

Accepted Manuscript

Modelling Trust Dynamics in the Internet of Things

Carmen Fernandez-Gago, Francisco Moyano, Javier Lopez

PII: S0020-0255(17)30536-4
DOI: 10.1016/j.ins.2017.02.039
Reference: INS 12762

To appear in: Information Sciences

Received date: 16 November 2015
Revised date: 1 December 2016
Accepted date: 15 February 2017

Please cite this article as: Carmen Fernandez-Gago, Francisco Moyano, Javier Lopez, Modelling Trust
Dynamics in the Internet of Things, Information Sciences (2017), doi: 10.1016/j.ins.2017.02.039

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.ins.2017.02.039
http://dx.doi.org/10.1016/j.ins.2017.02.039

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Modelling Trust Dynamics in the Internet of Things

Carmen Fernandez-Gagoa, Francisco Moyanoa, Javier Lopeza

aNetwork, Information and Computer Security Lab
University of Malaga, 29071 Malaga, Spain

Abstract

The Internet of Things (IoT) is a paradigm based on the interconnection of
everyday objects. It is expected that the ‘things’ involved in the IoT paradigm
will have to interact with each other, often in uncertain conditions. It is therefore
of paramount importance for the success of IoT that there are mechanisms in
place that help overcome the lack of certainty. Trust can help achieve this goal.
In this paper, we introduce a framework that assists developers in including
trust in IoT scenarios. This framework takes into account trust, privacy and
identity requirements as well as other functional requirements derived from IoT
scenarios to provide the different services that allow the inclusion of trust in the
IoT.

Keywords: Trust, Internet of Things, Dynamic framework

1. Introduction

The Internet of Things (IoT) is a paradigm based on the interconnection
of everyday objects. According to the Gartner report for 2013 [3], 26 billion
objects are expected to be connected in the IoT by 2020. From an economic
perspective, the same report also highlights that IoT is expected to generate $1.9
trillion from the production of IoT products and service suppliers, which will
translate into economic growth and employment. At the same time the amount
of data managed in the IoT makes it necessary to look at the data-centric
perspective [24] and consider the privacy implications that this might raise.
The advantages brought by IoT could be seriously threatened if the reception
from society is negative. This could be a possibility if citizens, companies and
administrations feel that they cannot trust the IoT. Users are becoming more
aware of the importance of protecting their private information [2, 14], and
companies are increasingly realising that an incorrect security strategy can lead
to important economic and reputation losses, and eventually, to bankruptcy1.

Email addresses: mcgago@lcc.uma.es (Carmen Fernandez-Gago), moyano@lcc.uma.es
(Francisco Moyano), jlm@lcc.uma.es (Javier Lopez)

1http://www.pcworld.com/article/2046300/hackers-put-a-bulls-eye-on-small-business.
html

Preprint submitted to Elsevier February 16, 2017

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Gartner’s report for 2014 stresses that companies have realised this and, as a
result, in 2014, increased their investments in security by around 8% [1]. But
even if IoT systems are actually secure, society may be reluctant to use them if
trust concerns are not appropriately addressed.

It is a fact that things will have to interact to generate business value. Inter-
actions will often have to happen in uncertain conditions. Having mechanisms
in place that help the ‘things’ involved in IoT scenarios overcome the lack of
certainty becomes of paramount importance. Traditional security mechanisms
are not enough; however trust management systems can help in these cases.
They provide a greater flexibility than traditional security mechanisms, easing
the decision-making process. In the end, engineering these trust concerns in IoT
services and systems must be a primary goal to ensure the successful adoption of
the IoT paradigm. There are several related challenges that must be overcome.
First, from a technical point of view, the IoT itself brings about new chal-
lenges concerning security and trust, given that new interaction models, such
as Machine to Machine (M2M), are gaining traction. Second, the nature of IoT
scenarios make them higly dynamic and heterogeneous as things are constantly
leaving and entering the IoT environments. Thus, the systems designed for IoT
environments should reflect these challenges and should take into account the
following:

• Interoperability. Devices with different capabilities from different man-
ufacturers and, probably adhering to different standards, must be able
to communicate. Moreover, the different trust management systems that
may co-exist in IoT environments have to be interoperable and able to
exchange information from other trust systems.

