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Robust Optimization of Storage
Investment on Transmission Networks
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Abstract—This paper discusses the need for the integration
of storage systems on transmission networks having renewable
sources, and presents a tool for energy storage planning. The tool
employs robust optimization to minimize the investment in storage
units that guarantee a feasible system operation, without load
or renewable power curtailment, for all scenarios in the convex
hull of a discrete uncertainty set; it is termed ROSION—Robust
Optimization of Storage Investment On Networks. The computa-
tional engine in ROSION is a specific tailored implementation of a
column-and-constraint generation algorithm for two-stage robust
optimization problems, where a lower and an upper bound on the
optimal objective function value are successively calculated until
convergence. The lower bound is computed using mixed-integer
linear programming and the upper bound via linear programming
applied to a sequence of similar problems. ROSION is demon-
strated for storage planning on the IEEE 14-bus and 118-bus
networks, and the robustness of the designs is validated via Monte
Carlo simulation.

Index Terms—Design optimization, energy storage, integer
linear programming, optimization methods, power system plan-
ning.

NOMENCLATURE
A. Storage Planning Problem

B;; Line susceptance between nodes 2 and j, defined
as a positive number.

Ci0 Fixed cost of the generator at node :.

Cik Slope of line segment & of the generator cost
curve at node i.

Ey Initial stored energy in the storage unit at node .

E;y Final stored energy in the storage unit at node 1.

Eres Maximum storage capacity of the unit at node 7.

Emin Minimum storage capacity of the unit at node .

fi(-) Convex generation cost function at node 3.

Kp Penalty coefficient for demand curtailment.
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Kp

!

Pg;(t)

Pd(mam)

Penalty coefficient for renewable energy
curtailment.

Capital recovery factor of storage investment.
Number of nodes in the system.

Number of linear segments in the cost curve of
the generator at node .

Demand power curtailment at node 4 and in period
t.

Renewable power curtailment at node ¢ and in
period ¢.

Power demand at node # and in period 7.

Power generation at node 7, over segment k, and
in period £.

Power generation at node ¢ and in period ?.

Maximum power generation at node z and over
segment k.

Minimum power generation at node ¢ (equal to
Gi )

Maximum power flow limit between nodes ¢ and

j-

Renewable power generation at node i and in

period ¢.

Maximum hourly charging power rate of the
storage unit at node .

Power charge into the storage unit at node # and
in period £.

Maximum hourly discharging power rate of the
storage unit at node .

Power discharge from the storage unit at node
¢ and in period £.

Maximum hourly up/down ramp-rate limit of the
generator at node .

Storage investment cost at node 2.

Binary variable equal to 1 if storage is installed at
node ¢ and equal to zero otherwise.

Binary variable equal to 1 if the storage installed
at node 4 is being charged in period £, and equal
to zero otherwise.
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af(t) Binary variable equal to 1 if the storage installed
at node 7 is being discharged in period £, and equal
to zero otherwise.

e Storage efficiency during charging.

Nd Storage efficiency during discharging.

I, Storage budget expressed in terms of the allowed
investment cost.

r, Storage budget expressed in terms of the allowed
number of units.

Q(7) Set of nodes connected to node 2 by a branch.

8;;(¢) Difference between nodal angles ¢ and j in period
t.

B. ROSION

m Number of scenarios in the discrete uncertainty
set.

u(® Scenario s in the discrete uncertainty set.

U Discrete uncertainty set.

z Vector of first stage (design decision or
unadjustable) variables.

Y Vector of second stage (control decision or
adjustable) variables.

y® Vector of second stage variables corresponding
to scenario s.

(S] Set of indices of the scenarios that are generated

by the slave problem.

I. INTRODUCTION

HE proliferation of renewable energy in power grids ne-

cessitates the increased use of conventional generation
reserve to maintain power balance. While some systems have
the capacity to provide sufficient reserve to mitigate the re-
newable power intermittency as part of their ancillary services,
others lack flexibility in their generation portfolios [1]. Energy
storage systems can buffer the output of intermittent renewable
sources and consequently contribute to frequency regulation,
system stability, peak shaving, and deferral of transmission line
investment; the storage systems comprise batteries, flywheels,
pumped hydroelectric, or compressed air technology. The need
for investment in storage is most pronounced in systems having
high renewable penetration [2], or in networks that have re-
newable energy integration and limited ramping capacity [1].
In such networks, energy storage eliminates the need for renew-
able power and load curtailment by allowing the generation and
consumption of power to occur non-concurrently.

