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Abstract—Internet of Things is a growing technology, 
developing in multiple fields, from smart homes to health and 
industries. From a technological perspective, it enables the 
development of new protocols and scenarios, since the standard 
network protocol suite cannot face the growing number of 
connected devices and data transmitted. This paper aims to 
present several standardized protocols, at different networking 
levels, developed especially for embedded devices with low 
memory, low processing power and low data rate. We also 
propose a smart home scenario that uses only standardized IoT 
protocols. 

Keywords—IoT, CoAP, MQTT, mDNS, DNS-SD, 802.15.4, 
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I.  INTRODUCTION 
Recently, the Internet of Things (IoT) has become an 

important research field. It can be described as a 
communication system where any device can be connected to 
the Internet and be able to identify itself to other objects. It can 
be applied in different domains, from personal use, such as 
smart homes or wearable devices to fields such as urban 
environment monitoring, health care, industrial automation or 
emergencies. 

Generally, the IoT devices have low memory, reduced 
battery capacity, reduced processing capabilities and 
vulnerable radio conditions. The standard TCP/IP stack is not 
suitable for this environment, so working groups have started 
to adapt the existing protocols to new versions for IoT.  

An addressing scheme, such as IPv6 should be taken into 
consideration, since there are billions of interconnected nodes. 
Multiple working groups already started to standardize IoT 
specific protocols, such as 6LoWPAN (RFC 4944 and RFC 
6282), IEEE802.15.4 and ZigBee describe ways of enabling 
IPv6 in constrained environments. Other requirements refer to 
security and privacy, since the number of Denial of Service 
attacks has recently increased.  

At the application layer, a common way of retrieving and 
requesting data is using Web architecture, and more specific, 
HTTP. This uses URIs as resource identifiers and it is based on 
REST architecture to publish information. For embedded 

devices, there is a Constrained RESTful Environments (CoRE) 
IETF working group, that aims to develop RESTful protocols, 
compatible with HTTP for resource-constrained devices. They 
specified CoAP, an application-layer protocol for IoT. 

In this paper, we present a survey of the most used 
standardized protocols for Internet of Things. We investigate 
application layer protocols (CoAP, MQTT), service discovery 
protocols (mDNS, DNS-SD, uBonjour) and infrastructure 
protocols (IEEE 802.15.4, 6LoWPAN, LoRaWAN). We 
present different ways to integrate different application-layer 
protocols such as MQTT, CoAP and HTTP. Finally, we 
propose a smart home system with wireless sensor nodes and 
robot assistants that use standardized IoT protocols (IEEE 
802.15.4, 6LoWPAN, CoAP). 

The paper is organized as follows. The second section 
presents the application-layer protocols, the third the service 
discovery methods, the fourth the interaction between protocols 
and the fifth presents a smart home scenario, that uses only 
standardized protocols. Finally, some conclusions are 
summarized. 

II. APPLICATION LAYER PROTOCOLS 
The application layer provides the services that the users 

need. These protocols handle information between gateways 
in local networks and Internet, update users with latest 
obtained data and carry commands from applications to end 
devices. 

A. CoAP 
Nowadays, applications depend on the Web architecture, 

using HTTP for getting information or updates. This is based 
on REST (Representational State Transfer) architectural style, 
that makes resources available through URIs. HTTP is rather 
complex for small IoT devices, so a new protocol based on 
REST was specified by IETF CoRE working group. This 
protocol is called Constrained Application Protocol (CoAP), a 
web transfer protocol that exchanges data between servers and 
clients [1]. 

