
bits for compression. It removes the Version field and
compresses Traffic Class and Flow Label into 2 bits. Hop
Limit has 2 bits allocated, assuming that is set to either 1, 64 or
255. The global IPv6 addresses are also transformed and can be
determined using Source Address Compression (SAC) and
Destination Address Compression (DAC) bits, together with
Source Address Mode (SAM) [17].

The standard does not specify any security mechanisms and
it uses the MAC layer options in the 802.15.4 protocol [16].

C. LoRaWAN
Since a part of the technologies developed for IoT focus on

nearby devices, LoRaWAN is a solution designed for large
distances. It is suitable for smart cities or smart agriculture
projects, where applications need to send little amount of data
over large distances. The protocol consists of two parts, LoRA,
which specifies the physical layer able to create long
communication links and LoRaWAN, which defines the
system architecture for the network [18].

193

At the physical level, it uses chirp spread spectrum, a
sinusoidal signal whose frequency increases and decreases over
time. It has the same features that FSK modulation provides,
but it gives the advantage of larger distances [18].

Regarding the network architecture, there are four types of
devices: nodes, gateways, network server and applications
server. The nodes are not associated to a specific gateway, they
send data which can be received by multiple concentrators.
Each of them will forward the received packets to a network
server in the cloud and is responsible with filtering duplicate
packets, performing security checks and send
acknowledgements through the optimal gateway. The nodes
are asynchronous and they wake up whenever they have data to
send or when they are scheduled. They do not need to keep an
internal clock synchronized with the network, giving the
advantage of larger battery lifetime. LoRa is based on spread-
spectrum modulation, so the signals are orthogonal on each
other when using different spreading factors. The gateways
have a multi-modem transceiver incorporated, so they can
listen to data on multiple channels at once, and so be able to
adapt to a large number of nodes. The devices close to the
gateways do not switch to the lowest data rate, they shift to
higher values to fill up the space, send faster and leave more
space for the others to transmit [18].

There are three types of devices, Class A (battery powered
sensors), Class B (battery powered actuators) and Class C
(main powered actuators). Class A devices are the most energy
efficient, they can send data and then have two short receiving
windows, when they wait for messages. If the server doesn't
respond in that period of time, then it has to wait until it gets
another message from the device. Class B devices have an
extra configurable time slot when they can receive information.
In order to wake up, the gateway sends a synchronization
beacon. Class C devices can get data anytime, except the
period of time when they are transmitting [18].

LoRaWAN integrates two layers of security, one at the
network and the other at the application layer. The first one
ensures authentication, while the other encrypts data so the
network operator cannot access the user's application data.
Both use AES with a key length of 128 bits [18].

V. INTEGRATION BETWEEN APPLICATION PROTOCOLS
At a large scale, in IoT, devices can be divided into two

categories: resource-rich, the ones that support the TCP/IP
stack and constrained devices. The first are the ones that
support applications developed on top of CoAP, MQTT,
REST, AMQP and other. Furthermore, microcontroller-based
appliances, for instance, should have the capability to
communicate with “smart” devices.

At application level, there are several solutions
implemented. One of them is Ponte, developed by Eclipe IoT
group. Its aim is to create a bridge between CoAP, MQTT and
HTTP. It exposes a REST compatible API and it is able to
convert between several data formats, such as JSON, XML or
Byson. It works as a gateway between CoAP and HTTP, which
use the same data format and as a broker for MQTT.

Another Eclipse project is Franca, build for the automotive
industry, but can be extended to IoT environments. Its aim is to
integrate software from different suppliers, using various
frameworks, platforms and Inter Process Communication tools.
It has the role of a hub, translating the code into another
language. It contains interface description languages and an
editor, code generation mechanisms, specification of dynamic
behavior between clients and servers and rapid interface
prototyping.

For interface definition, Eclipse also provides Vorto, a tool
that keeps meta information models and provides code
generation. Device manufactures can create a repository, using
a modeling framework provided by Eclipse, where they can
add information on provided functionalities. A developer can
access the repositories, invoke the code generation tool and
create the requests.

Light-weight M2M is a device management protocol,
which provides a unified way of managing devices remotely.
The current implementation is based on CoAP and uses DTLS
for security. It defines an architecture using REST objects.
Even though it may apply to Wireless Sensor Networks or
Cellular devices, for now it is only compatible with IP [19].

