
Author’s Accepted Manuscript

Optimization of Non-functional Properties in
Internet of Things Applications

Xuan Thang Nguyen, Huu Tam Tran, Harun
Baraki, Kurt Geihs

PII: S1084-8045(17)30128-5
DOI: http://dx.doi.org/10.1016/j.jnca.2017.03.019
Reference: YJNCA1891

To appear in: Journal of Network and Computer Applications

Received date: 15 September 2016
Revised date: 19 March 2017
Accepted date: 21 March 2017

Cite this article as: Xuan Thang Nguyen, Huu Tam Tran, Harun Baraki and Kurt
Geihs, Optimization of Non-functional Properties in Internet of Things
Applications, Journal of Network and Computer Applications,
http://dx.doi.org/10.1016/j.jnca.2017.03.019

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

www.elsevier.com/locate/jnca

http://www.elsevier.com/locate/jnca
http://dx.doi.org/10.1016/j.jnca.2017.03.019
http://dx.doi.org/10.1016/j.jnca.2017.03.019

Optimization of Non-functional Properties in
Internet of Things Applications

Xuan Thang Nguyen1, Huu Tam Tran2, Harun Baraki2, and Kurt Geihs2

1Faculty of Information Technology, Hanoi University, Hanoi, Vietnam

2Distributed Systems Group, University of Kassel, Kassel, Germany

Abstract

A major challenge in designing Internet of Things (IoT) systems is to meet var-

ious non-functional requirements such as lifetime, reliability, throughput, delay,

and so forth. Furthermore, IoT systems tend to have competing requirements,

which exacerbate these design challenges. We analyze this problem in detail and

propose a model-driven approach to optimize an IoT application regarding to

its non-functional requirements. Our approach defines optimizing as finding the

best set of adjustable application parameters, which satisfies a given objective

function. The relevant parameters are extracted during a simulation process.

We apply a source code transformation that updates the source code with the

generated adjustable parameter values and executes the compiler to create a

new binary image of the application. Our experiment results demonstrate that

non-functional requirements such as power consumption and reliability can be

improved substantially during the optimization process.

Keywords: Internet of Things, Sensor Networks, Optimization,

Non-functional requirements, Simulation

1. Introduction

In general, software requirements are partitioned into functional require-

ments and non-functional requirements. The functional requirements are asso-

ciated with specific functions, tasks, features or behaviors that must be sup-

ported by the system, whereas the non-functional requirements are constraints

Preprint submitted to Journal of LATEX Templates March 23, 2017

on various attributes of these functions or tasks. The non-functional require-

ments tend to be described in terms of constraints and qualities on the results

of tasks that are given as functional requirements, for example, constraints on

the speed or efficiency of a given task.

In the context of IoT software development, non-functional requirements

such as the limited capacity of the terminal devices or the quality of service

(QoS) play an important role and should be taken into account from the be-

ginning of the development cycle [1, 2, 3]. Optimizing IoT software to meet

non-functional requirements is an emerging trend and is receiving the attention

of many researchers[1, 2, 4, 5]. However, the process of optimization is still

time-consuming and increases development costs significantly. Developers have

to take into account the resource limitations on their devices, the ad-hoc com-

munication, the topology of the network, and the deployment environment’s

unpredictability [3, 6, 7, 8].

In those existing studies on IoT software optimization, we find that there

are several issues that need further discussion. Firstly, the majority of stud-

ies aim at optimizing applications in the system deployment stage, i.e. after

the design and programming phase [9]. However, considering non-functional re-

quirements already at the design stage will simplify the optimization process and

can relieve developers significantly. Secondly, parameters are usually selected

relatively subjective according to the best knowledge of the authors. Most re-

search is focusing on the optimization algorithms themselves [1]. There is a lack

of research that determines quantitative parameters of the application and their

impact on the non-functional requirements of IoT applications. Our work espe-

cially emphasizes this aspect. Thirdly, non-functional requirements mentioned

in the aforementioned studies [1, 9] merely examine a few facets of an appli-

cation. Only some non-functional requirements were put under consideration

such as the network lifetime, transmission latency or packet loss ratio. While

optimizing the application in terms of non-functional requirements, we need to

pay attention to both qualitative requirements (security, availability, reliability,

performance, etc.) and quantitative requirements (network lifetime, precision,

2

etc.). Moreover, non-functional requirements may contradict each other (e.g.

battery usage vs. performance and reliability). Thus, the optimization is ex-

pected to provide information that supports programmers in choosing the most

appropriate plan to meet several non-functional requirements at a time.

In this paper, we address the problem of IoT software optimization in order

to meet non-functional requirements in the application design phase. First, we

come up with the formulation that describes non-functional requirements using

one or more non-functional parameters. These parameters can be quantified to

allow a comparison of their satisfaction level towards the non-functional require-

ments in IoT applications. At the same time, we propose a set of adjustable

parameters of IoT applications based on their level of satisfaction with regards

to the non-functional requirements of the application. These parameters allow

the application to be customized at different levels, for instance, at the hardware

level (processor voltage and frequency), the software level (sensing frequency,

duty cycle), or the network level (channel access schedule, message size, buffer

size, and receiver power-off cycle). Then the optimization problem is narrowed

down to a multi-purpose combination optimization problem with the search

space being the values of the adjustable application parameters and the objec-

tive function is the minimum or maximum value of the primary non-functional

parameters.

Because of the complex interrelationships between the parameters, the large

number of their possible values and the measurable responses, and due to the

existence of multiple objectives, we apply a Multi-Objective Evolutionary Al-

gorithm (MOEA) [10] which is suited to a large number of input factors and

is able to mutate all factors at each generation. MOEA can be considered a

narrow, but deep heuristic search method which explores the search space in an

uneven manner.