Several of the storage planning tools are based on a multi-pe-
riod dynamic optimal power flow (OPF) formulation, where the
OPF solution in consecutive time intervals is constrained by the
available storage capacity, the ramp rates of conventional gen-
erators, and the charge/discharge rates of storage units. Even if
the cost of storage is not explicitly accounted for in the multi-pe-
riod simulation, the activity of the storage devices in the optimal
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policy gives guidance on their required rated energy, power, and
location. For a system with a single generator and a single load,
[3] demonstrates that the optimal policy calls for generating
more than the demand to charge the battery, and then generating
less than the demand so that the battery complements the con-
ventional generation in supplying the load. In the general case
that accounts for several generators and loads, energy storage is
shown to increase the availability of renewable energy on the
network [4]. Reference [5] extends the dynamic OPF by using
chance constraints to account for Gaussian distributed errors
in the simulated wind energy production and load profile. Sto-
chastic formulations for the storage investment problem have
been recently discussed [6], [7]; reference [6] employed a linear
program with a limited number of scenarios having pre-assigned
probability values, whereas [7] used a two-point estimate prob-
abilistic OPF combined with a genetic algorithm to maximize
wind power utilization. The multi-period OPF formulations, as
employed in [3]-[7], require a constant power assumption over
each time interval and implicitly assume that power variations
within the time interval are balanced via additional regulation
services. The effect of such regulation services on storage in-
vestment has been studied for the case where the regulation con-
trol is carried out via local generation [2] and battery storage
systems [8].

While most of the literature on storage planning used a DC
network model [2], [4]-[7], there have been some notable
contributions that use an AC model and account for voltage
and reactive power in their solutions [9]-[13]. Reference [9]
demonstrated a dynamic AC-OPF planning solution for a
network in Ontario, where wind energy is stored at night and
released during the day. The approach in [9] was extended in
[10] to account for the reactive power of distributed generation
and battery systems. Both [9] and [10] require the specification
of charge and discharge periods as parts of the input data;
this requirement has been removed in [11], but at the expense
of solving a sequence of nonlinear programming problems
where each has a different setting of the charge and discharge
periods. The use of an AC model leads to increased accuracy
in the planning. However, the resulting nonlinear programming
model may exhibit convergence problems as the nonlinearity
appears in all intervals; moreover, there is no guarantee that the
solution is global. References [12] and [13] proposed a semi
definite programming (SDP) relaxation of the multi-period
storage planning problem with an AC model. The solution to
the SDP relaxation is globally optimal and feasible to the plan-
ning problem provided that the duality gap is zero—a condition
that is likely to hold in practice but cannot be guaranteed prior
to solving the planning problem. In addition, the SDP solution
does not scale well with the problem size. The use of the AC
model therefore requires further research and development for
general use in a planning tool.

This research proposes a novel tool called Robust Optimiza-
tion for Storage Investment On Networks (ROSION) for robust
investment planning of storage systems in networks having re-
newable energy sources. ROSION produces a minimum cost
plan of storage device locations together with their power and
energy ratings such that a feasible solution (without load/renew-
able energy curtailment) is guaranteed to exist for any load and
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renewable energy scenario in a predefined uncertainty set. The
uncertainty set is the convex hull of several points that consti-
tute scenarios selected by the planner. The use of scenarios to
define robust optimization problems has been discussed in [14]
and [15]. The scenarios are themselves referred to as the discrete
uncertainty set and are chosen to represent extreme operating
cases that the system is likely to encounter over the planning
horizon. In power system planning applications, the scenarios
are primarily obtained from load forecasts, which are practically
based on load demand and econometric models that use histor-
ical data, together with economic forecasts and inputs from gov-
ernment sources [16]. Utilities perform annual long-term load
forecasting on a yearly basis for the purpose of planning and
investment [16], [17]. In fact, the importance of load-growth
models for long-term planning has been already discussed in the
technical literature. Reference [18] presented a Markov demand
model that considers a constant continuous deviation, with zero
mean, around a predictable trend and the possibility of a sudden
load increase because of an industrial plant moving in; the pa-
rameters of the Markov model can be estimated from past ex-
perience and economic prediction. An example in [18] shows
the prediction of the minimum and maximum bus load values,
based on which scenarios can be constructed; reference [19],
which discusses a recent long-term expansion planning study,
quotes minimum and maximum bus load values that reflect con-
servative and highly uncertain demand estimates.

