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Abstract—As the integration of smart mobile devices to the
Internet of Things (IoT) applications is becoming widespread,
mobile device usage, interactions with other devices, and mobility
patterns of users carry significant amount of information about
the daily routines of the users who are in possession of these
devices. This rich set of data, if observed over a time period,
can be used to effectively verify a user. In previous works, veri-
fication of users on personalized electronic devices via biometric
properties such as fingerprint, iris has been successfully employed
to increase security of access. However, with the integration of
social networks with the IoT infrastructure and their popularity
on smart handheld devices, identification based on behavior over
social networks is emerging as a novel concept. In this paper, we
propose an intelligent add-on for the smart devices to enable
continuous verification of users. In the experiments, we use
data from built-in sensors and usage statistics of five different
social networking applications on mobile devices. The collected
feature set is aggregated over time and analyzed using machine
learning techniques. We show that when smart devices are
equipped with continuous verification intelligence, it is possible
to verify users with less than 10% false rejection probabilities,
and the users can keep using the devices with no interruption
for biometric authentication 90% of the time. In the case of
anomalous behavioral patterns, the proposed system can verify
genuine users with up to 97% success ratio using an aggregated
behavior pattern on five different social network applications.

Index Terms—Internet of Things, continuous verification, mo-
bile crowdsensing, smart cities, intelligent systems

I. INTRODUCTION

Smart mobile devices like smartphones and tablets are
equipped with various built-in sensors like GPS, camera,
accelerometer, gyroscope and microphone among others. As
the popularity and widespread use of these devices continue
to increase, they appear to be strong candidates for being
integrated to Internet of Things(IoT)-driven sensing applications
[1]. In [2], [3], the main components of IoT are highlighted as
follows: 1- hardware that consists of sensors and 2- middleware
to provide communication between different components, 3)
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processing of data, 4) storage of data. Computing resources
such as processors, memory and data storage have become
smaller that can be embedded on wearable and hand-held
devices [4].

With the rapid growth of smartphone and personalized
mobile device usage, and along with the recent advances in
Internet of Things (IoT) where tremendous number of devices
are interconnected, continuous authentication on personalized
devices has become possible. Smartphones with various types
of sensors have the potential for continuous monitoring
of phenomena like road condition for smart transportation,
public safety and emergency preparedness [5], [6]. With the
widespread adoption of IoT devices, their use as a base for
user verification is expected to grow [7]. On the other hand,
effective incentives are needed in order for the users to provide
the resources in their smart mobile devices as a service. The
incentives to improve participation and integration of the
personalized devices to the IoT environment can be either
monetary or non-monetary. However, recruitment of the users
is expected to be performed implicitly [1].

The advent of mobile computing and communications
made web-based social networking services available through
applications on portable smart devices such as phones, tablets
and watches. With millions of portable devices in circulation
and an immense attachment to everyday life, the popularity
of social network services (SNS) have been continuously
increasing [8]. Today approximately seven out of ten people
in the U.S. use social networking services [9]. According to
Ericsson’s report, mobile applications for social networking
produce high volumes of data that can be augmented with
analytics for the betterment of various services [10]. In [11], the
data types are classified under 6 different categories: i) Service
data, ii) Disclosed data, iii) Entrusted data, iv) Incidental data,
v) Behavioral data, vi) Derived data. Most users have regular
behavioral patterns that are learnable, which can ultimately be
used for continuous recognition of behavioral signatures, in [12].
On the basis of this presumption, we studied the behavioral
patterns on smart mobile devices by focusing on mobile social
network platforms to investigate identifying users in continuous
fashion and verify the smartphones’ owners. To this end, we
propose a mobile behaviometric framework that assesses users’
social activity, and introduce sociability metrics to generate
signatures of users’ activities. Traditional biometrics-based
user identification relies on the uniquely personalized features
such as fingerprint [13], iris [14], or face [15], [16], [17] and
performs pattern recognition on these features to allow access
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to a user or a group. This type of identification is usually
one-time and requires repeated interaction for validation of
identities. On the other hand, personal devices are often in
possession of a single user where continuous authentication of
that user becomes more practical.

Behaviometrics refers to the behavior of a user which
corresponds to mobile users’ activities on smart mobile devices.
Behavioral characteristics of mobile users can allow continuous
authentication of a user on a personal device. Today’s smart
devices are equipped with various mobile applications. Among
these, social networking apps have become an important part
of daily life. Hence, these apps push massive amount of data
to and from users to the servers of social network providers.
The rich data set provided by the social networks can be
mined to identify various types of relations. The online student-
supervisor collaboration information derived in [18] or the
friend ranking application developed in [19] are just to name
a few.

User identification and authentication is an indispensable
and basic requirement of preventing privacy leakage towards
secure and trustworthy systems. Currently, the most common
identification mechanisms in smartphones are passwords or
pin codes which are not secure enough and require the user
to remember the access codes for each device. In some smart
phones, fingerprint and face detection are also integrated to
ease the burden of remembering passwords and to increase
the level of security. Zhang et al [20] categorized two types
of biometric identification: physiological identification and
behavioral identification. The former includes facial, voice
and fingerprint recognition which are mostly device-dependent
mechanisms and require costly processing units. On the other
hand, continuous identification which is based on behavioral
traits is non-intrusive and is based on human habitual patterns
like typing [21]–[23], walking [24], [25], social interactions
and communication. Sultana et al [26] defined social behavior
biometrics as identification of a user in different social settings
through interaction and communication patterns. The social
setting can involve either online or offline environments where
the former leads to the cyber world, and the latter denotes the
physical world. In online settings interactions emerge from
blogs, social networks and access to the Internet. Behavio-
metrics [27] is a recently emerging concept for identification
and it promises to provide a cost effective alternative without
compromising security.

