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ABSTRACT

Recent attempts to apply compressed sensing to MRI have re-

sulted in pseudo-random k-space sampling trajectories which,

if applied naı̈vely, may do little to decrease data acquisition

time. This paper shows how an important indicator of CS per-

formance guarantees, the Restricted Isometry Property, holds

for deterministic sampling trajectories corresponding to radial

and spiral sampling patterns in common use. These theoret-

ical results support several empirical studies in the literature

on compressed sensing in MRI. A combination of Geršgorin’s

Disc Theory and Weyl’s sums lead to performance bounds

on sparse recovery algorithms applied to MRI data collected

along short and smooth sampling trajectories.

Index Terms— compressed sensing, MRI trajectory, ex-

ponential sums, restricted isometry property

1 MR Sampling and Compressed Sensing
Inspired by the seminal work on compressed sensing (CS)

presented in [1], the magnetic resonance (MR) community

has been carefully investigating how CS ideas might help im-

prove the quality of MR images while reducing data acqui-

sition time [2]. However, much of the existing CS theory is

predicated on pseudo-random sampling patterns which, if im-

plemented naı̈vely in modern MR imagers, yield longer sam-

pling trajectories than the radial and spiral patterns commonly

used. Several investigators have studied random undersam-

pling patterns along radial and spiral sampling trajectories

[3, 4, 5, 6, 7], producing very promising empirical results.

Nevertheless, there is a pervasive disconnect between the

random sampling patterns proposed in the CS community and

the smooth and fast sampling trajectories favored by the MR

community. This discord stems from the different motivations

underlying CS and MR sampling techniques: while CS aims

to limit the number of samples collected, MR data acquisi-

tion time depends on the length and curvature of the sampling
path. In this paper, we present new theoretical findings on

deterministic sampling trajectories for MR which closely ap-

proximate radial and spiral sampling patterns yet satisfy key
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properties (i.e., the Restricted Isometry Property) associated

with CS.

This contribution sheds new light on one of the early and

famous experiments in CS. In [1], Candès et al showed that a

Shepp-Logan phantom could be reconstructed perfectly from

k-space samples collected in a radial pattern common to mod-

ern MRI scanners. The accompanying theory, however, did

not directly justify that sampling strategy. Rather, the authors

assumed that samples were collected at random locations in

the Fourier domain. This paper shows that (near) radial or spi-

ral sampling in k-space of sparse or sparse-gradient images is

also sufficient for accurate reconstruction, while offering the

additional advantage of corresponding to short and smooth

sampling trajectories and associated short scan times.

2 Problem formulation
Let f denote the MR image of interest, and assume f is either

(a) sparse in the spatial domain or (b) has a sparse gradient.

In particular, in case (a) we have

f(x) =
∑
z∈Z

αzδ(x− z)

for x ≡ (x1, x2) ∈ [0, 1)2, where

Z
�
=

{
0,

1

M
,
2

M
, . . . ,

M − 1

M

}2

is a set of 2d spatial locations and {αz : z ∈ Z} is a set of

real-valued amplitudes. We assume that all but K � M2 of

the αzs are zero-valued.

Samples are collected sequentially in the Fourier domain

(i.e. “k-space”). The nth sample is collected at frequency

ωn ≡ (ωn,1, ωn,2) ∈ (−1, 1)2 [need to handle this in the-

ory...]. We model k-space sampling along a trajectory as

yn =
1√
N

∫
[0,1)2

f(x)e−i2π〈x,ωn〉dx

=
∑
z∈Z

αz√
N

∫
[0,1)2

δ(x− z)e−i2π〈x,ωn〉dx

=
∑
z∈Z

αz√
N

e−i2π〈z,ωn〉.
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Set

φz,ω
�
=

1√
N

ei2π〈z,ω〉

and let

Φ
�
= [φz,ω]

T
z∈Z

ω∈{ω1,...,ωN}

be an N × M2 matrix. Let α denote the length-M2 vector

whose elements are members of the set {αz : z ∈ Z} and

y
�
= [y1, . . . , yN ]T . We then have

yn =
∑
z∈Z

αzφz,ωn (1a)

y = Φα. (1b)