To evaluate the proposed solution, we investigate the design and implemen-

tation of an IoT application named TempSense where a wireless sensor net-

work is used to monitor the temperature within an area. We identify a set of

adjustable input parameters, non-functional constraints, and objectives of the

3

optimization problem. The experiment results demonstrate that non-functional

constraints such as power consumption and reliability can be improved during

the optimization process by selecting a proper set of adjustable parameters.

The main contribution of this paper is to present an approach to assist de-

velopers in optimizing IoT applications regarding non-functional requirements

at different design levels, such as hardware, software, or communication pro-

tocol, by adjusting suitable parameters. The optimization component is part

of our model-driven development (MDD) framework that enables programmers

to implement IoT applications through a graphical user interface and a rule-

based programming language [11]. The interaction between the optimization

component and the MDD framework will be presented in this paper too. The

overall objective is to support software developers during the design phase in

implementing and optimizing their application. This paper will focus on the op-

timization component and extends our previous work presented in [11, 12, 13].

Another contribution of this work is an examination of the relationships that

exist between the adjustable parameters and the non-functional requirements.

To this end, we set up different experiment scenarios in which only a single

adjustable parameter is changed and measure the impact on the non-functional

requirements. The results clearly prove that non-functional requirements may

oppose each other when trying to optimize them. This results will also help

to quantify the satisfaction level of non-functional requirements with respect

to specific software. The achievements of our research are not only significant

in the development of IoT application software but can also be used in many

different sectors of the software industry.

The rest of the paper is organized as follows. Section 2 analyzes the effects

of some adjustable parameters, such as rebroadcast probability or sleep time

on the applications’ non-functional requirements. In Section 3 we present the

formulation of the optimization problem and apply a MOEA to solve the op-

timization problem. The MDD approach applied in our framework is shown

in Section 4. Section 5 describes the TempSense application and discusses the

optimization results. Section 6 reviews the related work on optimizing non-

4

functional constraints in IoT systems. Finally, concluding remarks are given in

Section 7.

2. Optimization Problem Analysis

We consider to the large class of IoT applications which employed a wireless

sensor network (WSN) to provide IoT services. In order to figure out an ap-

propriate approach to solve the optimization problem, we analyze relationships

that exist between the adjustable parameters and the non-functional require-

ments of the applications. We set up different scenarios where in each scenario

only a single adjustable parameter was changed. The experiments are done by

running the application in the Cooja simulator [14]. Cooja enables simultaneous

simulations at different levels like the network level, operating system level and

machine code instruction level. After each simulation we collected data on three

non-functional property metrics: the energy consumption per delivered packet,

the latency per delivered packet and the packet loss ratio. We used a simulated

network with 200 randomly distributed nodes in an area of 500 x 500 meters to

test the applications. Each simulation was configured to run for three rounds

and the simulation length for each round was 300 seconds. After each simu-

lation, the average values of all observed metrics were computed and stored.

Because the metrics were measured in different units and scales, we normalized

all values such that for each metric, the measured value range [min,max] was

mapped onto the range [0, 1].

2.1. Impact of the Rebroadcast Probability

The first experiment conducted was the investigation of the gossip protocol

[15], a popular data broadcasting protocol. While pure flooding produces many

redundant packets when broadcasting, the gossip protocol makes use of a prob-

abilistic rebroadcast scheme to address this problem. After receiving a packet,

a node continues broadcasting this packet with a given probability p or drops

the packet with a probability of 1− p.

5

Figure 1: Two different experiment scenarios

Typically, choosing a correct value for p is an important step when design-

ing a gossip-based routing protocol. To evaluate the impact of p on the non-

functional parameters of the application, ten experiments are conducted with

ten different p values, distributed evenly in the interval [0, 1]. Figure 1(a) shows

the first experiment scenario, where each node has a transmission range and an

interference range represented as a green circle and as a gray circle respectively.

When a node transmits packets, only nodes in the green area are able to receive

the packets. Nodes in the gray area can not receive the packets and they are

also interfered which means that they are not able to receive the packets sent

from other nodes when the selected node communicates simultaneously. The

simulated network has a source node that frequently sends packets to its neigh-

bors. Other nodes are implemented with the simple gossip routing protocol

to continue retransmitting the packets. The radius of the transmission range

and the interference range of each node in the simulation are 50 meters and 80

meters respectively.

Figure 2 shows the measurement values of the three non-functional parame-

ters mentioned above corresponding to various values of the rebroadcast proba-

bility p. Figures 2(a) and (b) show that the packet loss rate generally decreases

when p is increased. It means the network will become more reliable with bigger

6

Figure 2: The impacts of rebroadcast probability on non-functional requirements

p values. Furthermore, we observe the bimodal behavior [15] of a gossip-based

network where either most nodes receive a packet, or only a few do. We notice

that the average packet loss rate does not reach 0, even when p is 1 because of

interference. As the network activity increases with p, interference also occurs

more frequently causing receiving nodes within the interference range to drop

packets.

The changes of p also affect the average end-to-end latency of a gossip-

based network, as shown in figures 2(b) and (c). As p increases from 0 to

1, the end-to-end delay also increases slowly due to the interferences between

the nodes and their limited queue size. The analysis above shows that we

can improve the network reliability by increasing the rebroadcast probability;

however, it will raise the end-to-end delay and the power consumption. The

increased power consumption can be explained as follows: when the value of p

7

is high, many redundant packets are produced in the network. After a packet

has been received, the energy spent on retransmitting it again is wasted (fig.

2(a), (b)). In addition, the magnitude of change in the energy and the latency

values is fairly small, around 40%, as illustrated in Figure 2(b). This means that

the rebroadcast probability p may have a greater impact on network reliability,

than on the delay or energy consumption.