It uses UDP instead of TCP at the transport layer and 
defines a “message layer” to deal with retransmissions. Fig.1. 
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presents the CoAP header, which has a length that varies from 
4 to maximum 16 bytes [2]. The first two bits, “Ver” represents 
the version of CoAP, set to 1 for now; it defines the current 
version and other values are reserved for the future. The next 
field, “T” is the type of Transaction. It is a 2-bit integer and its 
possible values are 0, for confirmable messages, 1 for non-
confirmable, 2 for acknowledgement and 3 for reset packets. 
“OC” is the Option Count, referring to the number of options 
set in the packet. “Code” in an 8-bit integer, split into a 3-bit 
class and a 5-bit detail. The class can indicate a request (0), a 
success response (2), a client error response (4) or a server 
error response (5). A code of 0.00 means an empty message. 
The “Message ID” is used to detect duplicates and to match 
packets of type Acknowledgement/Reset to packets of type 
Confirmable / Non-Confirmable. The “Token” values are used 
to pair requests to responses. This can be followed by zero or 
more “Options”. If there is also a “Payload”, then a prefix 
marker is present (0xFF), to separate the two last fields [3].  

Fig. 1. CoAP Header 

Some of the most important features provided by CoAP are 
resource observation, referring to subscriptions to interesting 
published data, block-wise resource transport (exchanging 
transceiver data with partial updates, to avoid overhead), 
security, together with DTLS, resource discovery, based on 
well-known URIs [2]. One of the most important advantages is 
that it can interact with HTTP, through proxies. It is possible to 
build intermediates that run CoAP on one side and HTTP on 
the other. Since there are equivalent methods, requests and 
response codes, it is straightforward to statically map between 
the two protocols. They both use URIs for identification: 
“coap://” and “http://”. Reverse proxies can also be enabled, 
that make standard HTTP clients able to transparently access 
CoAP servers. Is is also possible to map a single HTTP request 
to a multicast CoAP request. The responses are aggregated into 
a single HTTP response and sent to the client [1]. 

Regarding the CoAP options, some of the most important 
are Block, Observe and Discovery. The first one is used in case 
of larger packets. Generally, CoAP messages from light or 
temperature sensors imply small payloads, but in case of 
updating firmware, larger packets are necessary. CoAP does 
not rely on IP fragmentation and it uses the Block option. This 
means that multiple packets are sent in request-response pairs. 
It enables a server to be completely stateless and handle each 
transfer separately. Observe is an option sent by clients in 
request. Instead of sending multiple GET messages to obtain 
information on a resource, they can specify this option and 
receive asynchronous messages every time it changes. In 
machine-to-machine environments, the devices should be able 
to discover resources, in a similar way to HTTP “/index/” 
pages. For this /.well-known/scheme” page is available. 

Resource descriptions are also standardized and they can be 
found at “/well-knows/core” URIs and can be accessed through 
GET packets [1]. 

B. MQTT 
Message Queue Telemetry Transport (MQTT) is a 

messaging protocol that aims to connect embedded devices 
with applications and middleware, standardized in 2003, by 
OASIS [4]. It is built on top of the TCP layer and it is suitable 
for low resource devices. It consists of three elements, 
subscriber, publisher and broker. The publisher is the one that 
sends data and it forwards through the Broker through 
subscribers. 

The broker also acts as a security mechanism, being able to 
authorize both entities. Since it uses little resources, it is 
commonly used in machine-to-machine messaging, in health 
care, monitoring or Facebook notifications [2].  

The header of an MQTT message has a variable length, 
between 1 to 4 bytes. The first two bits are fixed, then the 
“Message Type” can get one of the following values: 
CONNECT(1), CONNACK(2), PUBLISH(3), SUBCRIBE(8) 
or others. The next field is the “DUP” flag. If it is set, then the 
message is a duplicate and the server may have received it 
earlier. There are three levels of “QoS” for PUBLISH 
messages that can be found in the header. The “Retain” field 
tells the broker to keep the message and send it to subscribers 
as a first message [2]. 

Every client, published or subscriber, sends a “CONNECT” 
message to the Broker to establish a connection. In order to 
keep the connection alive, the client must send periodical 
messages to the broker, either data or ping. In the 
“CONNECT” message, the client can send a “will” message, 
that would be published by the broker in case it doesn't get any 
keep alive messages from the client. They can send 
“PUBLISH” messages, containing a topic and a message, or 
they can send “SUBSCRIBE” messages to receive packets. 
Also, the clients can send “UNSUBSCRIBE” to stop receiving 
messages on a certain topic and they acknowledge every packet 
they send [5]. 