In this paper, we propose an intelligent system to ensure
device level security of mobile smart devices particularly
to avoid identity spoofing when they are recruited for IoT-
driven sensing. The proposed scheme is based on online
behaviometrics of mobile users collected via smartphones, and
extracts features from smartphone sensors and users’ social
network interactions. Real data traces were collected over
several months and are used for the evaluation of the proposed
approach. The feature set used in the paper includes location
of users, their data usage, number of sessions in different
time granularities and session durations for five different social
networking platforms through the mobile device. Preliminary
version of this work was presented in [28] focusing on
disruption of users in continuous verification on mobile devices

in the presence of spoofing attempts. This paper significantly
extends the work in [28], by evaluating the performance of the
proposed framework under normal and anomalous conditions
with different classifiers. Furthermore, an extensive empirical
analysis of the contextual weighing factors is also presented in
detail. The proposed framework monitors the user data, trains
the classifier and identifies users with high accuracy. The results
show that identifying users with less than 10% false rejection
for original user traces is possible.Thus, under various test
scenarios, the proposed behaviometric approach can provide
continuous authentication 90% of the time without the need
to undergo additional biometric identification. In the presence
of anomalous behavioral patterns, the proposed system can
identify genuine users with up to 97% success ratio using an
aggregated behavior pattern on five different social network
applications. It is worth mentioning that as the participants
shared almost the same profile, i.e., they were all graduate
students in the same college, in some situations, the results
showed similar signatures between users and this led to a slight
increase in False Acceptance Rate (FAR) at the end. The paper
is organized as follows. Section II presents the related work
on behavioral identification. Section III provides the detail
of the proposed system for identifying users based on online
behaviometrics. Section IV provides performance evaluation
and Section VI concludes the work and gives future directions.

II. RELATED WORK

The idea of merging IoT and social network phenomena
under the concept of Social Internet of Things (SIoT) has been
emerging [29]. This convergence has many privileges including
network navigability, service scalability and increased in level
of trustworthiness by connecting the objects that interact on
frequent basis [29]–[31].

To the best of our knowledge, Holmquist et al. [32] had
initially proposed the idea of establishing relationship between
smart objects which now translates into socialization of smart
objects. In [33] the idea of establishing social networks by
using IoT concepts was conceptually reviewed. In [34] the
behavior of mobile nodes in IoT system by using social
networks was studied. In [12], the behavioral patterns on
various social network platforms was studied to investigate
identification of users in continuous fashion and verification of
smartphones’ owners who contribute to participatory sensing
campaigns in IoT contexts. To this end, in [12], the authors
proposed a mobile behaviometric framework that assesses
users’ social activity, and introduced sociability metrics to
generate signatures of users’ activities. To the best of our
knowledge this is the first research article which proposes
continuous identification of users on mobile devices within
the social IoT paradigm. The traditional identification schemes
on mobile phones use pin codes, passwords, fingerprints or
iris recognition. Pin codes and passwords have well-known
vulnerabilities as mentioned previously [35]. Alternatively
widely used biometric identification schemes (fingerprint, iris,
face. etc.) are more secure and hard to compromise. However,
they require extra hardware on devices as mentioned previously
by several researchers [36]–[39].
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Sultana et al [14] categorized biometric-based authentication
schemes into two groups: 1) Physiological biometrics such as
fingerprint, facial recognition, iris and so on, and 2) behavioral
biometrics which are based on human habitual signature
including walking [13], handwriting, keystroke dynamics [40]
and social networking. Continuous identification is based
on behavioral patterns of users which advances existing
identification mechanisms to a more secure, easier and non-
intrusive fashion. Implicit authentication methods, which are
based on observing user behavior through multiple sources such
as SMS, phone calls, browser history, location, gestural patterns
on touch screens and other kind of behavioral information;
have become the seat of attention [41]–[47].

Having a large variety of different applications on smart
phones or tablets has resulted in users’ interacting with
their smart devices frequently by revealing their personalized
patterns. This fact has stimulated the researchers to mine
users’ interactions with smart devices as a source of user
verification and identification. Yampolskiy et al [15] categorize
behavioral biometrics into five different classes as follows: 1)
Authorship based biometrics, 2) human computer interaction
(HCI)-based biometrics, 3) indirect HCI-based biometrics, 4)
motor-skills biometrics and 5) purely behavioral biometrics.
In particular, the popularity of social networks yields users
to generate large amount of data generated by mobile IoT
devices. There are various research efforts in the area of
mining social network induced information. Chen et al [48]
address the social network traits like scam or finding the
stem of rumors [49]. Sultana et al [50], [51] discuss the
possibility of using behavioral patterns on social platforms
for user identification. Lathia et al [52] proposed a mobile
sensing framework for behavioral change interventions, named
UBhave. In collaboration with Universities of Cambridge,
Birmingham, Southampton, Oxford, and University College
London, UBhave, a large digital behavioral change intervention
(DBCI) framework, aims to be correlated with Online Social
Networking sites (OSNs) in order to have better assessment
of participants’ social activity to recruit users. Mehrotra et al
[53] built an automated context stream middleware based on
OSNs to analyze and process users’ behavior and interests.
Yet, verification with real traces and verification success have
not been evaluated comprehensively. In this paper, real traces
that were collected over several months are used and machine
learning (ML) techniques are applied to verify mobile users.

Behaviometrics is also an important part of smart environ-
ments such as smart homes as user signals and interaction
with the homes can be used to reconfigure smart home settings
[54]. Application of behaviometrics is not only limited to smart
spaces but also used as an effective tool for continuous authen-
tication. For instance, usage behavior patterns on hand-held
devices (e.g. gestures on touchscreens) have been considered
as continuous authentication solutions which is proposed by
Buduru et al [55]. Although these works are relevant, they
do not focus on verifying users, they rather search for usage
patterns of appliances, lights or consumer devices. Another
application in behaviometrics is health-care. CABA [56] is
a continuous authentication health monitoring system which
uses wearable medical sensors (WMSs). CABA is based on

Figure 1. System overview

biomedical signal streams named BioAura that are continuously
captured by WMSs. Schobel et al [57] addressed the flexibility
issues in a mobile healthcare framework while using mobile
healthcare applications for collecting patient data.