2.2. Impact of the Sleep Time

Sensor nodes often conserve their power by switching between sleeping and

working states. When a node is in the sleeping state, its radio is turned off and

the node is not able to receive or send packets. Otherwise, when a node is in the

active state, it is fully functional. We conduct the second experiment scenario

to evaluate the impact of the sleep time on the non-functional requirements of

the application. The simulated sensor nodes in this experiment are similar to

the nodes used in the first scenario. In this case, each node serves as a source

node and as a relay node for sending packets to a sink node. Every node, except

the sink will periodically send packets to the sink. A data collection tree routing

protocol [16] is implemented in each node to support packet forwarding. The

simulated nodes are configured to switch between sleep mode and active mode

with a predefined sleep time. Twelve experiments are conducted with twelve

different values for the sleep time (in seconds), distributed evenly in the interval

[0, 60]. Figure 1(b) demonstrates the experiment configuration in the second

scenario.

Figure 3 illustrates how different sleep time durations affect reliability, energy

consumption, and latency. As shown in figure 3(a) and (b), a duty-cycling

mechanism which puts sensor nodes into sleep mode during idle periods is an

effective approach to conserving energy. As seen in the figure, the average energy

spent on each delivered packet decreases dramatically when the sleep time is 15

seconds. However, further increments to the sleep period does not save more

energy. This may be due to the increased overhead cost in packet transmission

and routing, when nodes stay longer in the sleep mode. Additionally, increasing

8

Figure 3: The impacts of sleep time on the non-functional application properties

the sleep time will introduce latency and packet loss rate into the network. In

fact, as illustrated in Figure 3(c), the average latency per delivered packet and

the packet loss rate increase almost proportionally to the sleep duration.

Based on the analysis presented in the last two sections, we can conclude

that the adjustable parameters have complex influences on the non-functional

parameters of WSN applications. Moreover, a single parameter may have con-

trary influences on different metrics, and the influences also strongly depend on

the application context. Therefore, to obtain an acceptable compromise solu-

tion to the problem of minimizing all the desired non-functional parameters, a

Pareto multi-objective optimization technique is required.

9

3. Optimization Method

3.1. Formulating the Optimization Problem

To optimize a WSN application regarding desired non-functional parameters

such as network lifetime, energy per delivered packet, latency per delivered packet,

or packet loss ratio, developers must first define a set of adjustable parameters

whose values can be tuned to meet the application requirements. These parame-

ters and their possible value ranges are specified when designing the application.

In this step, the developers must also define an objective function such as the

maximization or minimization of a set of non-functional parameters. In the

optimization process, the application specified together with a concrete set of

adjustable parameters is executed on a simulator. During the simulation pro-

cess, the simulator will collect all experiment data and measure the metrics.

The quality of the candidate application will be evaluated based on the metric

values.

We assume that the target application has a set of N adjustable parame-

ters {Xi}i=1..N and a set of M non-functional parameters {Pj}j=1..M . Each

Xi has a default value XiDefaultvalue and a value range from XiMinvalue to

XiMaxvalue that are predefined by the developer. The possible parameter val-

ues form a solution space, in which each candidate solution is a concrete set

of adjustable parameter values SC = {XC1, XC2, ...XCN}. The candidate solu-

tion is mapped to a point in the objective space by a set of evaluation metrics

PC = {PC1, PC2, ...PCM}. The mapping from the solution space {S} to the

objective space {P} is defined experimentally by the simulation. Then the

multi-objective optimization can be formulated as follows:

min P (X) = [P1(X), P2(X), ...PM (X)]

subject to X = [X1, X2, ...XN] (1)

XiMinvalue ≤ Xi ≤ XiMaxvalue

The multi-objective problem presented in equation 1 can be solved by using

a common technique named linear scalarization that combines the multiple

10

objectives into one single-objective function. In more detail, this technique

minimizes a weighted sum of the objectives as below:

min P (X) =
∑M
i=1 wiPi(X)

subject to X = [X1, X2, ...XN] (2)

XiMinvalue ≤ Xi ≤ XiMaxvalue

wi ≥ 0, i = 1...n

The weighting coefficients wi in equation 2 are chosen and maintained by

the decision maker who is solving the optimization problem. In general, there is

no a priori correspondence between the weighting coefficients and the solution

vector. Therefore, it is difficult for the decision maker to be aware of which

weights are the most appropriate to produce a good solution. In practice, the

decision maker must try with different weight vectors in order to find out the

ones that can produce a satisfactory solution. This is a technical shortcoming of

the scalarization method because performing many optimizations with different

weight vectors will significantly increase the computational burden.

Another approach to solving the multi-objective optimization problem is to use

the concept of the Pareto optimality which is defined as follows:

• An objective vector PU = {PU1, PU2, ...PUM} dominates an objective vec-

tor PV = {PV 1, PV 2, ...PVM} if PU is better than PV with respect to

at least one objective and not worse than PV with respect to all other

objectives, or represented in mathematic terms:

PU dominates PV ⇔ ∃i ∈ {1...M} |

PUi < PV i ∩ ∀i ∈ {1...M}|PUi ≤ PV i (3)

• A solution s′ is said to be a Pareto optimum for the problem if and only

if there is no s ∈ S such that Pi(s) ≤ Pi(s
′) for all i ∈ {1...M}. Based

on equation 3 we can say a solution s′ is a Pareto optimum if there is

11

no solution s such that the objective vector P (s) dominates the objective

vector P (s′).

A very common situation in the multi-objective optimization problem is that

an improvement in one objective will lead to a degradation in one or more of

the remaining objectives. In this case, the ideal optimal solution does not exist;

instead, the solution is the set of all Pareto optimum solutions. This set of non-

dominated solutions is named the Pareto frontier of the solution space. Thus,

solving a multi-objective optimization problem is understood as computing or

approximating the Pareto frontier and choosing the most appropriate Pareto

optimum solution for the problem.

In the next subsection, a method for approximating the Pareto frontier is

introduced.