There are two major specifications, MQTT and MQTT-SN. 
The later was defined for sensor networks and was optimized 
for low bandwidth, battery operated devices and high link 
failures. There are several differences between the two 
implementations. First of all, in MQTT-SN the “CONNECT” 
message is split between one mandatory and two optional 
messages, used to transfer the “Will” topic and message to the 
server. In the “PUBLISH” message, the topic names were 
replaced with IDs. Before this, registration messages were sent 
to get, from the server, a unique ID for a specific topic. In this 
case, the clients should also be informed in advance by the 
corresponding IDs.  Also, pre-defined topics or short names 
can be added, to skip registration. These are two byte long and 
they are known in advance by both clients and publishers. A 
discovery procedure was added for clients to get the network 
address of an operating gateway that communicates with the 
broker. “Will” topics and message are persistent in case of 
MQTT-SN, and the clients can modify them during a session. 
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If the devices are in sleep mode, the messages directed to them 
are stored at the server and sent when they wake up [6]. 

C. CoAP versus MQTT 
Thangavel et al. [7] perform a comparison between the two 

protocols running in the same environment. The middleware is 
extensible, having support for existing and future application 
protocols, it provides a common API to access different 
functionalities and it is adaptive, so in the future it will be able 
to choose a running protocol based on the constraints.  In the 
first test, the influence of packet loss on delay was considered. 
At a loss rate lower that 20%, MQTT has little delay, but in 
case of higher rates, CoAP performs better. This happens 
because CoAP runs over UDP, has its own retransmission 
scheme and avoids the overhead implied by TCP 
retransmissions. The second test computes the total amount of 
data transferred in case of different values for packet loss. In 
case of CoAP there is less data re-sent and the higher values 
are obtained in MQTT when the QoS level 2 is set, because it 
requires a four-way handshake. Another test was performed to 
compare the overhead for different message sizes. When the 
packet loss is low, CoAP generates less overhead, regardless 
the message size. In case of higher rates and larger packets, 
MQTT generates less overhead. This can be explained by the 
fact that there is a higher risk of losing large packets when 
using UDP than in case of TCP [7]. 

III. SERVICE DISCOVERY PROTOCOLS 
In the Internet, the most extended discovery architecture is 

based on Domain Name Server (DNS), but this is not a suitable 
option for the Internet of Things, because IoT devices join or 
leave networks more often. So, two extensions have been 
developed, called DNS-SD (Service Discovery) and mDNS 
(multicast DNS). 

The challenges that they must face, related to Internet of 
Things, are scalability, since there is an estimation that, in 
2020, there will be almost 50 billion devices connected, 
dynamism, for wearable smart devices, that can easily switch 
connections, devices in sleep mode, leading to a limitation for 
queries addressed to endpoints and payload size, as less data is 
transferred.  

Local directories should be extended to give information on 
other domains where resources are available. Also, directories 
should support multicast, for queries such as “turn off all lights 
in the room”, where all the endpoints are treated as one. The 
access to directories should be done in an already known 
manner and a common description should be used for services 
and attributes [8]. 

A. mDNS and DNS-SD 
mDNS (RFC6762) [9] is a service that can perform the task 

of a DNS server. In a local network, every client has a cache 
where it keeps the pairing between names and addresses. Every 
time a device wants to get name information, it sends a 
multicast query and waits for a response. The targeted machine 
sends a multicast response in the network and all the devices 
that receive it save the pairing in their local cache. It has the 

advantage that there is no need for a dedicated server and it 
also adapts easily to changes in the network [2].  

DNS-SD (RFC6763) [10] is a solution proposed by IETF 
ZeroConf WG that re-uses and extends the capabilities of the 
DNS. It uses the same types of queries (AAA, PTR) and 
enables locating and publishing services in a network [9]. For 
instance, clients that want to get printer services in the network 
use DNS-SD. They have firstly to get the names of the devices 
that provide the required service, then they use mDNS to get 
the address. It is essential to first find the hostname, because 
the IP addressed may change. The main drawback of these two 
protocols is the need to keep cache entries in devices with low 
memory. Bonjour and Avahi are two well-known 
implementations based on DNS. 