Unlike previous work on energy storage planning, the pro-
posed problem formulation considers that storage devices prac-
tically have discrete sizes and power ratings. It also guarantees
that for any scenario chosen from the uncertainty set, there exists
a charge/discharge pattern free of simultaneous charging and
discharging; the conditions for computing the charge/discharge
patterns are much more flexible than what was proposed in pre-
vious work [9]-[11]. ROSION implements a solution to a two-
stage robust optimization formulation using a distinct imple-
mentation of the column-and-constraint generation algorithm
[14]. The need for robust optimization solutions has been rec-
ognized in several application areas [15], [19]-[23]. It is also
preferred in storage investment planning over stochastic opti-
mization, where practical applications require accurate statis-
tical models that are not usually available [24].

The rest of this paper is organized as follows.
Section II presents a mathematical formulation of the
storage-planning model including constraints on the network,
generation and storage rate limits, storage capacities, and
storage dynamics that rule out simultaneous charging and
discharging. The solution engine behind ROSION is detailed in
Section III. Numerical results that include planning solutions
are given in Section IV and validated through Monte Carlo
simulation; the computational behavior is also discussed.
Section V concludes the paper.

II. ENERGY STORAGE PLANNING

Consider a power network having n nodes with demand
(Pp;(t)), dispatchable generation {FPg;(t)), and renewable
energy sources (Pg;(t)) connected to them. Storage is defined
in accordance with the generator convention, i.e. the storage
power is positive during discharge periods (Ps;(t) = P&, (t))

and negative during charge periods (Pg;(t) = —Pg(t)). In
all cases, the index ¢ runs from 1 to n with the understanding
that any quantity (such as dispatchable generation) that is not
connected to a node is set to zero. The objective of storage
planning, for a single scenario of load and renewable generation
profiles over times ¢ = 1, ...,24 h, comprises the daily cost of
operating conventional generation, the storage investment cost
per interest period (one year or 365 days), and penalty terms
for demand and renewable power curtailment [6]:

¢ ZZZ Csz(xzk + Cz(] 365 ZQ SC
t=1 i=1 k=1
24 n n
+Kp ZZPCDi(t) + KRZZPCRi(t) (1)
t=1 =1 t=1 1=1

where the storage investment cost at bus i (SC;) is in function
of the rated power and energy of the device, and o is a binary
variable which takes the value one if storage is installed at node
7 and zero otherwise:

a; €{0,1}, i=1,...,n. 2)
A storage investment budget, expressed in terms of the allowed
cost (3) or the number of allowed storage units (4), can be also
included:

iaisci <T. 3)
i=1
Zn:ai S Fn- (4)
i=1

The physical and technical constraints that govern the plan-
ning problem are listed below:
* Generator dispatch and ramp-rate limits

N;
Pgi(t) = PG+ Powlt), i=1,...n, t=1,...24
k=1
©)
0 < Pai(t) < PG — PGV
i=1,...n, k=1,...,N;, t=1,...24 (6)
~ RR"® < Pgi(l) — Pai(t — 1) < RRP™
i=1,...n, t=2,...,24. 7

* Limits on load and renewable generation curtailment

OSPCDZ(t) SPDZ(t)/ i=1,...,
0 <Pori(t) < Prilt), i=1,...,

n,t=1,...,24 (8)
not=1,...,24. (9)

* DC power flow equations and line flow limits

Pgi(t) + P§;(t) — P§;(t) + Pepi(t) — Pori(t)
— Y Bijbi;(t) = Ppi(t) — Pri(t)
JEN()
i=1,..n, t=1,...,2 (10)
P < BL0(t) < P[J’“”, j el
t=1,...n, t=1,...,24. (11)
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« Storage dynamics, capacity, and charge/discharge rate
limits

. t 1
(B~ Ew)ou < 3 (neP(r) — -PA(0))

=1
< (B — Eig) o
i=1,...,n, t=1,...,23 (12)
24 1
(B~ Bo)as < 3 (wP5i(r) - = P())
=1
< (Eif — Eo)a;
i=1,....,n (13)
0< PS(t) < P act), i=1,...,n, t=1,...,24
(14)
0 < Pg(t) < PX™®)od(t), i=1,...,n, t=1,...,24
(15)
) +al(t) <oy, i=1,...,m, t=1,...,24
(16)
al(t) € {0,1}, af(t) € {0,1}, i=1,...,n, t =1,...,24.
(17)