3.2. SPEA2 Approach

To solve the optimization problem mentioned above, we apply SPEA2 (Strength

Pareto Evolutionary Algorithm 2) which is a Multi-Objective Evolutionary Al-

gorithm (MOEA) [10]. Compared to other heuristic algorithms, a MOEA is able

to search for a set of solutions as a result. In the context of multiple objectives

it means that a MOEA can search for a representative set of Pareto-optimal

solutions, approximating the true Pareto frontier in a single run. After the op-

timization users may pick a solution of their interest from the Pareto set, taking

into account the possible tradeoffs between competing objectives.

SPEA2 is an improved version of the Strength Pareto Evolutionary Algo-

rithm (SPEA) which uses a ranking procedure to assign better fitness values to

non-dominated solutions that encourage uniform distribution of the population

near the Pareto frontier. We refer to [17] for detailed information on SPEA

and SPEA2. SPEA uses a regular population P and an external set called an

archive set E . The archive set stores all non-dominated solutions of the search

space that have been investigated so far during the search. In each iteration,

fitness values are assigned to both archive and population members:

12

• Each individual y in the archive E is assigned a strength value defined

as s(y, t) = np(y,t)
NP+1 , where np(y,t) is the number of individuals that y

dominates in the population P and NP is the size of the population P .

• The fitness of the individual y is assigned as the strength value of y :

f(y,t)=s(y,t).

• The fitness of the individual x in the population P is calculated as:

f (x, t) = 1 +
∑

y ∈ E

ydominates x

s(y, t)

In SPEA2, a fine-grained fitness assignment strategy which incorporates an

estimation of the density of the Pareto frontier is employed. In detail, the

strength value is assigned to individuals in both the archive set E and the

population P . Then the fitness of the individual x is calculated as:

f (x, t) =
∑

y ∈ E ∪P

ydominates x

s(y, t) +D(xt)

where D(x,t) is the density estimation of the individual x . D(x,t) is evaluated

using an adaptation of the k-th nearest neighbor method [17].

D(x) =
1

σkx + 2

where σk
x is the Euclidean distance of the objective values between the solution

x and its k-th nearest neighbor, and k is chosen as the square root of the size

of the solution set P and archive set E combined.

The complete pseudo-code of the SPEA2 algorithm is presented in table 1

below.

In the listing, the function EvaluateObjective() accesses the simulator in-

terface to estimate the objective values (non-functional parameters) for each

solution. CalRawFitness() and CalDensity() functions are used to evaluate the

13

Table 1: Strength Pareto Evolution Algorithm 2

SPEA2 pseudocode

Input: PN (population size)

EN (archive size)

T (maximum number of generation)

Output: Set of non-dominated solutions

P ← InitializePopulation(PN)

E ← ∅

while (!StopCondition(T)) do

for Si ∈ P do

SiObjective ← EvaluateObjective(Si)

endfor

U ← P + E

for Si ∈ U do

SiF itness ← CalRawFitness(Si,U) + CalDensity(Si,U)

endfor

E ← GetNonDominated(U)

if Size(E) <EN then

FillArchiveWithBestRemaining(E, EN ,U)

elseif

RemoveMostSimillar(E, EN)

endif

Parents ← SelectParents(E)

P ← CrossoverAndMutation(Parents)

endwhile

return GetNonDominated(E)

14

raw fitness of a given solution (the sum of strength of the solutions that dom-

inate this solution) and the density of the related area of the Pareto frontier.

The fitness value of a solution, is then assigned as the sum of the raw fitness

and the density value. The FillArchiveWithBestRemaining() function is used to

fill the archive set with remaining candidate solutions in order of fitness value.

The function RemoveMostSimilar() truncates the archive set by removing those

members with the smallest value of σk
x as previously calculated. The binary

tournament selection method is implemented in the function SelectParents() to

choose parents from the archive set. The CrossoverAndMutation() function is

used to perform the crossover and mutation operators on the selected parent

individuals.

One of the first decisions that have to be taken when using a MOEA is

to define how to encode or represent the solutions of the problem to solve.

In our problem, a solution candidate is composed of a set of real numbers

corresponding to the set of adjustable parameter values. Therefore, we used

real-coded methods [18], where an individual (a solution in the solution space)

is a vector of floating point numbers:

X = {x1, x2, ..., xN}

for all i = 1...n, xLi ≤ xi ≤ xUi (4)

where : xLi − lower boundary of the ith gene,

xUi − upper boundary of the ith gene

In order to generate new solutions from existing ones, EAs use selection,

crossover and mutation operators:

• The selection operator chooses individuals from the population for later

breeding. We use binary tournament selection with replacement in which

two individuals are taken at random and the better individual is selected

from the two. After selecting the better ones, the two individuals are

immediately replaced into the population for the next selection operation.

15

• The crossover operator combines the features of two parent individuals to

form two offspring, with the possibility that good individuals may generate

better ones. We implement Simulated Binary Crossover (SBX) operator

.[46] that is applied to a pair of parent individuals: X1 =
{
x11, x

1
2, . . . , x

1
N

}
and X2 =

{
x21, x

2
2, . . . , x

2
N

}
. In this operator, the following steps are

involved to generate two offspring solutions: C1 =
{
c11, c

1
2, . . . , c

1
N

}
and

C2 =
{
c21, c

2
2, . . . , c

2
N

}
.

Step 1: For each variable xi a number ui is created randomly between 0

and 1.

