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a b s t r a c t

The goal of the short-term unit commitment is the minimization of the total operation cost while
satisfying all unit and system constraints. One of the main issues while solving the unit commitment
optimization problem is the planning of the capacity reserves of the power system. In order to address
this issue, a dynamic method for probabilistic assessment of generation unavailability is proposed within
this paper. The main highlight feature of this method is that it has the capacity to account for the
unavailability implications of the generating unit states, being committed or decommitted as well as
their start-up characteristics. This allows more comprehensive hour-to-hour scheduling analyses from
the aspect of probabilistic unavailability assessment. The generating capacities unavailability is
designated as the relevant unavailability measure regarding the power supply to loads. The unit
commitment problem is developed as a multi-objective optimization problem. Two objective functions
are considered: the total operating cost of the generating capacities as one and generating capacities
unavailability as the other objective function. An improved hybrid genetic algorithm is applied for
solving the problem. A test power system is used as a case study. The obtained results indicate the need
and benefits of more detailed modelling of the power generation availability.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The general idea behind the short-term unit commitment (UC)
is meeting the forecasted load on a short-term basis (one day or up
to one week) by accordingly scheduling the on or off line status of
the generating capacities (Cheng et al., 2002). The objective of the
short-term UC is the minimization of the total operation cost
while satisfying all unit and system constraints. The UC problem is
highly constrained, non-linear, mixed integer optimization pro-
blem. The exact solution of the problem can be obtained by
complete enumeration, a process which is not computationally
feasible for realistic power systems (Orero and Irving, 1997; Wood
and Wollenberg, 1996).

Modern meta-heuristic algorithm based techniques have been
extensively employed for solving generation scheduling problems.
One of the first applications of genetic algorithm (GA) on the
generation (economic) dispatch optimization problem is shown in
Ref. Walters and Sheble (1993). Approximately in the same period
the simulated annealing (SA) algorithm was also applied for the
optimal generation dispatching (Wong and Fung, 1993). Since then

various modern techniques have been used for the single objective
and multi-objective generation dispatch problem. In Ref. Elsayed
et al. (2014) a new GA has been proposed for solving engineering
problems including optimal generation dispatching. A modified
particle swarm optimization has been used on the static genera-
tion dispatch problem considering valve point-effects and prohib-
ited operating zones (Neyestani et al., 2010). Ref. Lu et al. (2011)
introduces three novel chaotic differential evolution techniques for
solving the dynamic generation dispatch problem.

UC problem is another part of the generation scheduling that
was solved with modern meta-heuristic algorithms. Since begin-
ning of the 1990s, when the GAs were first employed in power
system optimization, they have become very popular tool for
solving the UC problem. In Ref. Dasgupta and McGregor (1994)
the application of a binary coded GA has been discussed for
solving the UC problem. Similar study was presented in Ref.
Kazarlis et al. (1996) where Kazarlis et al. applied a binary coded
GA on a 10-unit test system. The results in this study are compared
with classical techniques such as dynamic programming (DP) and
Lagrange relaxation (LR). Later on, the application of a real coded
GA for the UC problem was discussed (Damousis et al., 2004).
It was shown that real coded GA can produce better results than
the LR method that was used as a benchmark in the paper, also the
execution time of the algorithm was reduced compared to the
binary coded GA. Other modern meta-heuristic techniques have
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been extensively used for the UC problem as well, such as:
evolutionary programming (Juste et al., 1999), neural networks
(Ouyang and Shahidehpour, 1992), simulated annealing (Mantawy
et al., 1998), particle swarm optimization (Ting et al., 2006), ant
colony (Simon et al., 2006) and artificial bee colony algorithm
(Chandrasekaran et al., 2012).

A careful planning of the reserves is required in the short-term
UC schedule in order to ensure an adequate reliability level. Even
though most of the above-mentioned techniques offer an accep-
table solution for the UC problem, they are using old and most
commonly used methods for reserve planning, i.e. low margin as a
percentage from the real system load at each time interval and the
reserve equal to the power output of one or more of the largest
units. These methods can lead to overscheduling which means
more reliable and uneconomic unit commitment as well as under-
scheduling which means more economic and less reliable unit
commitment. However, some studies, where probabilistic reserve
evaluation is used, have been performed. Dillon et al. presented a
probabilistic method for proper representation of the reserves
associated with different unavailability levels (Dillon et al., 1978).
The developed model is integrated within the short-term UC as
constraint that has to be satisfied. This model ensures that a given
reliability level is achieved. Similar approach is used in Ref.
Shi et al. (2004) where a stochastic mechanism is developed
for the short-term UC with probabilistic determination for
spinning reserve constraint. In Ref. Lee and Chen (2007) a
method for solving the short-term UC problem with probabilistic
reserves is discussed. In Ref. Simopoulos et al. (2006) evaluation of
the required spinning reserve capacity is performed by applying
reliability constraints based on loss of load probability (LOLP) and
expected energy not supplied (EENS) indices. Similar approach is
presented in Ref. Jalilzadeh et al. (2009) where a dynamic penalty
constraint is applied for the EENS constraint. A two-level, two-
objective optimization scheme based on evolutionary algorithms
for solving UC problem by considering stochastic power demand
variations is proposed in Ref. Georgopoulou and Giannakoglou
(2009). The total operating cost is used as one objective while the
risk of not fulfilling possible demand variations is used as the
second objective to be minimized. In other words the paper
investigates the trade-off between total cost and the risk due to
load uncertainties. In Ref. Lei et al. (2008) the loss of load
expectation (LOLE) is included as a constraint in the long-term
UC for calculating the cost of supplying the reserve. In Ref.
Bouffard and Galiana (2004) an algorithm is developed that
includes the scheduling of spinning reserve according to a hybrid
deterministic/probabilistic reliability criterion. This hybrid criter-
ion behaves consistently with purely probabilistic criteria such as
LOLP. In most of these methods an optimal reserve planning is
achieved when a probabilistically determined generating reserve
is used as controlled criteria/constraint, instead of an independent
objective function. Additionally, most of these techniques do not
account for the implications for unavailability of the commitment
of a specific unit at given time interval and the time needed for
these units (rapid-starting, slow-starting) to be online and start
generating. These are the main motivations for the work done in
this study.

The increased reliability of power supply corresponds to
increased costs (Billinton and Allan, 1988). The same rationale is
valid for the short-term unit commitment. This research is focused
on the interdependence between the total cost of power produc-
tion, the capacity outage unavailability and generation reserves in
the short-term UC. The main objective of this study is to develop a
dynamic method for power system probabilistic unavailability
evaluation. The generating capacities unavailability is the relevant
unavailability measure. As such, the LOLP is used as an unavail-
ability index herein. This approach has the capacity to account for

the time inertia related to different generating units to be online
and start generating. The second objective of the paper is perform-
ing trade-off analysis between the total production costs and the
capacity outage unavailability. Therefore, the UC is presented as a
multi-objective optimization problem. For comparative purposes a
deterministic model is introduced as well. This deterministic
model is defined as a function of the spinning reserve.