Equation (5) expresses the conventional generation power in
function of its interval components Pg;x(t), where each is
bounded by the limits in (6); the corresponding piecewise linear
generator cost curve in (1) is assumed to be convex, which
guarantees the validity of the piecewise linear formulation
based on separable programming [25]. Consider for illustra-
tion Fig. 1 which shows a convex generation cost function
Ji(Pgi(t)). Let sz) denote the kth (k = 0, ..., N;) breaking
point of f;(Pg;i(t)) with P((;g) = Pmin and ngi) = P,
the coefficients ¢;; in (1) are given by
fi (Pé';)) — fi (sz—l))
,i=1,...n, k=1,...,N;

(18)
cio=fi (Pg?) = fi (PZ™), i=1,...n. (19)

The fact that f;(Pg;(¢)) is a convex function ensures that
¢i1 < ¢i2 < ... < ¢;n;. This implies that in the optimization,
the variable Pg;;(t) is more attractive than Pg;x(¢) for j < k,
and will always take a nonzero value before Pg;r(t). The
generation ramp-rate limits, which constrain the maximum
allowable change between two consecutive intervals, are given
in (7). The values of the curtailed demand (8) and renewable
generation (9) are set to less than the actual values of the quan-
tities. The power network is modeled by a DC power flow (10)
in each time period, where the power flow constraints (11) are
expressed in terms of the nodal angles. The storage dynamics
are given by (12) and (13). Equation (12) accounts for the initial
stored energy, the minimum and maximum storage limits, and
the charge/discharge storage efficiencies; (13) is the same as
(12) except that it allows setting a final value for the stored
energy. Both (12) and (13) are included in the formulation
when storage is installed at bus 4 («; = 1), and vanish from
the constraint set otherwise («; = 0). The maximum rate for
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f;-(P (1))
A

0 1 2 3 >
P ((}i) P ((}i) P éi) P C(;i) Pg(t)

Fig. 1. Convex generation cost function.

charging and discharging storage units is constrained using
(14) and (15), and (16) and (17) guarantee that there will be no
simultaneous charging and discharging. Simultaneous charging
and discharging is unrealistic for most storage technologies.
Given that the storage roundtrip efficiency is less than 100%,
coexistent charging and discharging may occur in the absence
of (16) and (17); an example is shedding renewable energy by
dissipating it through the storage unit.

The mixed-integer linear programming (MILP) problem,
given by (1)—(17), can be written in matrix form [23]:

min ez + (20)
subject to
v>dy 21)
Az <b, 2€{0,1} (22)
Gy<h (23)
Te+Qy<r (24)
Ly =u. (25)

The vector x includes all binary variables and the vector y all
continuous variables. In matrix form, the objective function (1)
is split into two parts: (20) and (21). The storage budget ((3)
or (4)), the constraints that preclude simultaneous charging/dis-
charging (16), and the specification of binary variables ((2) and
(17)) are grouped in (22). Equation (23) collects all constraints
of the planning problem that involve only continuous variables
((5)—(11)), whereas (24) accounts for constraints with both bi-
nary and continuous variables ((12)—(15)). Equation (25) selects
the components of y that are equal to the values of demand and
renewable generation grouped in vector u; these values are con-
sidered as uncertain in the robust optimization formulation in
Section III.

III. ROSION

The vector u on the right had side of (25) represents uncer-
tain or noisy input data. In this respect, the variables can be
grouped into two sets: 1) z which denotes the vector of first
stage binary decision variables whose optimal value is not sub-
ject to adjustment after the realization of the uncertain input pa-
rameters; the variables in = define the storage investment plan
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and are referred to as the design or unadjustable decision vari-
ables of the “here-and-now” decisions. 2) ¥ which denotes the
vector of second stage continuous (control decision) variables
whose optimal value is conditioned on the realization of the un-
certain parameters and the optimal value of the design variables.
The vector y comprises the variables of generation dispatch, the
storage charge/discharge power, the amount of curtailed load/re-
newable generation, the bus voltage angles, and the uncertain
parameter values given by (25); they are the adjustable decision
variables of the “wait-and-see” decisions. If the vector of unad-
justable binary variables is known, then the adjustable variables
can be computed for any realization of the uncertain parameters
using a linear program ((20)—(25) with fixed binary variables).
This linear program, also known as the second-stage problem, is
feasible for any realization of the uncertain parameters because
the underlying model has terms that penalize the curtailment of
demand and renewable power. In two-stage robust optimization
terminology, the second-stage problem displays relatively com-
plete recourse [14].