B. uBonjour 
uBonjour is a lightweight service that combines mDNS and 

DNS-SD for addressing and discovering services available in a 
network. It provides standardized discovery and self-
configuration without any hardcoded addresses, both necessary 
in IoT. It implements the standards defined by DNS protocols 
and systems are able to discover each other without any 
gateway. When an IoT node requests for a service, it is added 
in the database and they are deleted when getting a “service 
unavailable” message [11]. 

Resolving hostnames is based on mDNS, meaning that a 
multicast request is sent. The device responses with an A 
record, containing the address. This message will be 
broadcasted to all listening devices. In case of services, a 
multicast PTR record is sent. If the service name is found, then 
a broadcast message containing the address and the port is sent. 
Otherwise, a timeout is triggered [11]. 

In order to publish a service, an IoT node has to send four 
standard DNS records and each application has to register an 
address, a hostname and a port. To remove a service, the device 
has to send a PTR record having the TTL set to 0. Updating a 
service implies re-sending the four records with new data.  
Eight service registration are supported per device [11]. 

Further optimizations can be obtained by minimizing data 
traffic, by using two methods. The first one, Known Answer 
Suppression. If a node already has an older response to a query 
and it wants to get newer information, it sends a query that 
contains not only the question, but also the data it already has. 
The responder doesn't send anything if the correct information 
is already in the query. Otherwise, it sends updates. The other 
is Duplicate Question Suppression. If a host wants to send a 
query and it sees that another host is sending the same request, 
then it should wait for the broadcast response [12].  

Another optimization is One-Way Traffic, which puts a 
device in passive mode. It publishes services periodically and 
responds to incoming requests. So, it avoids active resolving of 
hostnames and parsing queries from other devices. 

IV. INFRASTRUCTURE PROTOCOLS 
At the physical and media access layer, the standardized 

protocols are designed for different needs. Part of them are 
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specialized for local networks, which require low distances 
and low power. They are addressed especially to smart 
buildings or homes. Others can offer a high range, being able 
to supply the needs of smart cities or industrial environments.  

A. IEEE 802.15.4 
The IEEE 802.15.4 [13] standard was especially designed 

for low-power, short-range and low-bit rate embedded devices. 
The IEEE 802.15 working groups aims to keep the hardware 
costs low, to spread the protocol compatibility among sensors.  
The protocol describes the physical layer and the media access 
control sublayer [14].  

The physical layer is responsible with activation and 
deactivation of the radio transceiver, receiving and transmitting 
data and selecting a channel and listening on it. At this layer, 
there are two supported frequencies. The low-band (868/915 
MHz), that uses binary phase shift key modulation and the high 
band (2.4GHz) that uses offset quadrature phase shift keying 
modulation. There are 27 available channels, 11 in low band 
and 16 in high band. The raw bit rates are 20-40kbps in low 
band and 250kbps in high band. By using these modulations 
and spreading techniques, the transmissions are robust and 
noise resistant [15].  

At the MAC layer, CSMA/CA is enabled, together with 
optional time slot structure and security. Every time a device 
wants to send data, the medium is checked by the PHY layer. If 
it is occupied, the transmission is postponed for a certain period 
of time [14]. 

The transmission units are called Physical Protocol Data 
Unit for Layer 1 and MAC Protocol Data Unit. The PPDU 
header has two fields, then the payload is added. The SYNC 
field is used for clock synchronization and the PHY field 
contains the length of the payload. In the MAC frame, the first 
two bytes indicate the type of the frame [14]. There are four 
types of frames defined in the standard. The first ones, beacon 
frames are used by coordinators to describe the way the 
channels can be accessed. Then, there are data frames and 
acknowledgements sent as responses for control and data 
packets. The last, control frames are used for network 
management, such as associations or disassociations [15]. The 
next flag, the sequence number, is used by acknowledgements 
and refers to the received frame. Then, there are addressing 
pieces of information, related to source, destination addresses 
and security. The last two bytes represent the checksum, used 
for data integrity. 