For solving the short-term UC optimization problem an
improved hybrid GA is constructed. The algorithm uses classical
method, i.e. priority list in order to create the initial population.
An improvement of the classical hybrid GA (Orero and Irving, 1997) is
proposed by employing hybrid solutions additionally within the
initial population. The algorithm employs repairing mechanisms
and penalization technique to deal with the constraint violations.
The UC problem is solved in three separate formulations. Firstly, the
problem is solved as a single objective, once considering the total
production cost objective function and secondly, considering the
generation unavailability function. At the end, the problem is solved
as a bi-objective, considering both of the objective functions. Two
scenarios are analysed: considering and not considering the spinning
reserve constraint. The obtained results show that compromise
between cost and unavailability is achieved. Additionally, improve-
ments on the used test power system are proposed and the system
as such is solved using the same model. For verification purposes, the
used algorithm has been applied on a 10, 20, 40, 60, 80 and 100 unit
systems and the obtained results were compared with others
available in the literature.

2. Power system reliability

The primary objectives of the modern power systems are to
provide a reliable and economic supply of electric energy to their
customers. The main issue in the planning and also in the
operating phases has always been the adequate reserves of
generating capacity. Consequently, the level of redundancy and
the associated cost are designated as the prime question. By
definition, the reserve capacities that are spinning, synchronized
and ready to take up load are known as spinning reserve. Some
power system operators include only the spinning reserve in the
assessment of system adequacy, while others include also the
rapid start units such as gas turbines and hydropower plants or
assistance from the interconnected systems. These additional
factors added to the spinning reserve are all together known as
operating reserve (Billinton and Allan, 1996). The operating capa-
city domain, i.e. the short-term unit commitment is of interest in
this research paper.

In general, each power system operation is associated with
prediction of the expected load, i.e. short-term load forecasting,
and consequently providing for and scheduling of sufficient gen-
eration capacity. The time needed for a specific generating unit to
produce an output ranges from few minutes in the case of gas
turbines and hydropower plants to several hours in the case of
thermal generating power plants. This is especially important for
the intermediate load units which are mostly coal-fired units that
have considerable starting inertia (several hours). If an unexpected
change occurs in the power system and additional generation is
required immediately, the intermediate load units cannot be
counted for at this point of time if they are not committed and
spinning. Therefore, within the probabilistic unit commitment
evaluation these units should be considered as unavailable in the
time interval when they are decommitted.

Various design, planning and operating criteria and techniques
have been developed over many decades in an attempt to resolve
and satisfy the dilemma between the economic and reliability
constraints (Billinton and Allan, 1996). Most of these criteria and
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techniques are inherently deterministic. However the power
systems behave stochastically. The main weakness of these meth-
ods is that they cannot account for the stochastic nature of the
system (Čepin, 2011).

3. Multi-objective unit commitment

The term unit commitment is associated with the strategic
choice to be performed in order to identify the generating
capacities of a given power system, designated to be used in order
to meet the forecasted load demand over a future short-term
(Amjady and Shirzadi, 2009; Yan-Fu et al., 2013). In this paper, the
UC optimization problem is developed as a multi-objective opti-
mization problem.

Recently several methods for multi-objective unit commitment
have been shown in the scientific literature. In Ref. Norouzi et al.
(2014) a method for the combined economic–environmental
short-term unit commitment for hydro and thermal generation
units is presented. Two objectives are considered, the total
operating cost and gaseous emission caused by the thermal units.
The problem is transformed into mixed integer linear program-
ming. The Pareto optimal solutions are derived by employing
lexicographic optimization and hybrid augmented-weighted ε-con-
straint technique. The combined economic–environmental short-
term unit commitment is also solved in Ref. Yan-Fu et al. (2013).
The NSGA-II algorithm is used for the multi-objective optimization.
A novel two-phase approach for the multi-objective unit commit-
ment problem is presented in Ref. Li et al. (2013). In the first phase,
hourly-optimal scheduling is done to simultaneously minimize total
cost, gaseous emission, and transmission loss, while satisfying
constraints such as power balance, spinning reserve and power
generation limits. In the second phase, the minimum up/down time
and ramp up/down rate constraints are solved.

In this study two objective functions are considered: the total
operating cost of the generating capacities as one and generating
capacities unavailability as the other objective function. In other
words, the objective of the unit commitment problem is the
simultaneous minimization of the total operating costs and the
generating capacities unavailability over the scheduling period
while meeting the load demands and satisfying all units and
system constraints. One-day time period is chosen and divided
in 24 intervals each lasting one hour.

3.1. Total operating cost objective function

The total operating costs over the scheduling period are
comprised of the fuel costs, start-up costs and shut-down costs
and can be expressed as follows:

FT ¼ ∑
T

t ¼ 1
∑
N

i ¼ 1
½Si;tFCi

ðPGi;t
ÞþCUiSi;t 1�Si;t�1

� �þCDiSi;t 1�Si;tþ1
� ��

ð1Þ
where FCi

is the fuel cost, Si,t is the on/off status of the ith unit at
the tth hour, with Si,t¼1 when the unit is on and Si,t¼0 when the
unit is off, PGi;t

is the power output of the ith thermal unit at the tth
hour, CUi is the start-up cost of the ith unit, CDi is the shut-down
cost of the ith unit, T is the total scheduling period and N is the
total number of units.

The most frequently used fuel cost function is written in
quadratic form (Dillon et al., 1978; Kazarlis et al., 1996) as follows:

FCi
PGi;t

� �
¼ aiþbiPGi;t

þciP
2
Gi;t

þ di sin ei Pmin
Gi;t

�PGi;t

� �n o��� ��� ð2Þ

where ai, bi and ci are the cost coefficients and di and ei are valve
point coefficients.

The start-up cost of a thermal generating unit can be calculated
as an exponential function of the off time (Dieu and Ongsakul,
2011) as follows:

CUi ¼ αiþβi 1�exp �
Tof f
i;t�1

γi

 !" #
ð3Þ

where αi, βi and γi are the start-up coefficients of the ith thermal

unit and Tof f
i;t is duration for which the ith thermal unit has been

continuously off until hour t. A simplified approach for calculation
of the start-up cost is used in this study as follows:

CUi ¼
HCi

; Tdown
i oTof f

i;t rTdown
i þTcold

i

CCi
; Tof f

i;t 4Tdown
i þTcold

i

8<
: ð4Þ

where HCi
and CCi

are the hot start-up cost of and cold start-up

cost of the ith thermal unit, Tdown
i is the minimum down time of

the ith thermal unit and Tcold
i is the cold start hour of the ith

thermal unit.

3.1.1. Constraints
3.1.1.1. Power balance constraints. The power balance constraints
require that the sum of all generated power outputs from all on-
line generating units is equal to the load demands plus the power
losses in the system:

∑
N

i ¼ 1
PGi;t

Si;t ¼ PLt þPlosst ð5Þ

where PLt and Plosst are the load demand and the power losses in
the system at tth hour respectively.