• Dynamicity. The dynamicity of IoT systems, where new devices and ser-
vices may enter and leave the system at non-predictable intervals, implies
that trust management systems must also evolve with the systems.

• Fragmented research. The previous issues are being tackled by their re-
search communities in isolation. This is also the case in other important
research areas that must support trust in IoT systems, such as identity
management and privacy. A holistic approach is needed.

To summarise, the complexity of IoT technologies and the fragmentation in
IoT research are two stumbling blocks that prevent developers from gaining the
adequate know-how to design and implement full-fledged IoT systems that can
be trusted. Consequently, we can expect that the systems built will suffer and
that end-users will not be satisfied. We advocate that better tools can build
better products. We introduce a framework that comprises a set of tools and
services that designers and developers can use to integrate trust concerns into
IoT systems. The framework targets designers and developers, but its benefits
will be reflected in the end-users of IoT systems, who will feel more confident
about its adoption as they will eventually have a better quality experience.

The paper is structured as follows. Section 2 reviews existing work on Trust
Management for the IoT. Section 3 delves into the problem of trust and the IoT,

2

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

and Section 4 describes our proposal of an architecture for including trust in
IoT systems. Section 5 demonstrates how the framework can be applied in an
IoT scenario. Finally, Section 6 concludes the paper and outlines future work.

2. Related Work

The concept of trust in computer cience is taken from the concept in soci-
ological, psychological and economical environments. The definition of trust is
not unique. It may vary depending on the context where, and what purpose it
is going to be used. Despite being seen as of paramount importance when con-
sidering systems security, a standard definition of trust has yet to be provided.
However, it is widely accepted that trust might assist decision-making processes
such as those involved in access control schemes.

Trust management systems first emerged in the literature as a way of solv-
ing access control problems and unifying authentication and authorisation in
distributed systems [8]. The origins of computational trust date back to the
nineties, when the work in [15] analysed social and psychological factors that
have an influence on trust and replicated this concept in a computational setting.
Since then, many different trust management systems have been developed for
different applications. A trust model comprises the set of rules and languages
needed to forge trust among entities in an automatic or semi-automatic way.

The heterogeneity in the number of trust management systems often leads to
confusion as one might easily lose the most relevant concepts that underpin these
trust models. By trust concept or trust-related concept, we refer to any notion
that has a high relevance according to how frequently the notion arises in existing
trust models. By analysing these trust concepts, the authors in [17] designed a
conceptual model for trust that serves as the basis for a development framework
that supports the accommodation of heterogeneous trust and reputation models
[19]. In this approach, the authors distinguished two types of trust models:

• Decision models. Trust management has its origins in these models [8].
They aim to make access control decisions more flexible, simplifying the
two-step authentication and authorisation process into a one-step trust
decision. Policy models and negotiation models fall into this category.
They build on the notions of policies and credentials, restricting the access
to resources by means of policies that specify which credentials are required
to access them.

• Evaluation models. These models are often referred to as computational
trust, which has its origin in the work in [15]. Their intent is to evaluate
the reliability (or other similar attribute) of an entity by measuring cer-
tain factors that have an influence on trust. Two sub-types of models in
this category are propagation models, which disseminate trust informa-
tion along trust chains, and reputation models, in which entities use the
opinions of others about a given entity in order to evaluate their trust in
the latter.

3

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

There is very little effort being made to design trust management systems
for the IoT. A specific IoT environment where the ‘things’ are only wireless
sensors is considerd in [9]. The trust management solution in this case only
solves the problem of packet forwarding. This approach therefore does not deal
with the heterogeneity that the IoT paradigm targets. The authors in [6] de-
signed a scalable trust management protocol for IoT that takes into account
social relationships and uses properties such as honesty, cooperativeness and
community interest in order to evaluate trust. The protocol is distributed and
the nodes update trust only for the nodes they are interested in or interact with.
The updates are done through direct observations or indirect recommendations.
Based on this model, the same authors proposed a dynamic trust management
protocol for the IoT to deal with misbehaving nodes or behaviour that may
change dynamically [5]. A different point of view on how the things interact
in the IoT paradigm is presented in [4]. In this paper the authors considered
that the objects in an IoT scenario conform a social network where they estab-
lish social trust relationships. They introduced an architecture for the Social
Internet of Things (SIoT). Trust is not explicitly considered but they propose a
method for determining trustworthy nodes in this socialised environment. The
work in [25] proposed a centralised trust management system for the IoT that
aims at managing cooperation among nodes with different resource capabilities.
The model assigned trust values to cooperating nodes according to different
contexts. None of these approaches consider the inclusion of trust in IoT en-
vironments in a dynamic way by considering it in the early stages of designing
IoT services as we propose in this paper. In order to deal with dynamicity in
the IoT, we introduce the concept of trust@run.time (see Section 3). There
is a growing interest in considering notions of trust in self-adaptive systems
in order to leverage reconfiguration decisions, especially in the areas of multi-
agent [13, 26], component-based [12, 27] and service-oriented systems [11, 23].
These approaches advocate the use of trust and reputation to evolve highly dy-
namic and security-sensitive systems, which justifies its exploration in broader
use cases such as those present in the IoT.