    The devices are classified into two categories: full 
function (FFD) and reduced function devices (RFD). A RFD 
can communicate only with an FFD, while an FFD can 
communicate with both types. The latter have, generally, the 
role of coordinators. They keep a routing table and are 
responsible with network creation and maintenance. The 
standard topologies in 802.15.4 include star, with a central FFD 
and several RFDs that communicate with it, peer-to-peer 
(mesh), where there is a coordinator, several FFDs and RFDs 
and cluster, having a coordinator, a FFD and several RFDs [2]. 

An interesting situation happens when 802.11 and 802.15.4 
devices run in the same area and they use the 2.4 GHz 
frequency. Two situations were analyzed. The first case is the 

one when 802.11b transmissions interfere with 802.15.4 
communications. The degradation is higher if the frequencies 
are not shifted with 7MHz. Also, there are more errors for 
larger packets. In the second case, wireless 802.11b/g 
transmissions are interfered. Here, there are errors when the 
WiFi packets are larger than 600bytes and the offset between 
central frequencies is 2MHz [15].  

Security is provided at the MAC layer, using AES-128 with 
CCM mode of operation. It supports 8 levels of security, where 
0 means unsecured, levels 1 to 3 provide only integrity and 
authentication, while levels 4 to 7 also provide data 
confidentiality [13]. 

B. 6LoWPAN 
6LowPAN is developed by an IETF working group 

especially for small networks and embedded devices 
interconnected by IEEE 802.15.4 in RFC4944 [16]. It 
maintains an IPv6 network, but with compressed headers. A 
new layer is added, between the network and data link, 
responsible with fragmentation, reassembly, header 
compression and data link layer routing for multi hop [16]. 

The first byte of the encapsulation header identifies the next 
header. The first three bits are used for indication, while the 
others have different purposes, depending on the header type. 
If they are 00x, then this is not a 6LoWPAN frame and are 
used if case of protocols co-existence. 010 means 
Uncompressed or HC1 compressed and the type of the address 
can be determined by the last 5 bits. 10x means that the next 
header is a mesh header and the next 5 bits are used for routing. 
11x is a fragmentation header [16]. 

HC1 is the main compression technique defined in 
RFC4944 [16]. It is used for packets containing link layer 
addresses and it removes the common fields, such as Version, 
TC, Flow label, it doesn't send the link layer addresses (which 
can be computed from 802.15.4 header), and the standard 
prefix length. The next header field is limited to TCP, UDP and 
ICMP [16]. RFC 6282 adds two new compression techniques, 
LOWPAN_IPHC and LOWPAN_NHC. The first one uses 13 
bits for compression. It removes the Version field and 
compresses Traffic Class and Flow Label into 2 bits. Hop 
Limit has 2 bits allocated, assuming that is set to either 1, 64 or 
255. The global IPv6 addresses are also transformed and can be 
determined using Source Address Compression (SAC) and 
Destination Address Compression (DAC) bits, together with 
Source Address Mode (SAM) [17]. 

The standard does not specify any security mechanisms and 
it uses the MAC layer options in the 802.15.4 protocol [16]. 

C. LoRaWAN 
Since a part of the technologies developed for IoT focus on 

nearby devices, LoRaWAN is a solution designed for large 
distances. It is suitable for smart cities or smart agriculture 
projects, where applications need to send little amount of data 
over large distances. The protocol consists of two parts, LoRA, 
which specifies the physical layer able to create long 
communication links and LoRaWAN, which defines the 
system architecture for the network [18]. 
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At the physical level, it uses chirp spread spectrum, a 
sinusoidal signal whose frequency increases and decreases over 
time. It has the same features that FSK modulation provides, 
but it gives the advantage of larger distances [18]. 