3.1.1.2. Generating capacity constraints. The generator capacity
constraints are expressed as follows:

Pmin
Gi

rPGi;t
rPmax

Gi
when Si;t ¼ 1

PGi;t
¼ 0 when Si;t ¼ 0

(
ð6Þ

where Pmin
Gi

and Pmax
Gi

are the minimum and maximum power
outputs for the ith unit respectively.

3.1.1.3. Operating ramp rate constraints. The operating ramp rate
constraints are defining the allowed change in power during one
time interval (hour):

PGi;t
�PGi;t� 1

rURi if Si;t ¼ 1 and Si;t�1 ¼ 1 ð7Þ

PGi;t � 1
�PGi;t

rDRi if Si;t ¼ 1 and Si;t�1 ¼ 1 ð8Þ
where URi and DRi are the operating ramp-up and rump-down rate
per hour of the ith thermal unit respectively.

3.1.1.4. Start-up and shut-down ramp rate constraints. The start-up
and shut-down ramp rate constraints are limiting the unit power
as the unit starts up and shuts down respectively:

PGi;t
�PGi;t� 1 rSURi; if Si;t ¼ 1 and Si;t�1 ¼ 0 ð9Þ

PGi;t � 1
�PGi;t

rSDRi if Si;t ¼ 0 and Si;t�1 ¼ 1 ð10Þ
where SURi and SDRi are the start-up ramp constraint and shut-
down ramp constraint of the ith thermal unit respectively.

3.1.1.5. Minimum up and down time constraints. Once a unit is
committed, there is a minimum time before the unit can be
decommitted and vice versa:

Tup
i rTon

i;t

Tdown
i rTof f

i;t

8<
: ð11Þ
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where Tup
i is the minimum up time of the ith thermal unit and Ton

i;t
is the duration for which the ith thermal unit has been continuously
on until tth hour.

3.1.1.6. System reserve requirements. Hourly spinning reserve require-
ments, Rt, must be met:

∑
N

i ¼ 1
PGi; max

Si;tZPLt þPlosst þRt ð12Þ

3.1.1.7. Must run units. The term must-run unit is related to those
generating capacities which due to economic and system
reliability consideration are continuously committed during all of
the scheduling period. In practice, these units are usually the base
load units, i.e. the largest thermal units in the power system.

3.1.1.8. Prohibited operating zones constraints. A prohibited opera-
ting zone of a unit is a range of power outputs where the unit is
not allowed to operate. A unit may have one or more prohibited
operating zones. Mathematically the prohibited operating zones
constraint is formulated (Özyön and Aydin, 2013) as follows:

PGi
A

Pmin
Gi

rPGi
rPl

Gi;1

Pu
Gi;j� 1

rPGi
rPl

Gi;j

Pu
Gi;ni

rPGi
rPmax

Gi

8>>><
>>>:

where j¼ 2;3;…;ni ð13Þ

where Pu
Gi;j

and Pl
Gi;j

are the lower and upper limits of the prohibited

operating zones of the ith generation unit, respectively and ni is the
number of the prohibited operating zone of the ith generation unit.

3.2. Generating capacities unavailability objective function

The calculation of the unavailability related to solving the unit
commitment problem is associated with the identification of the
unit or units to be committed in any given time interval over
the scheduling time period (Billinton and Allan, 1996). One of the
oldest and traditionally applied methods for reserve planning is
the method that sets the reserve equal to the power output of one
or more of the largest units. Another similar method designates a
low margin as a percentage of the load demand at each time
interval. These traditional methods do not give any accurate
information about how much the scheduled reserves are valuable
for the power system reliability. That is why probabilistic evalua-
tions are needed in order for the approach to become more
consistent and closer to the real scenario. The rationale behind is
that such a method would implicate more objective decision
making (Billinton and Allan, 1996).

The two-state model is used for representation of the generat-
ing unit unavailability. However, the generating unit unavailability
model is not limited to these two states. Instead, multiple derated
states with discrete probabilities may also be considered. Based on
the two-state model the unavailability of generating unit, Uuni , at
time interval, LT, considering that the unit was available at t¼0 is
calculated (Billinton and Allan, 1996; Guangbin and Billinton,
1994) as follows:

Uuni ¼ 1�e�ðλi þμiÞLT� � λi
λiþμi

ð14Þ

where λi and μi are failure and the repair rate of the ith unit
respectively and LT is known as system lead time (Billinton and
Allan, 1996; Billinton and Fotuhi-Firuzabad, 1994, 2000; Guangbin
and Billinton, 1994). The lead time is the time period in which no
additional unit can be brought in to operation (Khan and Billinton,
1993). The system lead time is fixed at 4 h as performed in refs.
(Chandrasekaran and Simon, 2012; Jalilzadeh et al., 2009; Khan

and Billinton, 1993; Simopoulos et al., 2006). The repair rate, μi, is
calculated as μi¼1/RT. The unavailability Uuni of the units is used
for calculation of the cumulative probabilities by capacity outage
probability tables. The cumulative probabilities are used for
calculation of the LOLP index. The methodology is described in
the following section.

3.2.1. Method for probabilistic assessment of generating capacities
unavailability

A probabilistic unavailability evaluation method as function of
the unit commitment schedule is developed. A unique character-
istic of the method is that it takes into account the design
characteristics of the generating units. The thermal power units
in the system are separated in three categories: base load units,
intermediate load units and peak load units. The classification for
the units is done based on the size of the unit, start-up and shut-
down times and fuel cost efficiency.

1. The base load units are considered to be on-line during all of
the time intervals (hours) from the scheduling time period
which is in compliance with the “must run units” constraint.
Their unavailability, Uuni , is calculated by Eq. (14).

2. The intermediate load units, as described above, are considered
unavailable during the time intervals in which they are decom-
mitted, i.e. if not scheduled for operation in given time interval
they will be considered “as same as in outage”. Thus when
decommitted their unavailability, Uuni , is considered to be equal
to one. These units will be considered again for supplying the
load, after they become ready to generate, i.e. committed again.
When committed their unavailability, Uuni , is calculated with
Eq. (14). The commitment of the intermediate load units and
the time interval in which decommitted units can become
available for generation is significantly influencing the UC
unavailability.

3. The peak load units (e.g. gas-fired units) are capable to start,
synchronize and accept load in a few minutes. These units are
considered as operating reserve together with the spinning
reserve. Considering their short start-up time, the peak load
units regardless of their current state, whether on or off, will be
considered available (with their calculated Uuni values) during
whole scheduling period. For simplification, the unavailability,
Uuni , of the peak load units is also calculated with Eq. (14) using
the two state model not considering states such as failure
to start.

This classification helps into the consideration of the inertia of
the specific generating units and allows more comprehensive
hour-to-hour scheduling analyses from the aspect of probabilistic
unavailability assessment.