Having said that behavioral biometrics can be applied in
smart environments, smart cities can be considered as another
application area [58], [59]. Ziegler [60] provided a compre-
hensive research on the applicability of adapting behavioral
biometrics in smart environments. The author described four
possible smart environment applications including smart homes,
smart media devices, smart traffic systems and smart health in
which implicit identification mechanisms can be applied.

III. SYSTEM DESIGN

We have developed a front-end application that runs in
the background of an Android phone, and monitors users’
interactions through a smart device. The application collects
data from five popular social network services which are;
Facebook, Twitter, LinkedIn, Skype and WhatsApp. The
collected data is stored in the form of sessions, and each
session presents the corresponding user’s interaction through
the device. Basically each session data includes session ID,
application name, the time that the session started, the time
that the session ended, the duration of that session, the amount
of data used in the session and the initial location where the
session started. The amount of data used is the amount of
cellular or Wi-Fi data consumed by the social network service
application.

A. System Components

To verify the behaviometric signature of users, the following
components are required:

1) Data Collection: Mobile user data collected from the
device is uploaded to a private cloud-based server. The server
stores the raw data from all users in a database. The database
is queried for training and verification purposes.

2) User Characterization Model: User characterization is
done by extracting a combination of features from both users’
interaction over online social network services as well as the
built-in sensors of the smartphones. The details of the model
are provided in the following sections.
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Table I
SYMBOLS LIST AND DESCRIPTION

SYMBOL DESCRIPTION

A Social Activity Rate
SF Sociability Factor
D Data usage
τ The number of sessions per day
Tk k − th activity rate
t Duration of the activity
u User u
U Set of users | u ∈ U
p Data point
P Set of Data points
ins Instantaneous rate
sh Short term activity
overall Overall activity
normal Normalized activity

A
Uu
appx

insi
instantaneous Social activity of user u using application x
in a session i

A
Uu
appx

sh Short-term Social activity of user u using application x

A
Uu
appx

overall Overall Social Activity

AUu

normal Normalized Social Activity

α Contextual parameter weight for running average calcula-
tion activity rates

β Contextual parameter weight for running average calcula-
tion activity factors

µ Mean value
σ Standard deviation

3) Training Strategy: Training strategy builds a profile for
each user based on the collected data. Training is performed
continuously on a sliding window of data over time. This
allows capturing naturally altering patterns of user behavior.

4) Verification Strategy: Machine learning is the core of
user verification thus, the system is trained with feature sets
collected by the front-end application, and user verification is
performed based on each interaction through the device. The
system components are presented in Figure 1.

B. System Architecture

Figure 2 presents the system architecture that includes main
modules and methods, namely monitoring, data collection,
normalization, training and verification modules. As mentioned
earlier, personalized smart devices are envisioned to be inte-
grated into the IoT ecosystem in order for the IoT applications
to recruit those devices in various sensing campaigns by
accessing their built-in sensors. In IoT sensing applications,
to acquire the sensed data from personalized smart devices in
a trustworthy manner, device level security must be ensured.
Therefore continuous user verification should be positioned at
the core of the personalized device-IoT integration. In the rest
of this section, more details on each module are provided.

1) Monitoring Module: This module is an Android appli-
cation that runs as a background process over the operating
system. The application collects and updates user location
information every 5 minutes. It monitors access to Facebook,
Twitter, Linkedin, Skype and WhatsApp applications. These
interactions are recorded in sessions. Each session has a session

ID, duration, initial location and the amount of data that is
used during the session.

2) Data Collection Module: The data collection module is
responsible for storing sessions in a standard format so that
they can be analyzed more conveniently. To do that, after the
session record is created, it is converted to the JSON format
and sent to the private cloud server. The cloud server and the
analytics performed over the cloud are illustrated in Figure 2.

3) Normalization Module: Once the session data is trans-
ferred to the server, the raw collected data is converted to
several metrics of interest. This process is called normalization.
In this study, two social verification metrics, namely the social
activity rate and sociability factor are defined.

Social Activity Rate: Social activity rate corresponds to the
relative amount of data that a user generates when using social
networking applications. The absolute data usage of a user
is normalized by the data usage of all active users. Social
activity rate of a user is a function of the user’s short term
(daily) and instantaneous social activity rates. Instantaneous
social activity rate denotes the data usage by a particular social
network application in a single session. Thus, Dappx

i denotes
the amount of data from the social network appx at session
i and tappx

i is the duration of time that the appx at session i
was used. Meanwhile instantaneous social activity rate (Ax

insi
)

is formulated as shown in Eq. (1).

A
Uu

appx
insi

= D
Uu

appx
i /t

Uu
appx

i (1)
Eq. (2) formulates user’s short term (daily) activity, which
denotes the average data usage that is spent on social network
app in a session per day.

A
Uu

appx

sh =
(∑

D
Uu

appx
i /t

Uu
appx

i

)
/τx (2)

A weighted sum of consecutive short term social activity
rates provide the overall social activity rate (A

Uu
appx

overall (Tk)) as
shown in Eq. (3).

A
Uu

appx

overall (Tk) = α ∗ A
Uu

appx

sh (Tk−1)+

(1− α) ∗ A
Uu

appx

sh (Tk) (3)

The normalized social activity rate (Anormali ) is aggregated
overall social activity rates of a user averaged by the maximum
social activity rate in the pool of active users as shown in Eq.
(4)

AU
u

normal =
∑
x∈X

ωxA
Uu

appx

overall (Tk)/ argmax
u∈U

∑
x∈X

ωxA
Uu

appx

overall

(4)
Sociability Factor: Sociability of users is not limited to their

data consumption but it is also a function of the time they spend
on mobile social network applications. Therefore we define the
sociability factor metric as another verifier. Similar to the social
activity rate, the sociability factor also has instantaneous, short
term and global components that ultimately lead to a normalized
sociability factor value. Thus, instantaneous sociability factor
per app is calculated as the total time that a user spends on
a social networking app in a single session as formulated in



2169-3536 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2719706, IEEE Access

Timestamp of calls

Location

Cellular usage

Wifi usage

Figure 2. Detailed System Architecture.