Step 2: A probability distributed function is specified to create offspring

solutions so that they have the same search power as that in a single-

point crossover in binary-coded method. Then find a number βi so that

the area under the probability curve is equal to the number ui. As figured

out in .[46], βi is calculated using the following formula, where η is a

parameter called the distribution index for crossover. The larger value of

η the higher probability for generating a near-parent offspring, and vice

versa. It is common in the literature to set η to 20:

βi =

 (2ui)
1
η+1 , if ui ≤ 0.5(

1
2(1−ui)

) 1
η+1

, otherwise

Step 3: Compute the offspring as: c1i = 0.5
[
(1 + βi)x

1
i + (1− βi)x2i

]
and

c2i = 0.5
[
(1− βi)x1i + (1 + βi)x

2
i

]
• The mutation operator is used to maintain the diversity of the population

in EA. It operates on a single selected individual at a time and modifies the

individual independent of the rest of the population members. Among the

many mutation operators for real-coded individual that are investigated in

.[168], we implement the polynomial mutation operator in our approach.

In this operation the following steps are used to generate the offspring

C = {c1, c2, . . . , cN from the parent individual X = {x1, x2, . . . , xN :

16

Step 1: For each variable xi a number ui is created randomly between 0

and 1.

Step 2: Using a polynomial probability distribution function:

P (δ) = 0.5 (η + 1) (1 + |δ|)η to calculate the parameter δi as:

δi =

 (2ui)
1
η+1 − 1 , if ui ≤ 0.5

1− (2(1− ui))
1
η+1 , otherwise

Where η is called as distribution index for mutation parameter. It is

common in the literature to set η to 20.

Step 3: Calculate the offspring as:

ci = xi + δi
(
xUi − xLi

)
,

where xUi andx
L
i are the upper bound and lower bound of xi

4. Model-driven Performance Engineering

4.1. Overview of the Application Development Process

We employ a MDD approach (Model-Driven Development) to describe and

realize WSN applications [11, 12]. Figure 4 presents eight steps in the applica-

tion development process using our MDD framework.

These steps can be summarized as follows:

• Step 1 - Modeling: Starting with an applications requirement specifica-

tion, a PIM (Platform-Independent Model), which consists of the formal

definition of the applications, is created using a DSL (Domain Specific

Language). The proposed DSL offers a set of declarative sentences to

express the behavior of sensor nodes such as sampling, aggregation and

forwarding which is necessary for developing WSN applications. A PIM

also contains other information that will be used in the later steps, such as

the set of adjustable application parameters, the non-functional require-

ments, the objective function as well as the simulation configuration. An

17

Figure 4: An overview of the application development process

example is given in figure 5.

• Step 2 - Transforming: The transformation process consists of the appli-

cation of mapping rules and code template files to transform the PIM into

the equivalent operating system-specific code (Platform-Specific Model for

the given OS).

• Step 3 - Compiling: The binary code for the selected hardware platform

is generated (hardware-specific PSM).

• Step 4 - Testing: The binary code is deployed and tested on the simulator

18

with the pre-defined simulation configuration in the PIM. The simulator

has two interfaces. The first one is a graphical user interface, which is

used to visualize the output of the simulation process. The second one is

a text-based interface, which is used to provide normalized measured data

to the optimization component. Depending on the testing result the de-

veloper will determine whether the application satisfies all the functional

requirements.

• Step 5, 6, 7 - Optimizing: In these steps the successfully tested application

is optimized. The set of adjustable parameters, which is defined in the

PIM, is used by the optimization component to generate the search space

(step 5). The evaluation of each candidate solution (step 6) is done by:

i) repeating step 2 to step 4; ii) evaluating the normalized measured data

from the simulator (step 7).

• Step 8 - Choosing: Based on the optimization results the developer will

select the optimal application by evaluating the tradeoff between different

constraint criteria and performance values.

4.2. Optimization Component Design

The design of the optimization component is presented in Figure 6. Appli-

cation developers can interact with the component via a Command-line User

Interface. To start the optimization process, the developer must specify some

configuration files such as a simulation scenario, an application configuration

and a corresponding PIM that describes the input parameters and the non-

functional requirements that have to be optimized. The developer is suggested

to verify the PIM before the optimization stage to ensure that the application

meets all its functional requirements. This verification can be done by testing

the application with the simulation using a proper scenario.

19

Figure 5: An example for a PIM in the MDD framework

During the optimization process various sets of adjustable parameter values

are generated and stored into temporary files. The Application Translation In-

terface updates the PIM with the generated adjustable parameter values and

executes the translation component and the compiler to create a new binary

image of the application. The Simulation Interface is designed to interact with

the Cooja simulator. It is a multi-threading application that is able to launch a

maximum of 8 simulations in parallel. Each simulation is run with an instance

of the Cooja simulator as Cooja is a single-thread program. The Simulation

Interface takes as input the application’s binary image and the simulation sce-

nario. After that it generates an equivalent simulation file for Cooja and runs

the simulation with a new instance of the Cooja simulator. When the simula-

tion is finished, the Simulation Interface updates the optimization component

with the simulation result.

The MOEA component is developed based on JMetal [19] - a popular object-

oriented Java framework for multi-objective optimization with meta-heuristics.

We extend JMetal with our solution representation model, a Simulated Binary

Crossover [20] and a Polynomial Mutation Operator [21] and the SPEA2 fitness

evaluation scheme. During the optimization, the simulation results are stored

20

Figure 6: The optimization component design

separately from the optimization results. This information can be used by the

developers for further analysis.

5. A Case Study and Evaluation

This section discusses the design, implementation and optimization of a real-

world application named TempSense, where a sensor network is used to monitor

the temperature in an area. In our experiment, we designed and implemented

TempSense on the target platform Z1 using the Contiki OS. Then, we optimized

the application in terms of power efficiency and reliability.

5.1. TempSense

The TempSense application falls into the category of monitoring applications

where a sensor network is used to collect temperature data in an area and

reports the data through Web services. Each node is equipped with a sensor

to periodically sense the local temperature. The data is forwarded along the

network to a base station. A Web service is installed on the base station to

21

support accessing the data via the Internet. An improved version of the gossip

routing protocol is used for data transmission from nodes to the base station in

the network:

• For the first K hops, messages are forwarded with probability 1.

• From hop K + 1, messages are forwarded with probability P .