The loss of load probability is used as unavailability criterion
(index), i.e. as measure for the generating capacities unavailability.
In this paper the LOLP is calculated (Guangbin and Billinton, 1994;
Stoll, 1989; Volkanovski et al., 2008) as follows:

LOLP ¼ ∑
T

t ¼ 1
cptðPCt oPLt Þ h=day ð15Þ

where PCt is the committed capacity including the peak load units
at hour t and cpt is the cumulative probability calculated for a
given unit commitment at hour t. The commitment capacity, PCt , is
a function of the UC and is calculated as sum of the maximum
power outputs of all committed units plus the maximum power
outputs of all peak load units either committed or decommitted at
hour t. The committed capacity, PCt , is changing given the unit
commitment on hourly basis. Thus the load demand, PLt , is not the
only parameter that is changing from hour-to-hour.
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At each time point a unit may be committed or decommitted.
The number and type of the units which are committed/decom-
mitted may significantly influence system unavailability. The
generating capacities unavailability, i.e. the LOLP, quantifies
the possibility that a given load level will not be supplied by the
committed generating units during the scheduling period. There-
fore the generating capacities unavailability index is evaluated by
convolution of the generating capacities and the load profile. The
method applied in this paper is described with the following
steps:

Step 1: Each committed unit at hour t is represented with its
unavailability value, Uuni , for a give UC schedule. The unit is
considered unavailable if it is decommitted in the tth hour.
Exception of the last rule is made for the peak load units as
explained in the unit classification above.
Step 2: Capacity outage probability table is formed given the
unit commitment schedule for the tth hour. An example of
capacity outage probability table is given in Appendix B.
Step 3: Given the load level at tth hour the corresponding
unavailability level, i.e. the corresponding cumulative probabil-
ity, cpt, is selected;
Step 4: The procedures according to Step 2 and Step 3 are
repeated for all of the time intervals from the scheduling time
period, T;
Step 5: The unavailability of generation capacities, FU, is
calculated using Eq. (15), i.e. FU¼LOLP.

Fig. 1 shows a schematic flowchart of performing steps 2–4.
The LOLP is not the only unavailability measure that can be used

as an estimate for the unavailability of the generating capacities.
Another unavailability measure that can be used is the EENS.

3.2.2. Capacity outage probability tables
Capacity outage probability tables are basically two-dimensional

matrices comprising the capacity levels, or the corresponding
capacities being out of service as well as the associated probabilities
of their occurrence (Billinton and Allan, 1992, 1996). These prob-
abilities of occurrence are defined as the probability that the
indicated capacity amount will be out of service. Usually, the
cumulative probability of occurrence is applied for the capacity
modelling. This cumulative probability is defined as the sum of
probabilities corresponding to capacity being in outage equal to or
greater than the indicated amount. Capacity outage probability
tables can be created using a convolution algorithm (Billinton and
Allan, 1992, 1996; Volkanovski et al., 2008).

3.2.3. Deterministic reserve evaluation
The standard way of designating a specific power system reserve

is by applying a deterministically assessed value as a criterion to be

met. This value is usually set to equal to the largest generating
capacity or some percentage of the peak load (Billinton and Allan,
1996; Bouffard and Galiana, 2004). Two scenarios are analysed
regarding the spinning reserve: one scenario where a minimum
margin of 10% spinning reserves from the load demand is required
at each time interval and another scenario where no margin is
considered at all. However, since the trade-off between the total
cost and unavailability of generation capacities are analysed in this
study, multiple unit commitment solutions are obtained. Each of
these unit commitment solutions results with different spinning
reserves for each time interval. In order to explore the trade-off
between the total cost and the spinning reserves simple determi-
nistic model is constructed as function of the spinning reserve. First,
the hourly spinning reserves are calculated as follows:

Rt ¼ ∑
N

i ¼ 1
Ri;t ð16Þ

where Ri,t is the spinning reserve contributed by the ith unit at the
tth hour, i.e. the spinning reserve Rt,i is calculated as difference
between the maximum power output of the ith unit and the power
output that this unit has at hour t (Ri;t ¼ Pmax

Gi
�PGi;t

). Then, the
spinning reserve index is formed as follows:

FR ¼
T

∑T
t ¼ 1Rt

ð17Þ

This model is applied on the entire unit commitment solutions
set obtained using the unavailability assessment model and the
results are subsequently compared. The spinning reserve index is
introduced only for comparative purpose.

4. Problem formulation

Both objective functions, the cost function given with Eq. (1)
and the generation unavailability function given with Eq. (15), are
evaluated separately. Subsequently, the combined unavailability–
economic UC is evaluated and described as follows:

Minimize ½FT S; PGð Þ; FUðS; PGÞ� ð18Þ

subject to:

g S; PGð Þ ¼ 0 ð19Þ

h S; PGð Þr0 ð20Þ

where g(S,PG) and h(S,PG) are the equality and inequality problem
constraints, respectively, S is the commitment status of the units,
and PG is a decision matrix that represents potential solution. Since
the UC is a mixed-inter problem which comprises two intercon-
nected optimization sub-problems, the integer-valued unit com-
mitment schedule and the real-valued generation dispatch, the
decision space is represented as follows:

S; PG ¼

S1;1; PG1;1S1;2; PG1;2 ⋯ S1;t ; PG1;t S1;T ; PG1;T

⋮ ⋱ ⋮
Si;1; PGi;1

Si;2; PGi;2
⋯ Si;t ; PGi;t

Si;T ; PGi;T

⋮ ⋱ ⋮
SN;1; PGN;1 SN;2; PGN;2 ⋯ SN;t ; PGN;t SN;TPN;T

2
6666664

3
7777775

ð21Þ

The number of rows, N, is equal to the number of generating
units and the number of columns, T, is equal to the number of time
intervals. When solving the UC problems two types of decision
variables are determined, the units on/off status variables, Si,t, and
the units power outputs variables, Pi,t.

Fig. 1. A schematic representation of the probabilistic unavailability assessment
technique.
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5. Problem solution

To solve the UC problem, as single objective and multi-
objective problem, a real-coded genetic algorithm was con-
structed. The GA was also used for the generation (economic)
dispatch of the committed units in the system. Similar approach
were binary-real-coded GA is used to solve both, the UC schedule
and the generation dispatch is shown in Ref. Datta (2013). The
binary-coded GA is used for the UC schedule while the real-coded
GA is used for the generation dispatch. The main difference
between the approach from Ref. Datta (2013) and the approach
used in this study is that the latter uses real coded GA for both
sub-problems with different types of reproduction mechanisms
for each sub-problem.

In order to improve the performance of the used GA a hybrid
methodology which comprises priority list was used. Additionally,
the algorithm comprises mechanisms for constraint violations
repairs.

5.1. Algorithm description

The algorithm procedure is presented within the continuation
of this section.

5.1.1. Priority list
First, all the power plants are divided in separate groups: must-

run group (base load units), intermediate group (intermediate load
units), peak group (peak load units). The groups are arranged
starting from the must-run group, the intermediate group and the
peak group. Next, the plants in all groups are ranked in ascending
order of the best heat rate (Saber et al., 2007). In such a way a
priority list is formed. Consequently, units are being committed
given their rank. For each time interval the most economic unit is
committed first, the procedure continues until the load demand
including the spinning reserves are satisfied. There is a possibility
that some of the most expensive units are not committed at all.