When the planning problem is deterministic, as in (20)—(25),
different realizations of the uncertain parameters may lead to
wait-and-see decisions that result in power curtailment or costly
adjustments of balancing reserves. This can be mitigated by
solving a two-stage robust optimization formulation that hedges
against the uncertainty of the input data. Consider a scenario-
based description of the uncertain data [14], [15]: v € U =
{u®, ..., u™}, and let the corresponding adjustable decision
variables belong to the set {1, ..., 3™}, The two-stage ro-
bust optimization formulation can be written as follows:

min e’z + 5 (26)

subject to
,yZdTy(s)7 s=1,...,m 27
Az <b, z€{0,1} (28)
Gy <h, s=1,...m 29
TT+Qy(S)ST7 5217...,m (30)
Ly® =4, s=1,....,m. (€2))

The two-stage robust optimization formulation practically
includes a relatively large number of scenarios, and therefore
leads to a large-scale MILP problem (26)—(31) which is hard
to solve. The column-and-constraint generation (C&CQG) al-
gorithm solves the MILP problem (26)—(31) by successively
computing stronger lower bounds of the optimal objective func-
tion value [14]. The lower bounds are calculated from MILP
problems that are formed using a subset of scenarios in U/ and
are therefore valid relaxations of the two-stage robust optimiza-
tion problem; each successive iteration involves considering an
additional nontrivial scenario. The C&CG algorithm operates
in a master-slave framework: the master problem computes
and a corresponding lower bound for a subset of scenarios, and
the slave problem finds the corresponding upper bound with x
fixed over all scenarios in U. The algorithm terminates when
the upper and lower bounds are equal within a pre-specified
tolerance ¢, otherwise the upper bound computation serves to
identify a scenario that should be considered in the next solu-

tion of the master problem. To present the details of the C&CG
algorithm, the the two-stage robust optimization problem
(26)—(31) is rewritten in compact matrix form:

min |¢'z + max min d7y 32)
x weU yeF(z,u)
subject to
Az <b, 2<{0,1} (33)
where
Fle,u)={y:Gy<h, Qy<r—Tx, Ly=u} (34)

The corresponding slave (or second-stage) problem is defined
with fixed 2:

max min d7y.

35
wel yeF(x,u) (35)

ROSION implements the following C&CG algorithm:

1) Initialize LB = —oo, UB = 400, x = 0 (zero initial in-
vestment in storage). Repeatedly solve the linear program
(36) for each value of u. € U = {u(V,... u{™}:

min d7y.

36
yEF(z,u) ( )

Identify the scenario that results in the maximum objective
value and initialize the set © with the index of'this scenario.
2) Solve the following master problem:

minclz + v (37)
subject to
v>d"y, se® (38)
Az <b, ze{0,1} (39)
Gy <h, se€© (40)
Tx+Qy®) <r, scO (41)
Ly® =u®, seco. (42)

Compute the optimal solution (2*, v*, .y(*)*|,ce) and up-
date LB = ¢Taz* 4+ ~*.

3) Solve the slave problem (35): with x set to z*, solve the
linear program (36) for each value of v € U, and identify
the scenario that results in the maximum objective value
p*; include the index of this scenario in set @. Update U B
= min(UB, T z* + p*).

4) If (UB — LB) < ¢, print the nonadjustable decision vari-
ables 2* and terminate. Otherwise, go to step 2.

Step 2 in the above procedure generates new variables and con-
straints at every iteration, and gives the algorithm the name
C&CQG:; it is also known as the Benders primal-cutting plane
algorithm [14] due to its similarity with the classical Benders
decomposition (the Benders dual-cutting plane algorithm). Ref-
erence [14] has shown that if the two-stage robust optimization
problem is in the form (26)—(31) and the relatively complete re-
course assumption holds, then the Benders primal-cutting plane
algorithm terminates in a finite number of iterations and is sig-
nificantly superior to the dual one in terms of convergence. In
fact, [23] proposed speeding up the convergence of the Benders
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dual-cutting plane algorithm by adding scenarios corresponding
to extreme points generated by the slave problem; these sce-
narios are similar to those used by the C&CG algorithm, and
further demonstrate their effectiveness in solving practical prob-
lems. The linear problems (36) in step 3 are similar to each other
except for a change in the right hand side « of the constraints;
they can be solved efficiently by applying, for instance, the dual
simplex method. It is important to note that if the penalty param-
eters for curtailment (K p and Kg) are sufficiently large, then
the adjustable variables result in a feasible system operation that
does not entail power curtailment for any realization of uncer-
tainty in U.