• Message lifetime is implemented to avoid infinite loops. A message will be

dropped if the lifetime is exceeding a threshold L.

Developers can assign necessary values for the adjustable parameters like

BufferLength, MaxLifeTime and SleepTime to define the maximum length of

the message buffer, the maximum lifetime of messages and the sleep time. The

default value and the value range of each parameter are also defined by setting

the values of the attributes Defaulvalue, Minvalue and Maxvalue. To optimize

the reliability and the energy efficiency of the system, non-functional parameters

such as energy per delivered packet (NFP1) and packet loss ratio (NFP2), can

be defined by the developer Min(NFP1) && Min(NFP2). Table 2 and table

3 present the lists of adjustable parameters and non-functional constraints for

the TempSense application. Now we can formulate the optimization problem

as follows:

min P (X) = [P1(X), P2(X)]

subject to X = [X1, X2, X3, X4, X5, X6] where (5)

1 ≤ X1 ≤ 30; 1 ≤ X2 ≤ 20; 1000 ≤ X3 ≤ 60000

100 ≤ X4 ≤ 5000; 1 ≤ X5 ≤ 10; 0.1 ≤ X6 ≤ 1

To test the TempSense application, we configured a simulated network of

200 nodes distributed randomly in an area of 500 x 500 meters. The simulated

network has a sink node that receives temperature data from all other nodes

that execute the TempSense application. The radius of the transmission range

and the interference range of each node in the simulation are 50 meters and 80

22

Table 2: List of non-functional parameters and constraints

Name Describe

NFP1 Energy per delivered packet

NFP2 Packet loss ratio

Non-functional

constraints

Min(NFP1) && Min

(NFP2)

Table 3: List of adjustable parameters

Parameter

Name

Variable

Name

Description Default

value

Min.

value

Max.

value

BUFFER

LENGTH

X1 Size of the buffer

storing incoming

messages

20 1 30

QUEUE

LENGTH

X2 Size of the buffer

storing outgoing

messages

10 1 20

SLEEP

TIME

X3 During this time, the

mote is in sleeping state

20000 1000 60000

MAX

LIFE-

TIME

X4 Maximum lifetime of a

message in the network

2500 100 5000

GOSSIP K X5 Messages in the gossip

protocol are forwarded

in the first K hops

5 1 10

GOSSIP P X6 From hop K+1,

messages are forwarded

with probability P

0.6 0.1 1

23

Figure 7: The Pareto frontier obtained when using SPEA2

meters respectively. In each experiment, we run the simulation three times, with

each round being one minute long. The simulator collects all the non-functional

parameters of the application after each simulation round but only the average

metric values are reported to the optimization component.

5.2. Evaluation

The SPEA2 approach is used to solve the optimization problem. The size of

the working population is N = 50. In our problem, a solution candidate is com-

posed of set of real numbers or integers corresponding to the set of adjustable

parameter values. We used real-coded methods where an individual (a solution

in the solution space) is a vector of floating point numbers. The value of an

parameter will be rounded up to the nearest integer when evaluating a solu-

tion candidate. In order to generate new solutions from existing ones, binary

tournament selection with replacement, Simulated Binary Crossover (SBX) and

polynomial mutation operators are applied. The fitness of each solution can-

didate is evaluated using the simulator. Our tests show that the convergence

occurs quickly within 50 generations. Figure 7 shows the Pareto frontier ob-

tained after the optimization process. Table 4 presents an example set of ten

solutions selected from the Pareto frontier (with the round values of adjustable

24

Table 4: An example set of ten solutions for TempSense

X1 X2 X3 X4 X5 X6 P1 P2

Default

value

20 10 20000 2500 5 0.6 0.40007 0.41695

Solution 1 5 8 13500 1500 3 0.65 0.25131 0.12679

Solution 2 5 10 13500 2000 3 0.55 0.25019 0.13152

Solution 3 5 8 15500 3000 3 0.45 0.28512 0.06933

Solution 4 10 8 20000 3500 3 0.50 0.30672 0.04636

Solution 5 10 6 21000 3500 3 0.55 0.32251 0.03858

Solution 6 10 4 12000 4000 4 0.65 0.35054 0.03269

Solution 7 5 6 18500 1000 3 0.55 0.24006 0.26466

Solution 8 5 6 21500 4000 3 0.55 0.36122 0.03171

Solution 9 15 8 25500 3500 4 0.65 0.39176 0.03042

Solution 10 15 8 30500 1000 3 0.6 0.22616 0.37103

parameters).

Our experiment results demonstrate that the application’s satisfaction of

non-functional requirements can be improved during the optimization process by

selecting a proper set of adjustable parameters. We observed that our approach

is able to achieve a good approximation of the Pareto set for the multi-objective

optimization problem.

6. Related Work

Various optimization techniques have been examined in the scope of IoT,

proposing several methods to optimize different WSN properties such as: node

deployment, node localization, routing, data processing, cost and lifetime. In

[4] the authors formulated the sensor node deployment task as a multi-objective

optimization problem to maximize the coverage and lifetime, minimize the num-

ber of deployed sensor nodes while maintaining connectivity between each sensor

node and the sink. In [22] Vecchio et al. introduced an approach for the local-

25

ization problem in WSNs where a MOEA is used to improve the effectiveness

and the stability of a localization protocol.

To investigate the trade-off between QoS performances in a WSN routing

protocol, in [23] a heuristic algorithm is used to design a multi-objective QoS

routing to support diverse requirements by different WSN applications. In the

context of data gathering and fusion in WSN, a multi-objective optimization

technique has been shown to be very effective to prolonging the network’s life-

time while maintaining the QoS metrics of the application [24, 25].