5.1.2. Initial population
In general, when GA is used for optimization purposes, the

initial population is generated randomly. The solution obtained
using the priority list is used as initial solution instead of totally
random generated population. However, some solutions are still
generated at random. Therefore, the initial population contains
three groups of solutions: random solutions, priority list solutions
and hybrid solutions. Each potential solution from the population
is represented with matrix as shown with Eq. (21).

5.1.2.1. Random solutions. These solutions are created such that all
units are committed at the beginning. Then, a random decommit-
ment is performed with predefined probability. However, in order to
satisfy the must-run constraint all base-load units are set as
committed at all intervals. After the UC is defined the committed
generators are assigned with their output power, PGi;t

, which are

generated at random in the interval: Pmin
Gi

rPGi;t
rPmax

Gi
. The generator

output values are used for the generation dispatch problem which is
solved simultaneously.

5.1.2.2. Priority list solutions. The obtained UC solution using the
priority list is also used as such in the initial population, i.e. a
chosen number of solutions are randomly placed in the initial
population. These solutions are of value for the GA because they
provide additional information in the GA search space (Orero and
Irving, 1997; Todorovski and Rajicic, 2006). If enough elitism is
applied in the GA, the worst solutions that can come out of it are
the priority list solutions.

5.1.2.3. Hybrid solutions. The philosophy behind the hybrid solutions
is that they are using the priority list solutions as a starting point.
First, a predefined search rate, sr, is used in order to track an amount
of generating units in the base load solution. This amount is
calculated as: NS¼N*T*sr. In other words NS gives the number of
generating units in the priority list solution that will be randomly
chosen and afterwards replaced. A pseudo-code description of the
procedure is given as follows:

set counter to i¼ 0
while ioNS

i¼ iþ1
choose a variable, Si,t, at random
if Si,t belongs to a base load unit

replace PGi;t
with new variable generated at

random in the interval Pmin
Gi

rPGi;t
rPmax

Gi

else if Si,t¼1 (committed)
set Si,t¼0 (decommitment) and PGi;t

¼ 0
else If Si,t¼0 (decommitted)

set Si,t¼1 (commitment) and generated PGi;t
at

random in the interval

Pmin
Gi

rPGi;t
rPmax

Gi

end
end

The procedure is repeated until the predefined number of
hybrid solutions is created. The algorithm is set such that the
number of hybrid solutions is dominating in the initial population.
The employment of the hybrid solutions in the initial population is
main improvement performed on the classical hybrid GA.

5.1.3. Repair mechanisms
Once the initial population is created it is very difficult to

generate solutions that satisfy all equality and inequality system
and unit constraints, especially when random generated variables
are introduced. In order to improve the initial solution properties
in direction of satisfying the constraints, i.e. reappearing proce-
dures are introduced. The reappearing procedures are adopted
from (Senthil Kumar and Mohan, 2010; Sun et al., 2006). The
objective of the repair mechanism is to repair the solutions that
are infeasible regarding given constraint (minimum up and down
time constraints, Eq. (11), and system spinning reserves con-
straints, Eq. (12)).

The repair procedure for the up and down time constraints is
applied if a unit in a given solution violates the up or down time
constraints. The commitment state of the unit is evaluated starting
from the begging of the scheduling period. If at hour “t” the unit
violates the minimum up time constraint the unit state is updated
committing the unit in the following hours until the constraint is
satisfied. If the minimum down time constraint is violated at hour
“t” the unit state is updated committing the unit in the off hours
between two committed states. Similar procedure is used for the
system spinning reserve constraints with that difference that the
evaluation is performed per hour instead per unit. If in a given
hour “t” the constraint is violated, which means not enough
spinning reserves are provided, the next most efficient decom-
mitted unit in the system is committed. The commitment of the
next most efficient unit continues until the constraint is satisfied.

These procedures are not used only after the initial population
is generated, but also after crossover and mutation operators are
applied. The rest of the constraints are dealt with when the
generation dispatch is solved for the obtained feasible solutions
as presented in following subsections.
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5.1.4. Fitness function
The fitness function consolidates all objectives as well as the

penalty term (Gjorgiev et al., 2013) as follows:

f ¼wFnT þ 1�wð ÞFnUþδd ∑
NC

m ¼ 1
VIOLm ð22Þ

where f stands for objective function, w is the weighting factor,
FnT and FnU are the normalized values of the objectives functions FT
and FU respectively, δd is the penalty parameter, ∑NC

m ¼ 1VIOLm
denotes the penalty term, VIOLm is the constraint violation and
NC is the number of constraints involved. The constraints dealt
with within this phase are the power balance constraints, Eq. (5),
and operating ramp rate constraints, Eqs. (7) and (8).

As seen from Eq. (22) the weighted sum method is applied to
deal with the multi-objective optimization problem within this
paper (Gjorgiev et al., 2013). The weighting factor, w, from Eq. (22)
has values selected in the range between 0 and 1.

Similar application of the weighted sum method for solving the
combined economic–environmental UC problem is presented in
Chandrasekaran et al. (2012). The weighted sum method also
extends its application for solving problems such as the profit
based unit commitment (Ahmadi et al., 2012).

5.1.5. Selection
The main idea behind the selection procedure is identification

of solutions, designated as parents which are fit to reproduce. In
turn, offspring population will be gained out of this reproduction.
The tournament selection approach (Goldberg and Deb, 1991) is
applied herein. This selection technique suggests random selection
of two or more solutions at a time and their comparison based on
their fitness values. The solution with best fitness wins the
tournament, i.e. is being designated as a parent and placed in
the mating pool. In such a way, the selection is being reapplied
until the mating pool is filled. Tournament size of two is used for
all the analysis within this paper.

5.1.6. Crossover
The very act of reproducing, i.e. combining two or more

solutions selected to be parents implying creation of two or more
offspring, is being performed by the crossover operator. The
crossover used in this paper has two segments, one for the unit
commitment states and one for the generator power outputs. The
procedure for the first segment is as follow:

select multiple points at each row from the parent
chromosomes

if Si,t (chromosome 1)¼0 and Si,t (chromosome 2)¼0
perform no operation

else
swap variables (Si;t ; PGi;t

)
end

This procedure is applied on each pair of parent chromosomes
selected for crossover. The first segment does not introduce
sufficiently valuable information for the generation dispatch
problem since is only swapping the information between the
selected chromosomes. Therefore, the second segment is applied.
Randomly chosen variable from the first chromosome is selected
and swapped with the variable with same position (column, row)
in the second chromosome, applying the blend crossover (BLX-α)
(Eshelman and Schaffer, 1993). The pseudo-code of the applied
crossover operator is as follows:

select multiple points at each row from the parent
chromosomes

if a Si,t (chromosome 1)¼1 and Si,t (chromosome 2)¼1
swap variables performing the BLX-α

end

The procedure above applied on each pair of parent chromo-
somes selected for crossover.