Although ROSION computes the design decision vari-
ables by considering the discrete uncertainty set u € U
= {u®,...,ul™}, it also immunizes the system operation
against all instances of uncertainty in the convex hull of U:

u € conv(U)
:{ZBSU(S) (Bs>0, s=1,...m), 255:1}.
s=1 s=1

(43)

This property is demonstrated in the Appendix of the paper.

The second-stage problem with a discrete uncertainty set (in
step 3) can be reformulated as an MILP problem with big-M
constraints. In fact, exact MILP reformulations [14], [20], [21]
and outer approximations [22], [23] have been developed pri-
marily to handle the case when the uncertainty set is polyhe-
dral. Both the exact and the approximate approaches that handle
general polyhedral uncertainty sets are applicable to the storage
planning problem because ROSION immunizes the system op-
eration against all instances in the convex hull of the discrete
uncertainty set {J. Therefore, the second-stage problem can be
solved by starting from the convex hull of U (43), rather than the
discrete set U itself. In this case of polyhedral uncertainty, there
are two approaches for solving the second-stage problem, both
of which involve MILP reformulations with big-M constraints:
1) using KKT conditions and the relatively complete recourse
assumption as described in [14], and 2) using strong duality and
the relatively complete recourse assumption that lead to a bi-
linear formulation as described in [20], [21]—c.f. (48)—(50) in
the Appendix. MILP approaches for solving the second-stage
problem are known to be computationally intensive, and exactly
solving the two-stage robust optimization problem with general
polyhedral uncertainty sets remains challenging [14]; to speed
up the process, [22], [23] proposed computing an approximate
solution of the second-stage problem by using an outer approx-
imation of the bilinear problem.

IV. NUMERICAL RESULTS

ROSION was programmed in MATLAB and the MILP and
LP programs were solved using CPLEX [26]. CPLEX was run
with a relative optimality gap tolerance of 0.1% and the C&CG
algorithm termination tolerance ¢ was set to 104, The simula-
tions were carried out on an iMAC with 2.7-GHz quad-core Intel
Core 15 processor with 4-MB L3 cache and 8 GB of RAM. The
planning results are reported on the IEEE 14-bus and the IEEE
118-bus networks whose original data sets are given with the

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 30, NO. 1, JANUARY 2015

distribution files of MATPOWER [27], and modified according

o [28]. The convex quadratic generation cost curves were re-
placed with a four-segment linear approximation, where each
segment approximates the generator quadratic cost curve over
one fourth of its dispatch range. The IEEE 14-bus network has 2
wind farms connected at nodes 2 and 3, respectively, with each
having an installed capacity of 40 MW; the IEEE 118-bus net-
work has 5 wind farms connected at nodes 16, 37, 48, 75, and
83, with a power capacity of 200 MW for each. The installed
capacities translate into renewable energy penetration relative
to the total peak load of 30.89% for the 14-bus network and
23.57% for the 118-bus network. Each network was simulated
over a period of 24 h with each time slot spanning 1 h. The sce-
narios that define the discrete uncertainty set ideally make use of
forecasts that are based on historical observations together with
economic predictions [16]-[18], and are constructed to repre-
sent extreme operating cases; however, they were simulated in
this study using the data in [29] for load profiles and in [28] for
wind profiles. A different hourly load profile was simulated for
each of the 364 days (52 weeks x 7 days/week) identified in
[29]. The profile, expressed as a percentage of the annual peak
demand in the original data set, was computed using specific
multiplying coefficients for the week of the year [29, Table 2],
for the day of the week [29, Table 3], and for the hour of the
day [29, Table 4]. For each daily load profile, three wind gener-
ation profiles were simulated giving a discrete uncertainty set
comprised of 3 x 364 = 1092 scenarios. The wind genera-
tion profiles were simulated by assuming that the wind speed
V' is Weibull distributed with a scale factor of 11.0086 m/s and
a shape factor 1.9622 m/s; the corresponding output of the wind
turbine generator is given by [28]