Eq. (9). Short term sociability factor (SF
Uu

appx

shi
) is defined

as the average time that a user spends on a particular social
network app in a session over a short time window, e.g., a
day, as formulated in (6) where t

Uu
appx

i stands for duration of
session-i of user-u on appx. As formulated in eq. (7), the
overall sociability factor (SF

Uu
appx

overalli
(Tk)) is a weighted sum

of the short term sociability factors where Tk denotes the k−th
short term sociability factor used in the calculation, and β is
a weight factor for each mobile social network app. Finally,
as expected, the normalized sociability factor (SFnormali) is
the aggregated overall sociability factors of a user scaled by
the maximum aggregated sociability factors in the active users
pool as shown in Eq. (8).

SF
Uu

appx
insi

= t
Uu

appx
i (5)

SF
Uu

appx

sh =
(∑

t
Uu

appx
i

)
/τ (6)

SF
Uu

appx

overall (Tk) = β∗SF
Uu

appx

sh (Tk−1)+(1− β)∗SF
Uu

appx

sh (Tk)
(7)

SF
Uu

appx

normal =
∑
x∈X

ωxSF
Uu

appx

overall (Tk)/ argmax
u∈U

∑
x∈X

ωxSF
Uu

appx

overall

(8)
4) Training Module: The training module is composed of a

learning algorithm that runs in a sliding window of a set of data.
The training procedure is based on four factors described in
section III-B3; i) social activity rate, ii) sociability factor rate,
iii)the number of sessions each user has produced per day, and
iv) location which is provided by the mobile devices’ built-in
sensor. In our approach, each user has vectors of feature sets
where each vector represents the user behavior throughout a
day. The training procedure is updated on a daily basis.

5) Verification Module: To verify user behavior, two differ-
ent types of learning mechanisms are used, i.e. a supervised
learning mechanism and an unsupervised learning mechanism.

Supervised learning mechanism Support Vector Machines
(SVMs) are one of the most well-known and effective su-
pervised learning techniques. We used SVM to learn user
sociometrics and verify them based on these phenomena.
It is worth mentioning that the feature vectors need to be
normalized prior to being sent to SVM. In addition, we apply
soft normalization which is the output of subtracting each data
point from the mean values and scaling by twice the standard
deviation as shown in Eq. (9).
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∀p∈P |p = (p− µ)/σ2 (9)

Unsupervised learning mechanism We also used Density-
Based clustering of applications with noise (DBSCAN) which
is an unsupervised learning technique. DBSCAN groups the
data points that are nearest neighbors of each other with the
ultimate goal of forming dense regions. Outliers whose nearest
neighbors are not close enough, are clustered in low density
regions [61].

IV. PERFORMANCE EVALUATION

The performance of the proposed technique is evaluated by
using the TrackMaison framework (Track My Activity in Social
Networks) proposed in [12] which collects data usage, activity
duration, location and usage frequency of project participants
on five popular social network applications, namely Facebook,
Twitter, LinkedIn, Skype and WhatsApp. The back-end server
computes the social activity rate and sociability factor by using
the data rates and session duration as formulated in in Eq.(4)
and in Eq.(8). The front-end connectivity of the testbed is
provided by Android-based tablets that continuously push data
collected from 13K sessions in a two-month time window. In
this paper, six representative users out of the participant set are
chosen. It is worthwhile mentioning that the algorithm filled
any missing data points with the mean value up to that point.
The results are based on different set of values for α and β in
Eq. (3) and Eq. (7). Figures 3 and 4 illustrate users’ real data
within a period of 3 months approximately.

As mentioned before, social activity rate denotes the amount
of data that a user spends on social network applications
whereas sociability factor is a function of the duration that
a user interacts with their mobile device. The results are
based on different set of values for α and β in (3) and
(7). Based on the results, the users can be categorized into
three groups of highly active, moderately active and least
active users. Based on the defined categories, users 2 and
3 are highly active users, 1, 4 and 5 are moderately active
users and user 6 is the least active user. Moreover users 4,
5 and 6 spent significantly short time but consumed high
volume of data. It can be assumed that these users intend
to access multimedia contents like movies and photos rather
than regular browsing activity. It is worthwhile noting that
connected IoT devices, and mobile applications that run on
those devices are prone to security vulnerabilities as a result of
unauthorized access [62]. Therefore, this paper does not aim to
replace biometric authentication in IoT-integrated platforms or
personalized devices but aims to strengthen existing password,
fingerprint, face or speech recognition-based authentication by
incorporating knowledge based spatiotemporal abstraction. That
being said, a performance metric, namely the authentication
error probability is defined in order to evaluate the disruption
probability in continuous authentication of users on connected
mobile devices. In this paper the authentication error probability
is cumulative, and it denotes the cases when the device falls
back to one of the biometric authentication and liveness
detection methods which is proposed by Akhtar et al [63].

Two machine learning (ML) approaches are used, namely
Support Vector Machines (SVM) [64] and Density-based
spatial clustering of applications with noise (DBSCAN) [65] to
authorize user access to mobile devices. SVM is a supervised
learning method that basically defines hyperplanes which
separate the data into different groups while DBSCAN groups
the data points that are nearest neighbors of each other, and
aims at forming dense regions. We also present a set of selected
users where we randomly injected daily behavioral patterns
of other users to each of these users for randomly selected
five days after behavioral patterns have been learned. The
experiments have been carried out under the following two
scenarios:

1) Normal condition denotes the scenarios where user
identities were not spoofed, and the only possible false alarm
in continuous authentication could be the false rejection. This
results in the system to fall back to biometric authentication
to validate the user, even though it is a legitimate user. The
aim is to minimize false rejections.

2) Anomalous condition denotes the situations where we
have created spoofed identities by mapping a randomly selected
user’s patterns onto the records of a particular user after the
continuous authentication system has been trained to verify the
social behavioral context of the corresponding user. This could
result in false acceptance which is also aimed to be minimized.