Regarding the network architecture, there are four types of 
devices: nodes, gateways, network server and applications 
server. The nodes are not associated to a specific gateway, they 
send data which can be received by multiple concentrators. 
Each of them will forward the received packets to a network 
server in the cloud and is responsible with filtering duplicate 
packets, performing security checks and send 
acknowledgements through the optimal gateway. The nodes 
are asynchronous and they wake up whenever they have data to 
send or when they are scheduled. They do not need to keep an 
internal clock synchronized with the network, giving the 
advantage of larger battery lifetime. LoRa is based on spread-
spectrum modulation, so the signals are orthogonal on each 
other when using different spreading factors. The gateways 
have a multi-modem transceiver incorporated, so they can 
listen to data on multiple channels at once, and so be able to 
adapt to a large number of nodes. The devices close to the 
gateways do not switch to the lowest data rate, they shift to 
higher values to fill up the space, send faster and leave more 
space for the others to transmit [18].  

There are three types of devices, Class A (battery powered 
sensors), Class B (battery powered actuators) and Class C 
(main powered actuators).  Class A devices are the most energy 
efficient, they can send data and then have two short receiving 
windows, when they wait for messages. If the server doesn't 
respond in that period of time, then it has to wait until it gets 
another message from the device. Class B devices have an 
extra configurable time slot when they can receive information. 
In order to wake up, the gateway sends a synchronization 
beacon. Class C devices can get data anytime, except the 
period of time when they are transmitting [18]. 

LoRaWAN integrates two layers of security, one at the 
network and the other at the application layer. The first one 
ensures authentication, while the other encrypts data so the 
network operator cannot access the user's application data.  
Both use AES with a key length of 128 bits [18].  

V. INTEGRATION BETWEEN APPLICATION PROTOCOLS 
At a large scale, in IoT, devices can be divided into two 

categories: resource-rich, the ones that support the TCP/IP 
stack and constrained devices. The first are the ones that 
support applications developed on top of CoAP, MQTT, 
REST, AMQP and other. Furthermore, microcontroller-based 
appliances, for instance, should have the capability to 
communicate with “smart” devices. 

At application level, there are several solutions 
implemented. One of them is Ponte, developed by Eclipe IoT 
group. Its aim is to create a bridge between CoAP, MQTT and 
HTTP. It exposes a REST compatible API and it is able to 
convert between several data formats, such as JSON, XML or 
Byson. It works as a gateway between CoAP and HTTP, which 
use the same data format and as a broker for MQTT.  

Another Eclipse project is Franca, build for the automotive 
industry, but can be extended to IoT environments. Its aim is to 
integrate software from different suppliers, using various 
frameworks, platforms and Inter Process Communication tools. 
It has the role of a hub, translating the code into another 
language. It contains interface description languages and an 
editor, code generation mechanisms, specification of dynamic 
behavior between clients and servers and rapid interface 
prototyping.  

For interface definition, Eclipse also provides Vorto, a tool 
that keeps meta information models and provides code 
generation. Device manufactures can create a repository, using 
a modeling framework provided by Eclipse, where they can 
add information on provided functionalities. A developer can 
access the repositories, invoke the code generation tool and 
create the requests.  

Light-weight M2M is a device management protocol, 
which provides a unified way of managing devices remotely. 
The current implementation is based on CoAP and uses DTLS 
for security. It defines an architecture using REST objects. 
Even though it may apply to Wireless Sensor Networks or 
Cellular devices, for now it is only compatible with IP [19]. 

Another approach is virtualization. An IoT-Virtual Network 
is created, where all devices are included, even the resource 
constrained ones. It can be established on top of layer 3 for 
objected connected to the Internet, or over layer 2, for 
constrained sensors. Inside, applications and services see only 
the logical layer. This can be used when partitioning a wireless 
sensor network. If the devices are maintained by different 
administrators, they can be divided into multiple virtual 
networks and only part of them will be accessible. This 
technique can also be used for aggregating separate sensor 
networks. In this case, they can be connected using a Layer 3 
tunnel and enabling secure communication. Also, a WSN can 
be extended with unconstrained devices, such as servers in 
cloud that gather data [20]. 