3. Challenges for Integrating Trust in the Internet of Things

‘Things’ in IoT environments are expected to interact with each other. In
most cases the interactions will have to happen even if there is not enough
information about the things to establish them. The information available about
a thing in an application might not only come from its behaviour from others’
interactions with it but also from the information that may be provided due
to all the ‘things’ surrounding it. Our assumption is that things are not just
physical entities but rahter the whole set of ‘things’ that interact with them;
this is what we call the context. Figure 1 illustrates a traditional IoT scenario
where the context of the person in the figure (a thing as well according to our
assumption) is depicted by the objects to which the arrows are pointing.

There are two main challenges that we need to address if we wish to provide a
holistic solution to trust management in the IoT: interoperability and dynamici-

4

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 1: A Context for a User

ty/evolution. Interoperability is a problem that is derived directly from the fact
of dealing with the heterogeneity of the IoT. Different things will have their own
trust management systems that will have to exchange information with others,
and thus different trust management systems that may coexist. The proposed
framework will enable trust models using different languages or different ways
to determine trust to derive common trust information for all.

In terms of system evolution, there exists a bidirectional relationship be-
tween IoT systems and their trust management systems. On the one hand,
given that IoT systems and their contexts are dynamic, the underlying trust
management systems must change to meet the most recent trust concerns. For
example, new sources of trust-related information may appear. On the other
hand, trust and reputation values can lead to changes in the IoT systems. If
the trust relationship between two ‘things’ falls below a certain threshold, or
the reputation of a ‘thing’ is too low, changes in the system may be required
to maintain a tolerable level of trust. The dynamicity of such scenarios and the
building of trust management systems that change at runtime have so far been
left out of the literature. We propose considering ‘trust@run.time’, which has
been developed from the concept of models@run.time [7]. This term refers to
maintaining an abstract model of the executing system in such a way that both
are always synchronised. This pushes the idea of reflection one step further as
we can reason about the running system in terms of the model. This idea has
become widely accepted among the self-adaptive community, as it proposes that
changes in the model are automatically reflected in the running system, encour-
aging a fast and fluid evolution. We advocate this as a natural step towards
supporting high dynamic IoT systems, because different trust and reputation
models may be required depending on the contexts of the systems over their

5

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

lifetime. The idea of trust@run.time was first proposed by [16], but there is a
growing interest in considering notions of trust in self-adaptive systems in order
to leverage reconfiguration decisions.

4. Including Trust in the IoT

The framework we propose aims to assist developers when adding trust or
reputation in IoT systems. Instead of having to implement each trust model
from scratch, our framework facilitates the work of the developers by providing
them with techniques and guidance for re-using common features of other trust
models and following certain steps to carry out the implementation.

Trust and reputation requirements are not the only ones affecting IoT sce-
narios. Privacy and identity management, as well as other non-functional re-
quirements, will be of paramount importance in building the framework. If
we are interested in developing a framework where different trust management
systems for the IoT are present, we need to consider aspects of identity man-
agement. It is particulary crucial to properly define the identity of the ‘things’.
Their identity could be determined by their context (the set of things that are
connected with the user for a specific purpose at a given moment in time).
It may not be enough, or even advisable for things to identify themselves by
providing some kind of identification, for example, a login. The identity of a
thing may vary depending on the context where it is set. Privacy, is the other
important pillar when modelling trust. There is a direct relationship between
them. In some cases, it could be that the more information is disclosed, the
greater the accuracy of the trust-based decision. In turn, information disclosure
raises privacy concerns that need to be taken into account. However, it could
be that trust helps to preserve privacy as it can be used to prevent establishing
communication with an untrustworthy thing.