The authors of [26, 27] studied a modular hardware architecture for sen-

sor nodes which provides energy optimization opportunities at the hardware

level via adjustable parameters (i.e., processor voltage and frequency, sensing

frequency, duty cycle, etc.). When designing a communication protocol for sen-

sor networks, developers can tune different parameters such as channel access

schedule, message size, and duty cycle to meet application requirements [28].

In [29] the authors mentioned several dynamic optimization approaches that

enable sensor nodes to dynamically customize their parameter values in situ

according to both operating environment and application requirements. In [30],

the authors presented an method for software reconfiguration in WSNs based on

model-integrated computing. The authors modeled the WSN operation space

(defined by the WSN software components’ models and application require-

ments) and defined reconfiguration as the process of switching from one point

in the operation space to another. In that way, the key question of reconfigur-

ing WSNs is considered as a search problem in the operation space. Another

dynamic optimization method for WSNs is presented in [31]. The authors imple-

mented the Markov Decision Process to dynamically optimize mote processor

voltage, frequency, and sensing frequency in accordance with application re-

quirements over the lifetime of the mote. The main drawback of the dynamic

optimization method is that the optimization module has to be implemented on

each sensor node despite of resource constraints.

An important issue that cannot be neglected, but that was not discussed in

this work, is the preservation of information security on shared data. This can

26

be considered as an orthogonal dimension to our problem area. However, we

would like to mention relevant works that are suitable to extend our framework.

Munir et al. [32] presented an optimized light weight authentication protocol

for IoT devices. The study shows that the protocol outperforms other works

in terms of computation, storage and communication cost. To deal with the

location privacy problem in IoT, the authors of [33, 34] proposed a user-defined

privacy location-sharing framework with an optimized query algorithm to pro-

tect a user’s location privacy. The experiment results show that the framework

incurs a lower time complexity than existing frameworks. To offer real-time data

security when combining IoT and cloud computing, different types of security

frameworks have been introduced. Chang et al. [35, 36] applied a multi-layered

security framework which could be used as an integrated data security solution

for business clouds.

Our solution presented in this paper can assist designers in optimizing appli-

cations regarding non-functional requirements at different design levels, such as

hardware, software, or communication protocol, by adjusting suitable parame-

ters. Beside that, our MDD framework is not only simplifying the application

development, but it enables developers to execute the optimization process more

easily and comprehensible, and allows them to select a solution of the Pareto

set.

7. Conclusions and Future Work

We have developed a new solution for IoT systems to deal with non-functional

constraint problems in an early phase of development. In the first stage, the

interdependencies between adjustable platform and application parameters and

non-functional requirements are examined. Furthermore, major requirements

are identified and represented as non-functional constraints. Then a MOEA

method is used to solve the optimization problem. To evaluate the proposed

method, a case study was implemented. The experiment demonstrates that

non-functional constraints, such as power consumption and reliability, can be

27

improved significantly during the optimization process by selecting a proper set

of adjustable parameters. In our future work, we try to reduce the efforts for the

experiments needed for the optimization process. In order to reduce the total

runtime of the optimization task, the simulations could be executed in parallel

if a sufficient number of processors is available, or they can be offloaded to cloud

servers and surrogates nearby.

Acknowledgment

This research is funded by Vietnam National Foundation for Science and

Technology Development (NAFOSTED) under grant number 102.01-2016.03.

The authors would like to thank the German Research Foundation (DFG) for

supporting their participation in worldwide research networks.

8. References

[1] Z. Fei, B. Li, S. Yang, C. Xing, H. Chen, L. Hanzo, A survey of multi-

objective optimization in wireless sensor networks: Metrics, algorithms and

open problems, IEEE Communications Surveys & Tutorials 99 (2016) 1–38.

[2] Y. Zhang, S. He, J. Chen, Data gathering optimization by dynamic sensing

and routing in rechargeable sensor networks, IEEE/ACM Transactions on

Networking 24 (3) (2016) 1632–1646.

[3] Y. Qin, Q. Z. Sheng, N. J. Falkner, S. Dustdar, H. Wang, A. V. Vasilakos,

When things matter: A survey on data-centric Internet of Things, Journal

of Network and Computer Applications 64 (2016) 137–153.

[4] S. Sengupta, S. Das, M. Nasir, B. K. Panigrahi, Multi-objective node de-

ployment in WSNs: In search of an optimal trade-off among coverage,

lifetime, energy consumption, and connectivity, Engineering Applications

of Artificial Intelligence 26 (1) (2013) 405–416.

28

[5] H. A. Hashim, B. O. Ayinde, M. A. Abido, Optimal placement of relay

nodes in wireless sensor network using artificial bee colony algorithm, Jour-

nal of Network and Computer Applications 64 (2016) 239–248.

[6] L. Da Xu, W. He, S. Li, Internet of Things in industries: A survey, Indus-

trial Informatics, IEEE Transactions on 10 (4) (2014) 2233–2243.

[7] M. Dı́az, C. Mart́ın, B. Rubio, State-of-the-art, challenges, and open issues

in the integration of Internet of Things and cloud computing, Journal of

Network and Computer Applications 67 (2016) 99–117.

[8] M. Iqbal, M. Naeem, A. Anpalagan, N. N. Qadri, M. Imran, Multi-objective

optimization in sensor networks: Optimization classification, applications

and solution approaches, Computer Networks 99 (2016) 134–161.

[9] R. Asorey-Cacheda, A.-J. Garcia-Sanchez, F. Garcia-Sanchez, J. Garcia-

Haro, A survey on non-linear optimization problems in wireless sensor net-

works, Journal of Network and Computer Applications 28 (2017) 1–20.

[10] E. Zitzler, Evolutionary algorithms for multiobjective optimization: Meth-

ods and applications, Vol. 63, Citeseer, 1999.

[11] X. T. Nguyen, H. T. Tran, H. Baraki, K. Geihs, Frasad: A framework for

model-driven IoT application development, in: Internet of Things (WF-

IoT), 2015 IEEE 2nd World Forum on, IEEE, 2015, pp. 387–392.