A. Experimental results under normal condition

1) Verification by SVM: In this section the results of applying
SVM on the dataset are presented. The behavioral data have
been collected for 76 days. The system was trained within
the first week of data and SVM was set to six different
classes corresponding to each user. As mentioned before
two normalization techniques are applied, namely the soft
normalization and hard normalization to the results of the
ML processes. The proposed framework is also improved by
dynamically adjusting the contextual parameter of weights α
and β in long term sociability signature which is shown in
Eq. (3) and Eq. (7). To be able to analyze the impact of the
contextual parameters on the performance of the proposed
framework, wide range of values have been set in the form
of ((α )-(1-α )) for social activity rate, and in the form of ((β
)-(1-β )) for sociability factor as follows: 15%-85%, 30%-70%,
50%-50%, 70%-30% and 85%-15% where each set refers to
α ( β ) and 1-α (1-β). For example, 15%-85% means α and
β are equal to 15%.

Figure 5 illustrates the results under SVM with soft nor-
malization technique. By applying different values for α and
β, it can be concluded that the performance of verification
by using SVM has better results when α or β are low. The
proposed framework can verify User 1 with 100% under 15%-
85% and 50%-50% situations otherwise the verification success
ratio is approximately 95% which means that the cumulative
authentication error probability for user 1 is 5% from day
7 through 76. These performance metrics for User 2 for all
settings is almost the same, which is approximately 83% except
for 85%-15% which differentiated on day 70 and ended by
75%. The framework could be able to verify user 3 with 100%
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(a) User 1 (b) User 2 (c) User 3

(d) User 4 (e) User 5 (f) User 6
Figure 3. Users’ trait for the following representative user profiles (a) User-1, (b) User-2, (c) User-3, (d) User-4, (e) User-5, (f) User-6. Frequency refers to the
number of occurrences of social activity rate.

(a) User 1 (b) User 2 (c) User 3

(d) User 4 (e) User 5 (f) User 6
Figure 4. Users’ trait for the following representative user profiles (a) User-1, (b) User-2, (c) User-3, (d) User-4, (e) User-5, (f) User-6. Frequency refers to the
number of occurrences of sociability factor.

success rate when α and β are 15%. User 4 experiences 100%
success rate in verification for all set of configurations. This is
mainly because the user’s exhibiting a visibly inactive behavior
most of the days during the data collection. User 5 shows
better performance under 15%-85% and 30%-70% settings.
User 6 is more sensitive to each setting. The framework has
approximately 100% success rate in verifying User 6 under the
case, 15%-85%, and then for the rest of the settings, 50%-50%
has the best match for the user verification. To summarize, the
proposed framework performs better when the system relies
more on long term activity than short term.

B. Verification by DBSCAN

The performance of the proposed framework under the
DBSCAN algorithm on the collected dataset was also evaluated.
Figure 6 illustrates the results of continuous authentication
through an unsupervised approach, namely DBSCAN. Similarly,
verification performance is better when long term activity is

assigned higher weights. However the best settings for the users
under DBSCAN are 15%-85% and also 50%-50%. At the end
of the training period, the authentication error probability for
all users is below 0.1 % except user 6. This corresponds to the
situation when user behavior on social network applications
has been verified as an anomaly so the back-end server sends
a biometric authentication triggering signal to the front-end
device. In Figure 6, for each user, the anomalies marked by the
ML-based continuous authentication (which are observed by an
increase authentication error probability in the plots) is due to
users’ having different social behavioral patterns in weekdays
and weekends. For instance, user-1 has been found anomalous
from day-13 to day-15 with increasing authentication error
probability, whereas user-4 has been found anomalous from
day 26th to day 29. Over the weekends, most participants
follow different profiles, provide less data as they interacted less
frequently over social networking applications. Furthermore, the
participants’ travel patterns change over the weekends, which
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in turn, affects the feature set of the ML-based authentication
framework.

C. Experimental results under anomalous condition

Once the continuous authentication platform has been trained,
in order to imitate the situation where identities were spoofed
which can be due to exchanging mobile devices between users
or stolen devices, we introduce artificial noisy patterns to the
social behavioral profile of each user in particular days. The
noisy patterns are created by copying a usage pattern on the
records that belong to another user.

This scenario mimics the situation where random user pairs
were selected to use each other’s mobile device for five
consecutive days after the platform has been trained.

Each figure illustrates the authentication error probability
(AEP ) under the proposed system during the 5-day period
after a user’s behavior has been learned (i.e., converged
authentication error probability). The time when the user
behavior has been learned also denotes the time when the
smartphone can be safely recruited for opportunistic or
participatory sensing purposes within the IoT architecture.
User is recruited for opportunistic or participatory sensing
purposes in the IoT context has to be in an implicit manner.
Thus, the authenticity of the smart device user should not
undergo biometric authentication frequently. As (10) formulates,
AEPt stands for the disruption probability that results in after
biometric authentication has been triggered: The ratio of the
cumulative value of false rejections or true rejections (FR
and TR) starting from the beginning of training moving to
the end of the time of interest (t) to the cumulative value
of total acceptances and rejections. Disruption (AEP ) affects
user experience negatively and may result in de-incentivizing
users in participating IoT sensing through their smart mobile
devices. On the other hand, false acceptance may lead to
reduced trustworthiness of the sensory data acquired through
built-in sensors of these devices. Therefore, we also present the
false acceptance probability, and the impact of the contextual
parameter weights (α− β) on the number of false acceptances.

AEPt =

∑t
k=0 (FRk + TRk)∑i

k=0 (FRk + FAk + TRk + TAk)
(10)

For each user, five days have been selected based on the ini-
tial training duration of the continuous authentication platform.
The proposed framework is also improved by dynamically
adjusting the contextual weight parameters for social activity
rate and sociability factor which is shown in Eq. (3) and Eq.
(7). Similar to the tests in the previous subsection, in order to
be able to analyze the impact of α and β on the performance
of the proposed framework, wide range of values have been set
in the form of (( α )-( 1-α )) for social activity rate, and in the
form of (( β )-( 1-β )) for sociability factor as follows: 15%-
85%, 30%-70%, 50%-50%, 70%-30% and 85%-15% where
each set respectively refers to (α ) and (1- α ). For example,
15%-85% means α and β are set to 15%.