Let us look at the thing, a person in this case, in Figure 1. Her useful identity
for this scenario is the one that, at the time she is passing through a road, can
obtain from or offer information to the other things around her (lampost, card,
etc.). It is not relevant for this scenario whether she is a doctor or a lawyer, for
example. These two features might be relevant in other scenarios, for instance,
when she is dealing with the tax or national insurance offices in her country.

Keeping all these considerations in mind, we believe that both privacy and
identity are properties that should always be present when designing trust and
reputation management systems.

4.1. Architecture
In order to build the framework for the development of trust management

systems for IoT, the architecture that we propose is divided into four layers,
where each of them builds upon the outcomes of its lower layer. The layers are
the following:

• Scenarios Layer. This layer deals with the identification of IoT scenarios.
From these scenarios, the different contexts that may arise in each of them

6

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

are identified. Since dynamicity and evolution are captured by the changes
in the environment at each moment in time, our intention is to capture
these changes at the context level. In this layer we set up the basis for a
key concept that we introduce: the concept of context of a thing.

• Requirements Layer. The contexts identified in the preceding layer will
be the basis for deriving requirements related to identity management,
privacy and trust in this one. These requirements will be used in different
elements of the services layer. There could be several ways to represent
requirements. In [20] an extension of UML with trust requirements is used
to represent requirements that may arise when designing a trust model.
We will use an approach based on SI* where an extension of trust to
include the representation of trust requirements [22] is presented. We will
use this extension to include privacy and identity requirements. Exactly
how this extension is going to be done is beyond of the scope of this paper
for reasons of length.

• Services Layer. The services included here range from the definition or
storage of contexts, to the implementation of the trust models, how to
consider interoperability or how dynamicity and evolution is dealt with.
Given that trust models must evolve alongside the system, trust require-
ments influence dynamicity. The dynamicity and evolution service will
allow developers to access and modify the trust models.

• Trust Framework Layer. This layer is the realisation and ultimate goal
of the framework. It includes several services that are packaged into a
workflow-oriented development framework that is ultimately delivered to
designers and developers through APIs (Application Programming Inter-
faces). The framework consists of an API for developers with some base
components that can be extended, some methods that can be overridden,
and configuration files.

Figure 2 shows the proposed architecture, built in a bottom-up approach
manner.

4.2. Trust Framework and Services
In this section, we concentrate on the core layer of the framework, which

is the services layer that will result in the proposed framework. The scenarios
and requirements layers are used as the inputs for the service layer. They are
determined by the different use cases and the requirements identified for them.

4.2.1. Context Definition
The dynamicity of a trust model could be captured if we are able to deter-

mine the factors that influence trust in a given moment in time for a specific
purpose. We advocate that trust models that are going to be defined for a given
‘thing’ do not depend only on its behaviour but also on what we call the Con-
text or things around it. Contexts refer to a specific moment in time. Thus, we

7

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
Figure 2: Architecture of the Trust Framework for IoT Environments

define the context of a thing as the set of things that are connected to it (includ-
ing the thing we are defining the context for) in a given moment in time and
that provide information for a specific purpose. These purposes influence their
behaviour and their relationship with other things. They can be, for instance,
sensing temperature, measuring traffic, and so forth.

Due to the heterogeneity of the IoT scenarios, there might be a huge number
of contexts even for a single use case. The identification of the different contexts
will give us information about the requirements posed in the IoT, in particular,
those related to identity, privacy or trust.

The Context Definition service will rely on the set of things (T) of a given
scenario. For a specific purpose, p, and a given thing (Ti), the service will
provide a subset of T at a specific moment in time, ti. In addition, the mere
fact of considering the evolution of the scenario over time may influence the
existence of contexts. The purpose determines the subset of things that are
connected to Ti and have to be considered. Thus, for instance, if the purpose is
to have information about the state of the traffic, it is irrelevant to consider the

8

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

things that are controlling domestic electricity consumption. The service will
also be provided with a repository of the contexts that can be used to define
new contexts by re-using existing ones. This will make defining trust models
easier as the actors (trustor and trustee) do not always have to be defined as
new and they can be re-used from other contexts.