5.1.7. Mutation
The mutation operator is applied so the diversity of the popula-

tion will be sustained as an important factor which leads the search
towards global optima. The mutation operator also has two seg-
ments, one for the unit commitment states and one for the generator
power outputs. The procedure for the first segment is as follow:

choose a variable, Si,t, at random
if Si,t belongs to a base load unit

do not perform any operation
else if Si,t¼1 (committed)

set Si,t¼0 (decommitment) and PGi;t
¼ 0

else
set Si,t¼1 (committmend) and generated PGi;t

at random

in the interval Pmin
Gi

rPGi;t
rPmax

Gi

end

In the next stage the second segment is applied. The non-
uniform mutation procedure (Michalewicz, 1996) is implemented
with a static mutation rate. Each chromosome is separately
processed. The unit commitment states are also taken in to
consideration as follows:

randomly select variable for mutation, Si,t
if Si,t¼1

perform non-uniform mutation ðPGi;t
¼ Pnew

Gi;t
Þ

end

5.1.8. Replacement
An elitist type of replacement technique is being applied in this

study (Gjorgiev and Čepin, 2013). The technique is based on a
comparison among the parent and their offspring chromosomes.
Each pair of parent chromosomes and their corresponding off-
spring chromosomes are placed in subgroups, each of which
comprises four chromosomes. Namely, parent pairs are compared
to the corresponding offspring chromosomes, in a way that only
two survive. These surviving chromosomes from each subgroup
define the new generation, i.e. the GA enters the next iteration of
its cycle.

5.2. Algorithm application

As mentioned before, the UC problem is separately solved as
single objective and as a multi-objective. When solved as a single
objective problem, both the total cost, FT, and the unavailability of
generation capacities, FU, are minimized separately. When solved
as a multi-objective optimization problem, both objective func-
tions are simultaneously minimized. Therefore, different algorithm
properties are selected and also different methodologies for the
generation of the initial population are applied.

When the UC problem is solved as single objective two
concepts for creation of the initial population are used:

1. Total cost, FT, as single objective: The population is generated as
explained in Sections 5.1.1 and 5.1.2. In this case the used
priority list is based on the fuel cost.
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2. Unavailability of generation capacities, FU, as single objective: The
conventional priority list, based on fuel cost, is not used.
Instead the priority list is based on the generation capacities
unavailability. This priority list is produced such that all base
load and intermediate load units are set to be continuously
committed while the peak load units are committed or decom-
mitted such that the load demands and spinning reserves are
satisfied at each time interval. This solution is further used for
creation of the initial population using the same analogy as
described in Section 5.1.2.

When the UC problem is solved as multi-objective optimization
problem the initial population is formed by solutions created using
both concepts described above. The portion of each type of
solutions is proportional on the value of the weighted factor, w,
defined within Eq. (22). For example if w¼1 the unavailability part
of the equation is discarded. The multi-objective optimization
problem is reduced to a single objective optimization problem
with cost minimization as solo objective. In this case the initial
solutions are created using the first concept from above. In case of
w¼1 the cost part of the equation is discarded. The multi-
objective optimization problem is reduced to a single objective
optimization problem with unavailability minimization as solo
objective. In this case the initial solutions are created using the
second concept from above. In case of w¼0.5 (equal priority given
to both objectives) the initial population is composed from equal
portions of solutions created using both concepts from above.

The algorithm capability to deal with the UC problem is
presented in Appendix A.

6. Analyses and results

The algorithm used in this study has been coded in MATLAB 7.7
environment and implemented on Intel(R) Core(TM) i5 CPU. The
parameters of the applied GAs are set by applying the trial and error
approach. Each of the GAs used for each of the above defined sub-
problems was run several times with different set of parameters such
as the number of generations, population size, crossover rate and
mutation rate. The algorithms were also tested on different optimiza-
tion problems. The sets of parameters giving the most promising
results were selected.

The 10-unit thermal power system considered in the analyses
is adopted from Kazarlis et al. (1996) while the ramp rate limits are
adopted from Yamashita et al. (2010). This is a common bench-
mark power system commonly used in the scientific literature.
The default unit data does not consider the valve load effects and
prohibited operating zones constraint, thus they are not included
in the calculations. Other system component and phenomena such
as the transmission network constraints, power losses and load
forecast uncertainties are not considered in the study as well.
Table 1 shows the relevant failure rates, repair time and the
calculated unavailability of each generating unit.

The failure rates and the repair times for the generating units
are extrapolated from the data given in Billinton and Allan (1996),
where the outage rate is presented as a function of the unit size.
The unit unavailability, Uuni , is calculate using Eq. (14). System lead
time of 4 h is selected as performed in Khan and Billinton (1993)
and Simopoulos et al. (2006), where the effect of the lead time on
the LOLP was investigated.

Two analyses scenarios are performed for the test power
system. In the first scenario a low margin for the spinning reserves
of 10% from the load demands at each hour is selected, i.e. the
system reserve requirements constraint given with Eq. (12) are
considered. In the second scenario no margin for the spinning
reserves is selected, i.e. the planning of the reserves is not taken in
to consideration.

6.1. Scenario 1

For scenario 1 the UC problem is solved as single objective, i.e.
the total cost and unavailability of generation capacities are
minimized independently. The obtained UC schedules are pre-
sented in Tables 2 and 3 respectively. The UC problem is also
solved as a multi-objective optimization problem considering both
of the objectives simultaneously. Table 4 represents the best
compromise solution (BCS). This solution is obtained when equal
priority is assigned to both of the objective functions, i.e. the
weighting factor, w, is selected to be 0.5.

By comparing the UC schedules from Tables 2 and 3 it is
apparent that the main difference is the scheduling of the inter-
mediate load units. In the first case they are scheduled only when
needed which results with improved economy, while as in the

Table 2
UC scheduling for total cost minimization.

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Unit 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Unit 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Unit 3 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
Unit 4 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
Unit 5 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
Unit 6 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0
Unit 7 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0
Unit 8 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0
Unit 9 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
Unit 10 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Table 1
Relevant probability data for the test power system.

P (MW) 455 455 130 130 162 80 85 55 55 55

λ (f/yr) 13.5 13.5 6.17 6.17 6.11 4.37 4.88 3.41 3.41 3.41
RT (h) 80 80 55 55 55 50 50 40 40 40
Uuni (dimensionless) 0.00599 0.00599 0.00271 0.00271 0.00269 0.00192 0.00214 0.00148 0.00148 0.00148
FOR (dimensionless) 0.10976 0.10976 0.03729 0.03729 0.03694 0.02434 0.02710 0.01533 0.01533 0.01533
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second case they are scheduled during the entire scheduling
period which results with improved generating capacities availability.
A compromise between both objectives, cost and unavailability, is

achieved by appointing a BCS solution given in Table 4. This is
inevitably related with the scheduling of the spinning reserves, Rt, as
shown with Fig. 2.

Table 3
UC schedule for the generation capacities unavailability minimization.

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Unit 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Unit 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Unit 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Unit 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Unit 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Unit 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Unit 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Unit 8 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0
Unit 9 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
Unit 10 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Table 4
UC schedule for the BCS.

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Unit 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Unit 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Unit 3 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
Unit 4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
Unit 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Unit 6 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
Unit 7 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0
Unit 8 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0
Unit 9 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
Unit 10 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 2. Cost vs. unavailability minimization, scenario 1: Reserve schedule.