0, 0<V <V,
Pra e V*Vp_i

W’ va < V< %ated
Pratedy Vrated < V < ‘/co

0, V> Ve

Py = (44)

where the cut-in speed V.; = 4 m/s, the rated speed V,qteq =
13.61 m/s, and the cut-out speed is V., = 25 m/s. The con-
struction cost of storage devices in (1) was obtained from [6]:
$160 for each kW of rated power, $240 for each kWh of rated
energy, and Kg = (.03 (assuming a total planning horizon of
30 years). The available storage devices were considered to be
in multiples of 32 MWh storage capacity, with the maximum
charge/discharge rates per hour set at 25% of this capacity [13].
The efficiencies for charging and discharging were considered
to be 90% each, giving an overall roundtrip efficiency of 81%
[6]. All buses were assumed to be candidates for storage place-
ment.

A. IEEE 14-Bus System

Different ramp-rate limitations were considered for the
conventional generators [1]; in particular, the generators were
placed in two groups [6], one with high ramp rates allowing the
generation to adjust over the intervals, and the other with low
ramp rates requiring the generators to have the same dispatch
over the intervals. For the IEEE 14-bus system, the slack gen-
erator at bus 1 is assumed to have an hourly ramp-rate of 45%
of the generator's capacity; without any wind integration or
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Fig. 2. Storage activity in the IEEE 14-bus network.

TABLE I
STORAGE PLANNING FOR THE IEEE 14-BUs NETWORK
Capacity Nb. Investment Average Location
(MWh) Cost (M$) Dispatch
Cost ($)
32 10 89.60 77600 2,3,4,5,6,
7,8,9, 12,13
64 5 89.60 77430 3,4,5,6,8
96 3 80.64 77540 3,4,5
128 2 71.68 77779 3,5
160 2 89.60 77476 3,5

>

storage investment, the adjustable variables produce a feasible
solution free of load shed for each of the 364 load profiles.
However, when the wind generation was installed without any
investment in storage, instances of both renewable power and
load curtailment were observed. Renewable power curtailment
was observed in cases where wind power increased rapidly,
load dropped, and the conventional generation could not ramp
down to balance the system; load curtailment was observed
when wind power dropped, load increased, and the conven-
tional generation could not meet the load due to network flow
or ramp-rate limitations. ROSION was used to install storage
devices in five trials, each involving increased potential for
storage capacity at a bus in increments of 32 MWh: 32 MWh,
64 MWh, 96 MWh, 128 MWh, and 160 MWh. Table I sum-
marizes the planning results including the investment cost, the
average daily cost of the dispatch from conventional generation
over the 1092 scenarios, and the storage placement. The results
show that the lowest investment cost is $71.68 M with two
storage units of capacity 128 MWh at buses 3 and 5. Fig. 2 de-
picts the activity of these storage devices for five significant
scenarios that contribute to the worst-case cost. For this system,
the lowest average daily dispatch cost is observed in the case
with five 64 MWh storage devices that are installed at a cost of
$89.6 M; the maximum difference in the average dispatch cost
is less than $350 per day or 0.45% of the minimum cost.

B. IEEE 118-Bus System

The IEEE 118-bus system was simulated with more flexibility
in the ramping capacity of its conventional generating units;
the hourly ramp rates were set to 45% of the maximum gen-
eration for the largest units in the system, which are located at
buses 8, 69, 80, and 89. However, in the absence of storage, sce-
narios with load shed were still observed in cases where wind
power generation dropped quickly and the conventional gen-
erators did not have sufficient ramp-up capacity to meet the in-

TABLE II
STORAGE PLANNING FOR THE IEEE 118-BUS NETWORK
Capacity Nb. Investment Average Location
(MWh) Cost (M$) Dispatch
Cost ($)
32 8 71.68 1332922 5,9, 32, 50,
59, 67, 94,
103
64 4 71.68 1333025 60, 93, 111,
115
96 3 80.64 1332811 25, 53, 105
128 2 71.68 1332910 66, 89
160 2 89.60 1332801 59, 82
TABLE III
COMPUTATIONAL PERFORMANCE OF ROSION
System Capacity Iter. Master Slave Total
(MWh) Time Time Time
(s) (s) ()
32 3 6 277 283
64 5 36 348 384
14-bus 96 6 80 346 426
128 5 75 260 335
160 5 61 247 308
32 3 313 2004 2317
64 3 247 1778 2025
118-bus 96 3 439 1792 2231
128 3 335 1669 2004
160 2 77 1152 1229

creasing load. The storage planning results in Table IT show that
there are three options that entail the same investment cost: eight
32-MWh units, four 64-MWh units, and two 128-MWh units;
the lowest average operational cost is for the 128-MWh storage
capacity concentrated at two buses. Out of the five cases, the
last one with the highest investment cost of $89.6 M yields the
lowest average daily dispatch cost. The maximum difference in
the average dispatch cost is however $224, which is equivalent
to around 0.02% of the minimum cost value.