[12] N. X. Thang, M. Zapf, K. Geihs, Model driven development for data-centric

sensor network applications, in: Proceedings of the 9th International Con-

ference on Advances in Mobile Computing and Multimedia, ACM, 2011,

pp. 194–197.

[13] N. X. Thang, K. Geihs, Model-driven development with optimization of

non-functional constraints in sensor network, in: Proceedings of the 2010

ICSE Workshop on Software Engineering for Sensor Network Applications,

ACM, 2010, pp. 61–65.

29

[14] F. Österlind, J. Eriksson, A. Dunkels, Cooja timeline: a power visualizer

for sensor network simulation, in: Proceedings of the 8th ACM Conference

on Embedded Networked Sensor Systems, ACM, 2010, pp. 385–386.

[15] Z. J. Haas, J. Y. Halpern, L. Li, Gossip-based ad hoc routing, IEEE/ACM

Transactions on Networking (ToN) 14 (3) (2006) 479–491.

[16] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, P. Levis, Collection tree

protocol, in: Proceedings of the 7th ACM Conference on Embedded Net-

worked Sensor Systems, ACM, 2009, pp. 1–14.

[17] E. Zitzler, M. Laumanns, L. Thiele, et al., SPEA2: improving the strength

pareto evolutionary algorithm, in: Eurogen, no. 103 in 3242, 2001, pp.

95–100.

[18] F. Herrera, M. Lozano, J. L. Verdegay, Tackling real-coded genetic algo-

rithms: Operators and tools for behavioural analysis, Artificial intelligence

review 12 (4) (1998) 265–319.

[19] J. J. Durillo, A. J. Nebro, jmetal: A java framework for multi-objective

optimization, Advances in Engineering Software 42 (10) (2011) 760–771.

[20] K. Deb, R. B. Agrawal, Simulated binary crossover for continuous search

space, Complex Systems 9 (3) (1994) 1–15.

[21] M. Raghuwanshi, O. Kakde, Survey on multiobjective evolutionary and

real coded genetic algorithms, in: Proceedings of the 8th Asia Pacific sym-

posium on intelligent and evolutionary systems, 2004, pp. 150–161.

[22] M. Vecchio, R. López-Valcarce, F. Marcelloni, A two-objective evolutionary

approach based on topological constraints for node localization in wireless

sensor networks, Applied Soft Computing 12 (7) (2012) 1891–1901.

[23] G. H. Ekbatanifard, R. Monsefi, M.-R. Akbarzadeh-T, M. Yaghmaee, et al.,

A multi-objective genetic algorithm based approach for energy efficient

QoS-routing in two-tiered wireless sensor networks, in: Wireless Pervasive

30

Computing (ISWPC), 2010 5th IEEE International Symposium on, IEEE,

2010, pp. 80–85.

[24] H. Lin, H. Uster, Exact and heuristic algorithms for data-gathering cluster-

based wireless sensor network design problem, Networking, IEEE/ACM

Transactions on 22 (3) (2014) 903–916.

[25] A. Thakkar, K. Kotecha, Cluster head election for energy and delay con-

straint applications of wireless sensor network, Sensors Journal, IEEE 14 (8)

(2014) 2658–2664.

[26] J. Byun, B. Jeon, J. Noh, Y. Kim, S. Park, An intelligent self-adjusting

sensor for smart home services based on zigbee communications, Consumer

Electronics, IEEE Transactions on 58 (3) (2012) 794–802.

[27] P. Dutta, J. Taneja, J. Jeong, X. Jiang, D. Culler, A building block ap-

proach to sensornet systems, in: Proceedings of the 6th ACM conference

on Embedded network sensor systems, ACM, 2008, pp. 267–280.

[28] D. H. Phan, J. Suzuki, S. Omura, K. Oba, A. Vasilakos, Multiobjective

communication optimization for cloud-integrated body sensor networks,

in: Cluster, Cloud and Grid Computing (CCGrid), 2014 14th IEEE/ACM

International Symposium on, IEEE, 2014, pp. 685–693.

[29] P. K. Dutta, D. E. Culler, System software techniques for low-power oper-

ation in wireless sensor networks, in: Proceedings of the 2005 IEEE/ACM

International conference on Computer-aided design, IEEE Computer Soci-

ety, 2005, pp. 925–932.

[30] A. Taherkordi, F. Loiret, R. Rouvoy, F. Eliassen, Optimizing sensor net-

work reprogramming via in situ reconfigurable components, ACM Trans-

actions on Sensor Networks (TOSN) 9 (2) (2013) 14.

[31] A. Munir, A. Gordon-Ross, An MDP-based dynamic optimization method-

ology for wireless sensor networks, Parallel and Distributed Systems, IEEE

Transactions on 23 (4) (2012) 616–625.

31

[32] R. Amin, N. Kumar, G. Biswas, R. Iqbal, V. Chang, A light weight authen-

tication protocol for IoT-enabled devices in distributed cloud computing

environment, Future Generation Computer Systems (2016) 1–27.

[33] G. Sun, Y. Xie, D. Liao, H. Yu, V. Chang, User-defined privacy location-

sharing system in mobile online social networks, Journal of Network and

Computer Applications (2016) 1–12.

[34] G. Sun, D. Liao, H. Li, H. Yu, V. Chang, L2p2: A location-label based

approach for privacy preserving in LBS, Future Generation Computer Sys-

tems (2016) 1–10.

[35] V. Chang, M. Ramachandran, Towards achieving data security with the

cloud computing adoption framework, IEEE Transactions on Services Com-

puting 9 (1) (2016) 138–151.

[36] V. Chang, Y.-H. Kuo, M. Ramachandran, Cloud computing adoption

framework: A security framework for business clouds, Future Generation

Computer Systems 57 (2016) 24–41.

32