Fig. 3. Cost vs. unavailability minimization, scenario 1: Cumulative probability at
each hour.

Fig. 4. Cost vs. unavailability minimization, scenario 1: Operating cost at each hour.

Fig. 5. Cost vs. unavailability minimization, scenario 2: Reserve schedule.
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Fig. 2 shows the available spinning reserves at each consecutive
hour in the range of 0–24 h for all three cases: cost minimization
solely, unavailability minimization solely and simultaneous mini-
mization of both unavailability and cost, i.e. multi-objective
optimization problem with a BCS as a representative solution.
It is obvious that higher reserves correspond to higher cost and
lower unavailability.

Additionally, a comparison is made for the obtained cumulative
probabilities, cpt, and operational cost, Ft, for all three solutions
(Figs. 3 and 4).

6.2. Scenario 2

The same procedure from above is followed for this scenario
with a single difference that the reserve requirements constraint
given with Eq. (12) is not considered. Figs. 5–7 show the reserve
schedule, cumulative probability at each hour and operating cost
at each hour respectively.

6.3. Scenario 1 vs. Scenario 2

Fig. 8 illustrates the obtained Pareto fronts for both scenarios
when the UC problem is solved as a multi-objective optimization
problem, while Table 5 summarizes all of the results from both
scenarios. For comparative purposes the spinning reserves are
estimated for each of the obtained optimal UC schedules in both
scenarios and the spinning reserve deterministic index is calcu-
lated according to Eq. (17). The result is a Pareto front for each of
the scenarios as shown in Fig. 9.

Fig. 8 shows that there are very small differences in the
unavailability levels between scenario 1 and scenario 2. However
there is some substantial difference in the cost mainly for the
solutions where the cost objective is prioritized. A detailed
discussion for the meaning of the results is given in the following
section.

Fig. 6. Cost vs. unavailability minimization, scenario 2: Cumulative probability at
each hour.

Fig. 7. Cost vs. unavailability minimization, scenario 2: Operating cost at each hour.

Fig. 8. Pareto fronts for scenario 1 and scenario 2; probabilistic evaluation.

Table 5
Summary of the results for 10-units test system.

Scenario 1 Scenario 2

min[FT] min[FU] min[FT ; FU ] BCS min[FT] min[FU] min[FT ; FU ] BCS

Cost ($) 564,405 592,544 574,724 552,815 587,662 568,249
LOLP (h/day) 0.2778 0.1001 0.1365 0.2781 0.1001 0.1365
Spinning reserves average (MW) 181.54 386.17 271.38 106.5 370.125 250.12
CPU (s) 4.09 17.48 361.44 3.94 17.32 359.67

Fig. 9. Pareto fronts for scenario 1 and scenario 2; deterministic evaluation.
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Fig. 9 shows that the obtained results in scenarios 1 and 2 are
very similar. The main difference is that the solutions from
scenario 2 are stretching wider on the cost axis. This is expected,
since in scenario 2 no margin for the spinning reserves exists,
therefore lower costs can be obtained. The results shown in Fig. 9
are given only to illustrate the difference between the determi-
nistic and the probabilistic approach. It is clear that the obtained
results presented with Fig. 9 do not give any estimate about
unavailability, which is not the case with Fig. 8. Using the
proposed method not only a probabilistic evaluation but also
deterministic estimates can be made easily.

6.4. Discussion

Fig. 8 and Table 5 shows that generation capacities unavail-
ability, i.e. LOLP improvements can be made with proper schedul-
ing of the intermediate load units. The obtained trade-off between
the total operating cost and generation unavailability can be used
from the decision maker to derive the solution with the most
significance.

However, as it is shown in Fig. 8 and Table 5, even in the best
case the unavailability index is relatively high. The reason for this
is the composition of the power system, i.e. two 455 MW units are
installed and they produce most of the energy during one day.
However, these units have quite high failure rates which implicate
their relatively high unavailability. If failure of even one of the
units occurs, there will not be any reserves to replace it for the
most of the hours of the day even if all units are scheduled for
operation. The general conclusion is that this system has been
poorly composed during the planning phase.

Another important note is that there is almost no difference in
the LOLPs obtained in scenario 1 and scenario 2. Same as discussed
above, the failure of one of the most unreliable units which in the
same time are the units with the highest capacity means that no
operating reserves will be available to cover for the load demands
for the most of the hours during the scheduling time period.
Therefore, it is not of a great significance if a 10% reserve margin
exists in scenario 1 compared to scenario 2 where no predefined
margin is used.

A simple experiment has been conducted here. Each of the two
major units with 455 MW is replaced with two 227.5 MW units.
The unavailability value of 0.00377 is applied for both units, while
the cost characteristics of the units remain the same. This change
adapts the 10-units power system to a 12-units power system.
The proposed method for calculation of generating capacities
unavailability is applied on this system. The obtained results are
presented in Table 6.

By comparing the results presented in Tables 5 and 6 one can
conclude that the proposed change significantly reduces the
unavailability of the test power system. Another important note
is that in the case with the 12-units test system a significant
difference exists between the LOLPs obtained in scenario 1 and
scenario 2. The pre-defined 10% reserve margin has a significant
influence on the LOLP which was not the case for the 10-units test

system. This is due to the fact that the scheduled spinning reserves
for the 12-unit test system can cover for the loss of the largest
generating unit for most of the time intervals. A conclusion can be
derived that the design and operating phase of a power system are
inherently connected.

This is an example for the applicability of the developed
method not only for the short-term generation scheduling but
also for long term power system planning.

7. Conclusions

This study addresses the problem of unit commitment and its
consideration within the unavailability profile of a specific power
system. A new methodology for probabilistic assessment of gen-
erating capacities availability and its incorporation within the unit
commitment issue is proposed. The unit commitment is related to
the action of adequate planning of the reserve capacities. This
paper presents a probabilistic unavailability evaluation method as
function of the unit commitment schedule, which is dynamic in its
nature. The loss of load probability is considered as the relevant
unavailability measure and is evaluated by convolution of the
generating capacities and the load profile. In such way, an option
to account and delineate among the rapid-starting and slow-
starting units and, consequently, to implement the implications
on the total unavailability profile is accommodated by this
methodology. The unavailability of each individual unit is calcu-
lated using the two-state model. A scheduling period of 24 equi-
lasting time intervals of 1 h is considered.

A multi-objective optimization problem defined within a
selected case study power system is presented and solved. Two
objective functions, a generation cost function and unavailability
of generating capacity function, i.e. LOLP, are being considered.
An improved hybrid genetic algorithm technique is selected
as the optimization tool. Two scenarios are analysed. First one
with a low margin for the spinning reserves and a second
one with no margin at all are of interest. The thermal power
units in the system are separated in three categories: base load
units, intermediate load units (slow-starting) and peak load units
(rapid-starting).