Another approach is virtualization. An IoT-Virtual Network
is created, where all devices are included, even the resource
constrained ones. It can be established on top of layer 3 for
objected connected to the Internet, or over layer 2, for
constrained sensors. Inside, applications and services see only
the logical layer. This can be used when partitioning a wireless
sensor network. If the devices are maintained by different
administrators, they can be divided into multiple virtual
networks and only part of them will be accessible. This
technique can also be used for aggregating separate sensor
networks. In this case, they can be connected using a Layer 3
tunnel and enabling secure communication. Also, a WSN can
be extended with unconstrained devices, such as servers in
cloud that gather data [20].

VI. USE CASE: SMART HOME
An interesting deployment for the Internet of Things is a

smart home scenario that besides the home monitoring system
also include a smart robot assistant. This system has the main
purpose to improve the quality of life by assisting the user in
his daily life.

The sensing capabilities of the home monitoring system can
be represented by IoT enabled low-power wireless sensor
nodes. The nodes use standardized WSN protocols and connect
to the residence’s gateway. Using the IoT paradigm allows us
to decouple the sensing capabilities of the system from the
processing component. The processing can thus be done on-
site, for privacy conscious users, or in the cloud, for added
flexibility, represented by the almost unlimited storage and
processing capabilities and interaction with other services.

Having an Internet mediated system allows various options
for interacting with the environment and closing the feedback
loop. Processed data can be equally easy to access from on-site
servers or from the cloud by various assistant apps. This could
go as far as having robot assistants roaming the house that help

194

users in their daily lives [21]. The system can learn user habits
based on sensed data and dispatch the robot assistants to assist
with various tasks: waking up in the morning, presenting the
weather and traffic on work days, showing missed house events
in the evening and selecting cooking recipes for dinner.

The robot assistants are themselves IoT enabled devices,
which means they can serve the user remotely, if desired, or
can interact directly with other IoT devices in the house (e.g.
sensor nodes, appliances, user gadgets). In the cloud based
system, the assistants could still function even if Internet
connectivity is limited, by directly interacting with other
devices in the house, instead of going to the processing hub for
information. This situation will provide less functionality than
the full system, but will still allow users to make basic queries
to the system.

Gateway

Home Router

Processing Hub

Internet

IEEE 802.15.4

Robot
Assistants

Wireless
Sensor
Nodes

Wi-Fi

Fig. 2. Smart Home System

The main components of the smart home system (sensor
nodes, gateway, robot assistants, processing hub) use
standardized protocols to communicate with each other. All
system components are addressable through IPv6, over the
Internet.

The sensor nodes and gateway run a networking stack that
includes IEEE 802.15.4, 6LoWPAN and CoAP. These
standardized protocols have been especially designed for
resource-constrained devices, as specified in Section II and IV.
The sensor nodes are interrogated by the processing hub
through CoAP requests and send the collected data through
CoAP replies.

In addition, the gateway is able to translate from
6LoWPAN to IPv6 and vice versa, in order to enable the
communication between the sensor nodes and the server. This
allows the integration between 6LoWPAN and IPv6 networks.

The robot assistants run a full TCP/IP stack and
communicate directly with Internet servers in order to obtain
information for the user. They interrogate the processing hub
through HTTPS and receive data in JSON format.

However, assistants are also capable of communicating
with the sensor nodes by sending CoAP requests. This is done
for obtaining raw data very fast, for example when a robot
assistant wants to find out the position of the user.

Therefore, the proposed smart home system integrates
cutting-edge technology such as robot assistants and wireless
sensor nodes, and uses only standardized protocols for the
communication between its components.

VII. CONCLUSIONS

 The idea of Internet of Things is rapidly growing and
becoming part of modern human life. Its aim is to improve the
life quality, by automation, connecting devices, applications
and publish more information fast.

This survey provides a brief overview of several
standardized technologies developed especially for embedded
devices and constrained environments. We have presented
application protocols and a comparison between two of them,
service discovery and the way DNS was extended for networks
that change fast and physical layer protocols developed for
low-range and long transmissions.

Also, an IoT scenario where these protocols are used
together with TCP/IP technologies was provided. We
proposed a smart home scenario based on sensor nodes and
robot assistants that uses only standardized protocols to enable
the communication between different components.