Figures 7-11 show the result of different configuration of
α and β each corresponding to different user. In the figures,
the y-axis shows the authentication error probability and the

x-axis represents the random days that other users’ behavioral
patterns were injected to simulate identity spoofing. Each plot
carries two information, the normal condition ( Gray bars) and
anomalous condition (Black bars) referring to the results that
were collected under identity spoofing scenarios. By providing
these two information side by side, the performance of the
system in detecting spoofed identities could be highlighted by
considering true rejection (TR) and false rejection (FR) results.

Figure 7 illustrates the situation where α and β are equal to
15%. Given this value, the system is able to detect the noisy
points with 0% error rate except for user 4 where the system
has one FA out of five spoofing attempts. AEP rate for the
situation where α = β = 30% increased as shown in Figure 8.
Under this setting, users 1, 3, 4 and 6 experience 100% TR
but the TR probability for users 2 and 5 drops down to 80%
and 20%, respectively. The AEP rate declined when α and β
are equal to 50% as shown in Figure 9. In this setting, users 1,
3, 4, and 6 has 100% TR probability. However, User 5 and 2
recorded one FA. Figure 10 shows the situation where α and
β are equal to 70%. In this case, users 1, 2, 4 and 5 scored
100% success with TR whereas user 3 recorded one FA and the
system could not recognize any of the five spoofing attempts
on the device possessed by user 6. The last figure 11 shows
the situation where α and β are equal to 85% which indicates
the worst results for user verification. In this configuration,
users 2, 4 and 6 recorded five FA and user 3 was able to catch
only one TR point; whereas users 5 and 1 were able to catch
just two TR out of five spoofing attempts.

Based on the discussions on Figures 7-11, the following
conclusions can be made: When the contextual weights, α
and β, are increased from 15% to 85%, the error rate of the
system to verify the genuine users increases. Based on the
results presented in the figures above, the contextual weights
can be set to 15% and 50% as these lead to the best values
with least error (disruption) rate for the proposed system in the
detection of genuine smartphone users. By studying the given
data, the minimum number of FAs for all users is scored in 15%
setting, and the system experiences just one false acceptance
out of 30 spoofing attempts which is close to 3% error ratio in
verification. This rate increased approximately to 26% through
eight FAs out of thirty selected points when α and β are set to
30%. The performance of the system under the setting where
α = β = 50% is improved by just experiencing two FAs which
means close to 6% error rate. However the system scored 20%
error ratio when α and β were set to 70%, and the worst case
is experienced when α and β were set to 85% by having 83%
error rate with 25 false acceptance points out of 30 spoofing
attempts.

V. OPEN ISSUES AND FUTURE DIRECTIONS

In the experimental results, when the contextual parameter
weights are properly set, the probability of FA is reasonably low.
However, the impact of applying different machine learning
algorithms and the possibility of further reducing FA should
be investigated. This article aims at presenting the concept of
continuous verification; however feasibility study of various
machine learning algorithms on the proposed system is included
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(a) User 1 (b) User 2

(c) User 3 (d) User 4

(e) User 5 (f) User 6
Figure 5. Authentication error probability under SVM with soft-normalization algorithm for the following representative user profiles (a) User-1, (b) User-2,
(c) User-3, (d) User-4, (e) User-5, (f) User-6

(a) User 1 (b) User 2

(c) User 3 (d) User 4

(e) User 5 (f) User 6
Figure 6. Authentication error probability under DBSCAN algorithm for the following representative user profiles (a) User-1, (b) User-2, (c) User-3, (d)
User-4, (e) User-5, (f) User-6
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(a) User 1 (b) User 2 (c) User 3

(d) User 4 (e) User 5 (f) User 6
Figure 7. Probability of triggering biometric authentication due to authentication error under DBSCAN with spoofing identities when α and β equal to 15%

(a) User 1 (b) User 2 (c) User 3

(d) User 4 (e) User 5 (f) User 6
Figure 8. Probability of triggering biometric authentication due to authentication error (TR + FR) under DBSCAN with spoofing identities when α and β
equal to 30%
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(a) User 1 (b) User 2 (c) User 3

(d) User 4 (e) User 5 (f) User 6
Figure 9. Probability of triggering biometric authentication due to authentication error under DBSCAN with spoofing identities when α and β equal to 50%

(a) User 1 (b) User 2 (c) User 3

(d) User 4 (e) User 5 (f) User 6
Figure 10. Probability of triggering biometric authentication due to authentication error under DBSCAN with spoofing identities when α and β equal to 70%
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(a) User 1 (b) User 2 (c) User 3

(d) User 4 (e) User 5 (f) User 6
Figure 11. Probability of triggering biometric authentication due to authentication error under DBSCAN with spoofing identities when α and β equal to 85%

in our future research agenda. The members of the participant
pool in this research demonstrate fairly similar behavior to
each other (i.e. mostly graduate students). Inclusion of a
heterogeneous participant pool in the experiments is expected
to increase the impact of the normalization module of the
system, diversify the behavioral clusters and in turn, result in
lower FAs. Moreover, including additional applications in the
analysis would improve the accuracy. However, improvement
in the accuracy would come at the expense of additional
computational overhead. Hence, investigating the optimal
number of apps to ensure the trade-off between computational
complexity and accuracy in continuous verification is another
important future research direction.

In addition to all, we are currently extending the feature
set and collecting a richer set of data to reduce verification
and training duration. In addition, energy-efficiency is an
important concern for mobile platforms; therefore energy-
efficient continuous verification mechanisms are also being
developed within the ongoing research efforts.