The results show a detailed picture of the interdependence
between unavailability and cost as a function of the given
objective priority. Moreover, the results of the analyses show
that generation capacities unavailability improvements can be
made with proper scheduling of the intermediate load units.
Also, using this method not only a probabilistic evaluation but
also deterministic estimates can be made easily. Given the
presented test power system it is shown that choosing not to
consider the reserve constraint rather than considering a fixed
value for this constraint implicates with major economic con-
sequences rather than unavailability implications. This was not
the case after the proposed improvement of the test power
system was considered.

Table 6
Summary of the results for 12-units test system.

Scenario 1 Scenario 2

min[FT] min[FU] min[FT ; FU ] BCS min[FT] min[FU] min[FT ; FU ] BCS

Cost ($) 610,023 638,027 620,145 598,228 633,142 614,240
LOLP (h/day) 0.0515 0.0345 0.0379 0.1851 0.0345 0.0498
Spinning reserves average (MW) 181.54 386.17 271.38 106.5 370.125 250.12
CPU (s) 4.12 18.21 367.01 4.03 17.64 364.20
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The need for consideration of the generation capacities una-
vailability in to the unit commitment problem for short-term
scheduling purposes in order to obtain more detailed unavail-
ability models is supported by the obtained results. Consequently,
more detailed power system unavailability profile can be obtained
and analysed with the developed method.
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Appendix A. Algorithm validation

In order to verify the capability of used algorithm to solve the
UC problem the algorithm is applied on a 10, 20, 40, 60, 80 and 100
unit test system. The 20-units system is made duplicating the 10-

units system, the load demands are duplicated also. The same
procedure is applied for all of the other studied systems. The 10-
unit thermal power system considered in the analyses is adopted
from Kazarlis et al. (1996) while the ramp rate limits are adopted
from Yamashita et al. (2010). Most of the other studies with which
the comparison is made do not consider the ramp rate constraint.
The algorithm is run 10 times for each test system. The obtained
results are compared with the one available in the literature as
shown in Table A1.

According to the results given in Table A1 it can be concluded
that the proposed algorithm generates good and reliable solutions.
The results also show that there is no substantial difference
between the best and worst solutions obtained with the proposed
algorithm. This demonstrates the algorithm capability to find
reliable solutions. The algorithm also showed good calculation
times which for some of the performed calculations are presented
previously in the text. Table A2 depicts the output generation of
each commitment unit at each time obtained for the 10-units
system using the proposed algorithm.

Table A1
Cost ($) comparison between the proposed and other algorithms.

aUnits LR (Kazarlis
et al., 1996)

EP (Juste
et al., 1999)
average

ICGA (Damousis
et al., 2004)
average

AG (Cheng et al.,
2002)/

BCGA (Kazarlis
et al., 1996)

GA (Senjyu et al.,
2002)

NSGA-II (Yan-Fu
et al., 2013)

Proposed algorithm

Best Worst Best Worst Best Worst Best Worst

10 565,825 565,352 566,404 564,005 565,825 570,032 563,977 565,606 563,938 564,723 564,405 564,797
20 1,130,660 1,127,257 1,127,244 1,124,651 1,126,243 1,132,059 1,125,516 1,128,790 – – 1,126,290 1,127,715
40 2,238,503 2,252,612 2,254,123 2,249,072 2,251,911 2,259,706 2,249,715 2,256,824 – – 2,250,823 2,254,312
60 3,394,066 3,376,255 3,378,108 – 3,376,625 3,384,252 3,375,065 3,382,886 – – 3,376,056 3,381,846
80 4,526,022 4,505,536 4,498,943 – 4,504,933 4,510,129 4,505,614 4,527,847 – – 4,505,217 4,512,872
100 5,657,277 5,633,800 5,630,838 – 5,627,437 5,637,914 5,626,514 5,646,529 5,605,918 5,617,595 5,627,431 5,636,284

a LR – Lagrange relaxation; EP – Evolutionary programming; ICGA – integer-coded GA; AG – Annealing – Genetic algorithm; NSGAII – Non-dominated sorting GA-II;
BCGA – binary coded GA.

Table A2
Generator output schedule (MW), load demand (MW) and fuel costs ($) for the 10-units system.

Hour U 1 U 2 U 3 U 4 U 5 U 6 U 7 U 8 U9 U 10 Load Start-up cost Fuel cost Total cost

1 455 245 0 0 0 0 0 0 0 0 700 0 13,683 13,683
2 455 295 0 0 0 0 0 0 0 0 750 0 14,554 14,554
3 455 370 0 0 25 0 0 0 0 0 850 900 16,809 17,709
4 455 455 0 0 40 0 0 0 0 0 950 0 18,598 18,598
5 455 455 0 65 25 0 0 0 0 0 1000 560 20,060 20,620
6 455 455 35 130 25 0 0 0 0 0 1100 1100 22,442 23,542
7 455 455 85 130 25 0 0 0 0 0 1150 0 23,284 23,284
8 455 455 130 130 30 0 0 0 0 0 1200 0 24,150 24,150
9 455 455 130 130 85 20 25 0 0 0 1300 860 27,251 28,111
10 455 455 130 130 162 33 25 10 0 0 1400 60 30,058 30,118
11 455 455 130 130 162 73 25 10 10 0 1450 60 31,916 31,976
12 455 455 130 130 162 80 58 10 10 10 1500 60 33,945 34,005
13 455 455 130 130 162 33 25 10 0 0 1400 0 30,058 30,058
14 455 455 130 130 85 20 25 0 0 0 1300 0 27,251 27,251
15 455 455 100 130 60 0 0 0 0 0 1200 0 24,150 24,150
16 455 455 20 95 25 0 0 0 0 0 1050 0 21,598 21,598
17 455 455 20 45 25 0 0 0 0 0 1000 0 20,758 20,758
18 455 455 35 125 30 0 0 0 0 0 1100 0 22,442 22,442
19 455 455 130 130 30 0 0 0 0 0 1200 0 24,150 24,150
20 455 455 130 130 130 65 25 10 0 0 1400 490 30,058 30,548
21 455 455 130 130 85 20 25 0 0 0 1300 0 27,251 27,251
22 455 455 0 0 145 20 25 0 0 0 1100 0 22,736 22,736
23 455 400 0 0 45 0 0 0 0 0 900 0 17,685 17,685
24 455 345 0 0 0 0 0 0 0 0 800 0 15,427 15,427

Sum of costs 4090 563,015 564,405
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Appendix B. Capacity outage probability table example

Table B1 shows an example of capacity outage probability table
calculated for the froth hour of the UC schedule for the minimum
cost solution (Tables 3 and A2). As Table 3 shows only three units
are committed in the fourth hour, two base load units and one
intermediate unit. However in the construction of the probability
table the three peak load units are considered as well as the
method proposed in this paper suggests. Therefore the number of
units considered in the calculation of the capacity outage prob-
ability table is six. The number of possible capacity states is 24 as
shown in Table B1.

The load demand in the fourth hour is 950 MW. The capacity
state 7, with capacity in service of 965 MW, is assigned for this
load demand. For capacity state 7 a cumulative probability of
2.0792E�1 is selected. The same procedure is applied for each
hour (frame) from the 24-h scheduling period.
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