In all test instances, no curtailment of load or renewable
power appears for each of the 1092 scenarios; this is further
confirmed for each of the planning solutions in Tables I and
II via a Monte Carlo simulation of 10 000 scenarios uniformly
sampled from the convex hull of the discrete uncertainty set.

C. Computational Performance

Table III shows the computational performance of ROSION
on the test instances in Tables I and II. The table summarizes
the number of iterations, the time to solve the master problem,
and the time to solve the slave. The number of iterations is rel-
atively small, indicating that ROSION can rapidly identify sce-
narios that contribute to the worst case operation of the system;
this behavior is particular to C&CG algorithms and has been ob-
served on other two-stage robust optimization problems [14]. In
comparison, when CPLEX was applied directly to the complete
two-stage robust model (26)—(31) with 1092 scenarios, it failed
to find a feasible solution within a 5-h time limit even for the
14-bus system.

V. CONCLUSION

This paper described a novel optimization tool, called RO-
SION, for storage planning under uncertainty. The uncertainty
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is modeled via a discrete set that is ideally obtained from histor-
ical observations and forecasts of coupled load and renewable
generation profiles. ROSION computes a storage plan that al-
lows satisfying the load and accepting the renewable power for
all scenarios in the convex hull of the discrete uncertainty set; it
is particularly useful in systems with limited ramping capabili-
ties or congested lines. Unlike previous work, ROSION models
the available storage device parameters, namely the rated power
and energy, as varying in discrete quantities. In addition, the
storage dynamics are modeled such that for the optimal storage
placement and sizing, there will always exist a control action
that can be implemented after the uncertainty is revealed and for
which simultaneous charging and discharging does not occur.
The computational engine behind ROSION is a column-and-
constraint generation algorithm; its performance on the storage
planning problem, formulated as a two-stage robust optimiza-
tion program, shows that it can efficiently identify key scenarios
that are sufficient to define the optimal design policy.

APPENDIX

This section demonstrates that ROSION immunizes the
system operation against all instances in the convex hull of the
discrete uncertainty set UU. Let ¢, A, and » denote the Lagrange
multiplier vectors of Gy < h, Qy < r — Tz, and I,y = u,
respectively. The dual of problem (36) is the linear program:

m)e‘xx(Ta: ) Ix=hrTo+uTv (45)
730 WX
subject to

QAN -GTo+ITv=d, >0, A>0. (46)

By combining (35) and (45)—(46), the slave problem (35) can
be written in terms of the dual variables as

max (Tz — "X —hTp+u"v
e AV

(47)

subject to (46) and v € U. Now substitute (43) in the dual
slave objective function (47); this results in the following slave
problem:

max (Tz —r)'A — W+ iﬁs (‘u(S)TV> (48)
s=1

P28
subject to
—QTA-GTo+1Tv=d, >0, A>0
(49)
Y B=1 B,>0, s=1...m (50)

Given that 3; and v do not appear in the same constraints
(49)—(50), it is evident that 35 (s = 1,...,m) can be chosen
independently of other variables such that 37 | Bs(u(®Tv)
attains its maximum value; an optimal choice is 55 = 1 for the
scenario s with maximum (u(*)7'v). Therefore, the solution of
the dual slave problem with the uncertainty set given by (43)
can be obtained by solving (48)—(50) m times, where 5; = 1 is
considered separately for s = 1, ..., m. This is the same as the
solution of the dual problem (45), (46) that gives the maximum
objective function value over the discrete uncertainty set U,
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which is also equivalent to the solution of the primal slave
problem in steps 1 and 3 in ROSION (due to strong duality and
the relatively complete recourse assumption). In other words,
the solution of the two-stage robust storage investment problem
with the uncertainty set (43) can be obtained using exactly the
same steps in ROSION.
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