VI. CONCLUSION

In Internet of Things (IoT) contexts, smart user devices
can be recruited for participatory or opportunistic sensing
campaigns. Verification of genuine users of these devices
is of paramount importance for the following reasons: High
rejection rates may trigger biometric authentication and may
de-incentivize users to offer their built-in sensors as a service
whereas high false acceptances may result in reduced trustwor-
thiness of the sensory data. With the convergence of IoT and
social networks, Social Internet of Things has emerged which
has many advantages including network navigability, service
scalability and increased trustworthiness of acquired data. This

paper has studied continuous verification in SIoT where online
behaviometrics of mobile users collected via smart phones
is considered by extracting features from smartphone sensors
and users’ social network interactions. We have presented a
continuous verification scheme that uses social behaviometrics
collected from a set of users. We have used real traces collected
over several months. Those traces are sent to a cloud server and
analyzed with two machine learning techniques, namely the
Support Vector Machines (SVM) and Density-Based clustering
of applications with noise (DBSCAN). Our results show that
genuine users can be verified without any disruption 97% of
the time whereas the users can keep using the devices 90% of
the time without any disruption.
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[21] A. Messerman, T. Mustafić, S. A. Camtepe, and S. Albayrak, “Continuous
and non-intrusive identity verification in real-time environments based on
free-text keystroke dynamics,” in Biometrics (IJCB), 2011 International
Joint Conference on. IEEE, 2011, pp. 1–8.

[22] J. Roth, X. Liu, and D. Metaxas, “On continuous user authentication
via typing behavior,” IEEE Transactions on Image Processing, vol. 23,
no. 10, pp. 4611–4624, 2014.

[23] J. V. Monaco, N. Bakelman, S.-H. Cha, and C. C. Tappert, “Developing
a keystroke biometric system for continual authentication of computer
users,” in Intelligence and Security Informatics Conference (EISIC), 2012
European. IEEE, 2012, pp. 210–216.

[24] D. Roggen, M. Wirz, G. Tröster, and D. Helbing, “Recognition of crowd
behavior from mobile sensors with pattern analysis and graph clustering
methods,” arXiv preprint arXiv:1109.1664, 2011.

[25] S.-W. Lee and K. Mase, “Recognition of walking behaviors for pedes-
trian navigation,” in (CCA’01). Proceedings of the IEEE International
Conference on Control Applications, 2001, pp. 1152–1155.

[26] M. Sultana, P. P. Paul, and M. Gavrilova, “A concept of social behavioral
biometrics: Motivation, current developments, and future trends,” in
International Conf. on Cyberworlds. IEEE, 2014, pp. 271–278.

[27] R. V. Yampolskiy and V. Govindaraju, “Behavioural biometrics: a survey
and classification,” International Journal of Biometrics, vol. 1, no. 1, pp.
81–113, 2008.

[28] F. Anjomshoa, B. Kantarci, M. Erol-Kantarci, and S. Schuckers, “De-
tection of spoofed identities on smartphones via. sociability metrics,” in
IEEE International Conference on Communications (ICC). IEEE, 2017,
pp. 6911–6916.

[29] L. Atzori, A. Iera, G. Morabito, and M. Nitti, “The social internet of
things (siot)–when social networks meet the internet of things: Concept,
architecture and network characterization,” Computer networks, vol. 56,
no. 16, pp. 3594–3608, 2012.

[30] L. Atzori, A. Iera, and G. Morabito, “From" smart objects" to" social
objects": The next evolutionary step of the internet of things,” IEEE
Communications Magazine, vol. 52, no. 1, pp. 97–105, 2014.

[31] A. M. Ortiz, D. Hussein, S. Park, S. N. Han, and N. Crespi, “The cluster
between internet of things and social networks: Review and research
challenges,” IEEE Internet of Things Journal, vol. 1, no. 3, pp. 206–215,
2014.

[32] L. E. Holmquist, F. Mattern, B. Schiele, P. Alahuhta, M. Beigl, and H.-W.
Gellersen, “Smart-its friends: A technique for users to easily establish
connections between smart artefacts,” in international conference on
Ubiquitous Computing. Springer, 2001, pp. 116–122.

[33] L. Ding, P. Shi, and B. Liu, “The clustering of internet, internet of things
and social network,” in Knowledge Acquisition and Modeling (KAM),
2010 3rd International Symposium on. IEEE, 2010, pp. 417–420.

[34] J. An, X. Gui, W. Zhang, and J. Jiang, “Nodes social relations cognition
for mobility-aware in the internet of things,” in International Conference
on Internet of Things (iThings/CPSCom), 4th International Conference
on Cyber, Physical and Social Computing. IEEE, 2011, pp. 687–691.

[35] H. Zhang and M. Li, “Security vulnerabilities of an remote password
authentication scheme with smart card,” in Consumer Electronics,
Communications and Networks (CECNet), 2011 International Conference
on. IEEE, 2011, pp. 698–701.

[36] W. Meng, D. S. Wong, S. Furnell, and J. Zhou, “Surveying the
development of biometric user authentication on mobile phones,” IEEE
Communications Surveys & Tutorials, vol. 17, no. 3, pp. 1268–1293,
2015.

[37] A. Dantcheva, P. Elia, and A. Ross, “What else does your biometric data
reveal? A survey on soft biometrics,” IEEE Transactions on Information
Forensics and Security, vol. 11, no. 3, pp. 441–467, 2016.

[38] A. Poursaberi, J. Vana, S. Mracek, R. Dvora, S. N. Yanushkevich,
M. Drahansky, V. P. Shmerko, and M. L. Gavrilova, “Facial biometrics
for situational awareness systems,” IET biometrics, vol. 2, no. 2, pp.
35–47, 2013.

[39] J. Liu-Jimenez, R. Sanchez-Reillo, and B. Fernandez-Saavedra, “Iris
biometrics for embedded systems,” IEEE transactions on very large
scale integration (vlsi) systems, vol. 19, no. 2, pp. 274–282, 2011.

[40] H. Lv and W.-Y. Wang, “Biologic verification based on pressure sensor
keyboards and classifier fusion techniques,” IEEE Transactions on
Consumer Electronics, vol. 52, no. 3, pp. 1057–1063, 2006.

[41] E. Shi, Y. Niu, M. Jakobsson, and R. Chow, “Implicit authentication
through learning user behavior,” in International Conference on Infor-
mation Security. Springer, 2010, pp. 99–113.