Alternatively, in case (b) where the image gradient is as-

sumed sparse, we have

Dvf(x) =
∑
z∈Z

αzδ(x− z)

Dhf(x) =
∑
z∈Z

βzδ(x− z)
(2)

where

Dvf(x) = f(x1, x2)− f(x1 − 1/M, x2) and

Dhf(x) = f(x1, x2)− f(x1, x2 − 1/M)

correspond to vertical and horizontal discrete gradients. As

before, we assume that all but K � M2 of the αz’s and βz’s

are zero-valued.

In this case, our k-space samples are the same as above,

and (as suggested in [8]) we multiply each sample by a com-

plex exponential to account for the gradient as follows:

yvn
�
= yn

(
1− e−i2πωn,1/M

)
=

1√
N

∫
[0,1)2

f(x)
(
1− e−i2πωn,1/M

)
e−i2π〈x,ωn〉dx

=
1√
N

∫
[0,1)2

Dvf(x)e
−i2π〈x,ωn〉dx

=
∑
z∈Z

αz√
N

∫
[0,1)2

δ(x− z)e−i2π〈x,ωn〉dx

=
∑
z∈Z

αz√
N

e−i2π〈z,ωn〉

with yhn defined similarly. Let α denote the length-(2M2)
vector whose elements are members of the sets {αz : z ∈ Z}
and {βz : z ∈ Z}, and let y

�
= [yv1 , . . . , y

v
N , yh1 , . . . , y

h
N ]T .

Then, as before,

y = Φα.

Our goal is to choose a sampling path ω(t) and associated

sample locations ωn
�
= ω(n/N) such that the resulting sens-

ing matrix Φ satisfies the Restricted Isometry Property (RIP),

meaning sparse recovery methods can be successfully applied

to estimating α (and hence f ) in either noisy or noisy-free set-

tings. These concepts are reviewed below.

3 CS Performance Guarantees
Much of the CS literature revolves around determining when

a sensing matrix Φ allows accurate reconstruction using an

appropriate algorithm. One widely used property used in such

discussions is the Restricted Isometry Property (RIP), pro-

posed in [9]:

Definition 1 (Restricted Isometry Property). The matrix Φ
satisfies the Restricted Isometry Property of order K with pa-
rameter δK ∈ [0, 1) if

(1− δK)‖α‖22 ≤ ‖Φα‖22 ≤ (1 + δK)‖α‖22
holds simultaneously for all sparse vectors α having no more
than K nonzero entries. Matrices with this property are de-
noted RIP(K, δK).

Matrices which satisfy the RIP combined with sparse re-

covery algorithms are guaranteed to yield accurate estimates

of the underlying function f :

Theorem 1 (Sparse Recovery with RIP [9, 10, 11].) Let Φ
be a matrix satisfying RIP(2K, δ2K) with δ2K <

√
2 − 1,

and let y = Φα be a vector of observations of any sparse sig-
nal α ∈ R

M2

having no more than K nonzero entries. Then
the estimate

α̂ = argmin
a

‖a‖1 subject to y = Φa

is unique and equal to α.

Similar results have been derived for noise-corrupted mea-

surements (cf. [12]).

4 Main result
The central thesis of this paper is based upon the theoretical

foundation established in [13], which showed the following:

Theorem 2 (CS Sampling Trajectories [13].) Let d ≥ 4.
Then the path ω(t) = (td−1, td) and associated sample
points ωn = ω(n/N), n = 1, . . . , N satisfies RIP(K,δK)
for δK <

√
2− 1 and

K ≤ δKe−3dN
1

24d2 log d .