REFERENCES

[1] Z. Shelby, K. Hartke, and C. Bormann, “RFC7252 - The constrained
application protocol (CoAP)”, Internet Engineering Task Force (IETF),
2014.

[2] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M.
Ayyash, “Internet of things: A survey on enabling technologies,
protocols, and applications.”, IEEE Communications Surveys &
Tutorials, vol. 17(4), pp. 2347-2376, 2015.

[3] C. Bormann, A. P. Castellani and Z. Shelby, “Coap: An application
protocol for billions of tiny internet nodes”, IEEE Internet Computing,
vol. 16(2), pp. 62-67, 2012.

[4] D. Locke, “Mq telemetry transport (mqtt) v3. 1 protocol specification”,
IBM developerWorks Technical Library, 2010.

[5] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “MQTT-s a
publish/subscribe protocol for wireless sensor networks” in
Communication Systems Software and Middleware and Workshops, pp.
791–798, 2008.

[6] A. Stanford-Clark, and H. L. Truong. "MQTT for sensor networks
(MQTT-S) protocol specification." International Business Machines
Corporation version 1, 2008.

[7] D. Thangavel, X. Ma, A. Valera, H. X. Tan and C. K. Y. Tan,
“Performance evaluation of MQTT and CoAP via a common
middleware” in Intelligent Sensors, Sensor Networks and Information
Processing (ISSNIP), IEEE Ninth International Conference, p. 1-6,
2014.

195

[8] A. J. Jara, P. Martinez-Julia and A. Skarmeta, “Light-weight multicast
DNS and DNS-SD (lmDNS-SD): IPv6-based resource and service
discovery for the Web of Things” in Innovative mobile and internet
services in ubiquitous computing (IMIS), pp. 731-738, 2012.

[9] S. Cheshire and M. Krochmal. "RFC 6762: Multicast DNS." Internet
Engineering Task Force (IETF), 2013.

[10] S. Cheshire and M. Krochmal, “Rfc 6763, dns-based service discovery”,
Internet Engineering Task Force, 2013.

[11] R. Klauck and K. Michael "Bonjour contiki: A case study of a DNS-
based discovery service for the internet of things." International
Conference on Ad-Hoc Networks and Wireless, Springer Berlin
Heidelberg, 2012.

[12] I. Ishaq, D. Carels, G. K. Teklemariam, J. Hoebeke, F. V. D. Abeele,E.
D. Poorter, P. Demeester et. al. “IETF standardization in the field of the
internet of things (IoT): a survey”, Journal of Sensor and Actuator
Networks, vol. 2(2), pp. 235-287, 2013.

[13] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “RFC 4944.
Transmission of IPv6 packets over IEEE”, 802(4), 2007.

[14] M. Petrova, J. Riihijarvi, P. Mahonen, and S. Labella, “Performance
study of IEEE 802.15. 4 using measurements and simulations” in
Wireless communications and networking conference, 2006. pp. 487-
492.

[15] S. M. Sajjad and M. Yousaf, “Security analysis of IEEE 802.15.4
MAC in the context of Internet of Things (IoT)” in Conference on
Information Assurance and Cyber Security (CIACS), 2014, pp. 9–14.

[16] N. Kushalanger, G. Montenegro and C. Schumacher, “IETF RFC 4919,
6LoWPAN: overview, assumptions, problem statement, and goals”,
2007

[17] J. Hui and P. Thubert, “Rfc 6282 compression format for ipv6 datagrams
over ieee 802.15. 4-based networks”, 2011.

[18] LoRa Allicance, “LoRaWAN. What is it? A technical overview of LoRa
and LoRaWAN Institution”, 2015.

[19] H. M. Oen, "Interoperability at the Application Layer in the Internet of
Things", Master's Thesis, NTNU, 2015.

[20] I. Ishaq, J. Hoebeke, I. Moerman, and P. Demeester, “Internet of things
virtual networks: Bringing network virtualization to resource-
constrained devices” in Green Computing and Communications
(GreenCom),” 2012, pp. 293-300.

[21] A.M. Stanescu, A. Nita, M.A. Moisescu and I.S. Sacala, "From
industrial robotics towards intelligent robotic systems," 2008 4th
International IEEE Conference Intelligent Systems, Varna, 2008, pp. 6-
73-6-77.

196