[42] H. Gascon, S. Uellenbeck, C. Wolf, and K. Rieck, “Continuous
authentication on mobile devices by analysis of typing motion behavior.”
in Sicherheit. Citeseer, 2014, pp. 1–12.

[43] H. Khan, A. Atwater, and U. Hengartner, “Itus: an implicit authentication
framework for android,” in Proceedings of the 20th annual international
conference on Mobile computing and networking. ACM, 2014, pp.
507–518.

[44] T. Stockinger, “Implicit authentication on mobile devices,” in The Media
Informatics Advanced Seminar on Ubiquitous Computing. Citeseer,
2011.

[45] H. Khan and U. Hengartner, “Towards application-centric implicit
authentication on smartphones,” in Proceedings of the 15th Workshop
on Mobile Computing Systems and Applications. ACM, 2014, p. 10.

[46] A. De Luca, A. Hang, F. Brudy, C. Lindner, and H. Hussmann, “Touch
me once and i know it’s you!: implicit authentication based on touch
screen patterns,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 2012, pp. 987–996.

[47] T. Feng, Z. Liu, K.-A. Kwon, W. Shi, B. Carbunar, Y. Jiang, and
N. Nguyen, “Continuous mobile authentication using touchscreen
gestures,” in Homeland Security (HST), 2012 IEEE Conference on
Technologies for. IEEE, 2012, pp. 451–456.

http://www.pewinternet.org/fact-sheet/social-media/
http://www.ericsson.com/res/docs/2015/ericsson-mobility-report-june-2015.pdf
http://www.ericsson.com/res/docs/2015/ericsson-mobility-report-june-2015.pdf


2169-3536 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2719706, IEEE Access

[48] X. Chen, R. Chandramouli, and K. P. Subbalakshmi, “Scam detection in
twitter,” in Data Mining for Service. Springer, 2014, pp. 133–150.

[49] A. Louni, A. Santhanakrishnan, and K. Subbalakshmi, “Identification of
source of rumors in social networks with incomplete information,” arXiv
preprint arXiv:1509.00557, 2015.

[50] M. Sultana, P. P. Paul, and M. L. Gavrilova, “Online user interaction
traits in web-based social biometrics,” Comput Vis. Image Process Intell
Syst Multimedia Technol, pp. 177–190, 2014.

[51] M. Sultana, P. P. Paul, and M. Gavrilova, “Social behavioral biometrics:
An emerging trend,” International Journal of Pattern Recognition and
Artificial Intelligence, vol. 29, no. 08, p. 1556013, 2015.

[52] N. Lathia, V. Pejovic, K. K. Rachuri, C. Mascolo, M. Musolesi, and P. J.
Rentfrow, “Smartphones for large-scale behavior change interventions.”
IEEE Pervasive Computing, vol. 12, no. 3, pp. 66–73, 2013.

[53] A. Mehrotra, V. Pejovic, and M. Musolesi, “Sensocial: a middleware for
integrating online social networks and mobile sensing data streams,” in
Proceedings of the 15th International Middleware Conference. ACM,
2014, pp. 205–216.

[54] A. S. Crandall and D. J. Cook, “Behaviometrics for identifying smart
home residents,” in Human Aspects in Ambient Intelligence. Springer,
2013, pp. 55–71.

[55] A. B. Budurusubmi and S. S. Yau, “An effective approach to continuous
user authentication for touch screen smart devices,” in IEEE International
Conference on Software Quality, Reliability and Security (QRS), Aug
2015, pp. 219–226.

[56] A. Mosenia, S. Sur-Kolay, A. Raghunathan, and N. K. Jha, “Caba:
Continuous authentication based on bioaura,” IEEE Transactions on
Computers, vol. 66, no. 5, pp. 759–772, 2016.

[57] J. Schobel, R. Pryss, M. Schickler, and M. Reichert, “Towards flexible
mobile data collection in healthcare,” in IEEE 29th International
Symposium on Computer-Based Medical Systems (CBMS), 2016, pp.
181–182.

[58] M. Batty, K. W. Axhausen, F. Giannotti, A. Pozdnoukhov, A. Bazzani,
M. Wachowicz, G. Ouzounis, and Y. Portugali, “Smart cities of the
future,” The European Physical Journal Special Topics, vol. 214, no. 1,
pp. 481–518, 2012.

[59] R. Khatoun and S. Zeadally, “Smart cities: concepts, architectures,
research opportunities,” Communications of the ACM, vol. 59, no. 8, pp.
46–57, 2016.

[60] C. Ziegler, “Implicit authentication 2.0: Behavioural biometrics in smart
environments,” in Human Computer Interaction in the Internet of Things
Era, E. von Zezschwitz et al., Ed. University of Munich, 2015, pp.
100–107.

[61] D. Hristova, M. J. Williams, M. Musolesi, P. Panzarasa, and C. Mas-
colo, “Measuring urban social diversity using interconnected geo-social
networks,” in Proceedings of the 25th International World Wide Web
Conference (WWW), April 2016.

[62] D. G. Shin and M. S. Jun, “Home iot device certification through
speaker recognition,” in 17th International Conference on Advanced
Communication Technology (ICACT), July 2015, pp. 600–603.

[63] Z. Akhtar, C. Micheloni, and G. L. Foresti, “Biometric liveness detection:
Challenges and research opportunities,” IEEE Security & Privacy, vol. 13,
no. 5, pp. 63–72, 2015.

[64] A. Bordes, S. Ertekin, J. Weston, and L. Bottou, “Fast kernel classifiers
with online and active learning,” Journal of Machine Learning Research,
vol. 6, no. Sep, pp. 1579–1619, 2005.

[65] N. Vaswani, A. R. Chowdhury, and R. Chellappa, “Activity recognition
using the dynamics of the configuration of interacting objects,” in
Computer Vision and Pattern Recognition, 2003. Proceedings. 2003
IEEE Computer Society Conference on, vol. 2. IEEE, 2003, pp. II–633.