VI. USE CASE: SMART HOME 
An interesting deployment for the Internet of Things is a 

smart home scenario that besides the home monitoring system 
also include a smart robot assistant. This system has the main 
purpose to improve the quality of life by assisting the user in 
his daily life. 

The sensing capabilities of the home monitoring system can 
be represented by IoT enabled low-power wireless sensor 
nodes. The nodes use standardized WSN protocols and connect 
to the residence’s gateway. Using the IoT paradigm allows us 
to decouple the sensing capabilities of the system from the 
processing component. The processing can thus be done on-
site, for privacy conscious users, or in the cloud, for added 
flexibility, represented by the almost unlimited storage and 
processing capabilities and interaction with other services. 

Having an Internet mediated system allows various options 
for interacting with the environment and closing the feedback 
loop. Processed data can be equally easy to access from on-site 
servers or from the cloud by various assistant apps. This could 
go as far as having robot assistants roaming the house that help 
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users in their daily lives [21]. The system can learn user habits 
based on sensed data and dispatch the robot assistants to assist 
with various tasks: waking up in the morning, presenting the 
weather and traffic on work days, showing missed house events 
in the evening and selecting cooking recipes for dinner. 

The robot assistants are themselves IoT enabled devices, 
which means they can serve the user remotely, if desired, or 
can interact directly with other IoT devices in the house (e.g. 
sensor nodes, appliances, user gadgets). In the cloud based 
system, the assistants could still function even if Internet 
connectivity is limited, by directly interacting with other 
devices in the house, instead of going to the processing hub for 
information. This situation will provide less functionality than 
the full system, but will still allow users to make basic queries 
to the system. 

Gateway

Home Router

Processing Hub

Internet

IEEE 802.15.4

Robot 
Assistants

Wireless
Sensor 
Nodes

Wi-Fi

 

Fig. 2. Smart Home System 

The main components of the smart home system (sensor 
nodes, gateway, robot assistants, processing hub) use 
standardized protocols to communicate with each other. All 
system components are addressable through IPv6, over the 
Internet.  

The sensor nodes and gateway run a networking stack that 
includes IEEE 802.15.4, 6LoWPAN and CoAP. These 
standardized protocols have been especially designed for 
resource-constrained devices, as specified in Section II and IV. 
The sensor nodes are interrogated by the processing hub 
through CoAP requests and send the collected data through 
CoAP replies.  

In addition, the gateway is able to translate from 
6LoWPAN to IPv6 and vice versa, in order to enable the 
communication between the sensor nodes and the server. This 
allows the integration between 6LoWPAN and IPv6 networks.  

The robot assistants run a full TCP/IP stack and 
communicate directly with Internet servers in order to obtain 
information for the user. They interrogate the processing hub 
through HTTPS and receive data in JSON format.  

However, assistants are also capable of communicating 
with the sensor nodes by sending CoAP requests. This is done 
for obtaining raw data very fast, for example when a robot 
assistant wants to find out the position of the user.  

Therefore, the proposed smart home system integrates 
cutting-edge technology such as robot assistants and wireless 
sensor nodes, and uses only standardized protocols for the 
communication between its components. 

VII. CONCLUSIONS 
 

    The idea of Internet of Things is rapidly growing and 
becoming part of modern human life. Its aim is to improve the 
life quality, by automation, connecting devices, applications 
and publish more information fast.  

This survey provides a brief overview of several 
standardized technologies developed especially for embedded 
devices and constrained environments. We have presented 
application protocols and a comparison between two of them, 
service discovery and the way DNS was extended for networks 
that change fast and physical layer protocols developed for 
low-range and long transmissions.  

Also, an IoT scenario where these protocols are used 
together with TCP/IP technologies was provided.  We 
proposed a smart home scenario based on sensor nodes and 
robot assistants that uses only standardized protocols to enable 
the communication between different components. 
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