This theorem is proved in [13] using a combination of

Geršgorin’s Disc Theorem [14, 15] and Weyl’s sums [16].
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Remark 1 The trajectory described in Theorem 2 satisfies
the RIP, and so is guaranteed to yield accurate estimates of
f via an appropriate sparse reconstruction method. Note that
for larger d, the corresponding trajectory is closer to being
a straight line and hence has a shorter pathlength; however,
for a fixed N larger d also implies a smaller upper bound on
K, the maximum number of nonzero elements in α we may
tolerate.

Remark 2 When f is real-valued, it’s Fourier transform (de-
noted F (ω)) is circularly symmetric; i.e., if F (ω) = F ∗(−ω).
In this case, we may double the trajectory to traverse the en-
tire k-space by setting

ωn =

{ −ω(n/N), if 1 ≤ n ≤ N
ω((n−N)/N), if N < n ≤ 2N ;

the resulting trajectory, displayed in Figure 1(b), also satisfies
the RIP.

Remark 3 On a practical note, when the original image is
not highly sparse, it may be difficult to satisfy Theorem 2 be-
cause sampling locations are naturally quantized by the MRI
hardware. In this case, accurate sparse recovery can be guar-
anteed by taking the sampling trajectory in Theorem 2 and
repeating it at evenly-spaced rotations around the center of k-
space; the resulting asterisk-like pattern would closely match
conventional radial sampling trajectories in MRI.

Corollary 1 (Spiral trajectories) . Consider the spiral tra-
jectory

ω̃(t) =

(
at cos(bt)
at sin(bt)

)
(3)

for two constants a, b > 0. Let ω(t) be the order-(2b) Taylor
series approximation to this trajectory; i.e., choose

ω(t) =

⎛
⎝ at− ab2t3

2! + ab4t5

4! − · · ·

abt2 − ab3t4

3! + ab5t6

5! − · · ·

⎞
⎠ (4)

and associated sample points ωn = ω(n/N), n = 1, . . . , N .
Then the resulting sensing matrix Φ satisfies RIP(K,δK) for
δK <

√
2− 1 and

K ≤ δKe−6bN
1

96b2 log 2b .

Remark 4 The spiral trajectory described in Corollary 1
combined with the sparse gradient assumption formalized
in (2) lend strong theoretic support to the empirical studies
conducted in [3, 4], in which undersampling was conducted
along spiral trajectories and total variation regularization
during the reconstruction exploited sparse gradients.

5 Examples
The images in Figure 1 depict the above principles applied to

a phantom MRI image which comes standard with MATLAB

and has a sparse gradient as in (2). In particular, Figure 1(a)

is the original phantom image, and Figures 1(b-d) display the

magnitude of the Fourier transform of this phantom beneath

various sampling trajectories supported by the above theory.

The trajectory in Figure 1(b) is computed using a polynomial

of degree d = 4 (the minimum allowed according to Theo-

rem 2), while the trajectory in Figure 1(c) is computed using

a polynomial of degree d = 20. Note that the d = 20 tra-

jectory more closely approximates the radial trajectory com-

monly used in practice, but the sampling locations are more

nonuniformly spaced along this path relative to the spacing

for d = 4. In both these cases, the length of the trajectory

is O(1), much less than the O(
√
N) trajectory length which

would correspond to N randomly distributed sampling loca-

tions.

The green path in Figure 1(d) corresponds to a spiral tra-

jectory as in (3) for a = 1 and b = 20; the red dots along

this path correspond to sample locations computed using the

Taylor series approximation to the spiral in (4) in Corollary 1.

The length of this spiral [17] is

a

2b

[
b
√
1 + b2 + loge(b+

√
(1 + b2))

]
,

which is O(1) with respect to the sparsity level K, number of

sampling points N , and spatial resolution M .

6 Conclusions
This paper provides theoretical justification for common MRI

sampling trajectories, radial and spiral, from a compressed

sensing perspective. In particular, we demonstrates that for

a given deterministic set of sampling locations along spiral

and radial trajectories, the resulting projection matrix satis-

fies the Restricted Isometry Property and hence leads to ac-

curate high-resolution MR imagery if appropriate sparsity-

promoting or total-variation reconstruction algorithms are

used.
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