4.2.2. Interoperability among Trust Models
One of the main features of IoT environments is the variety of things that

are interconected. This means that different trust models might have to interact
even if they are of different types. Thus, it would be desirable for them to be able
to interpret and understand each others languages and their ways of deriving
trust. Achieving interoperability can be done by the establishment of mappings
between the models, which are usually mappings between different mathematical
functions. In the case that the models interacting are both evaluation models
(those that compute trust by using a trust engine that derives a concrete value,
such as in the case of reputation models), they should use the same scales as the
others they have to interact with, the same aspects to measure or resulting trust
values. Thus, the mapping to be defined in these cases will be a mapping that
allows both models to use the same scales and interpret the results in the same
way. Mappings between evaluation and decision (policy-based) trust models are
a more complicated issue that will have to be done as well. Since these two types
of models work in different domains, the problem can be tackled by establishing
common semantics and from this point on, define mappings between the different
trust values of each model, whatever the format. As an example of very naive
trust models we describe the following situation. Let us imagine an evaluation
model where trust outputs are 0, 1, 1.5 and 2. Let us also imagine a very simple
decision model where the outputs provided are trust is established and trust is
not established. A very straighforward way of mapping these models would be
to say that 0 and 1 could mean trust is established and 1.5 and 2 could mean
trust is not established. The interoperability service should therefore allow the
precise definition of these mappings. The definition of the mappings is not an
easy issue and cannot be generalised as it will depend on the different scenarios,
which have different requirements and trust models.

4.2.3. Dynamicity and Evolution Service
IoT scenarios are inherently dynamic, leading to changes in the environment

and the contexts that live within them. Trust management systems must adapt
themselves at runtime as a response to these changes. In order to tackle dynam-
icity, it is necessary to represent the current state of the system and its trust
relationships at runtime. This service allows the system to be changed in ac-
cordance with changes in the trust relationships or reputation values. One way
to tackle the problem of dynamicity is the concept of trust@run.time (Section
3), where there is a representation (a model) of the trust management system,
which is synchronized with the actual running systems. This allows us to rea-
son about the system and perform high-level changes that are automatically
translated into changes of the running system.

9

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The functionalities offered by the service can be divided into two large ar-
eas: trust@run.time and reconfiguration policies specification. The former is a
paradigm introduced by Moyano et al. [16], which is a natural evolution over
the models@run.time [7]. In essence, we count on a reflection layer that repre-
sents the state of the system and the trust models at runtime with models. Any
change to these models entails an adaptation of the system to comply with the
new model.

4.2.4. Implementation Service
The dynamic framework that we are proposing should also include guidelines

for developers to implement the trust models. We can use the implementation
framework presented in [16, 18]. This framework consists of several classes that
developers can customise via inheritance and by overriding or implementing
some of their methods. These classes use the Kevoree framework 2 [10] classes
as the fundamental building blocks. Developers can build trust and reputation
models right into the models@run.time platform provided by Kevoree, which
in turn enables trust and reputation information to be used for reconfiguration
decisions at runtime.

4.2.5. Trust Model Recommedation Service
This service is not strictly needed for the framework but it appears as a

result of the other services and it can be useful for finding the most appropriate
trust model for each case. In a heterogeneous environment like the IoT, it may
sometimes be highly useful to choose the most approporiate trust model to use
from among the different ones available for the same thing.

The next section provides further insight into the framework by demonstrat-
ing its application in a real scenario.

5. Application Scenario: Field Service Teams

The scenario that we have chosen to show how the framework presented in
Section 4 could be applied, considers a field service team (FST)3. There is a
system, which we call the Dispatching System (DS), which allocates tasks to
operators. This allocation process requires a decision, and this decision can be
supported by trust. The goal of the DS is to optimise allocations by assign-
ing tasks to those operators who can be more trusted the most to fulfill these
tasks. A task may involve several factors, including an estimate complexity, a
safety/risk level, an estimated duration and the preferred/required professional
profile. Likewise, operators have several factors that the DS may exploit, like
their professional profile, the total working hours up to that moment, the tasks
completed during the day, the proximity to the location of the task, the years

2http://kevoree.org
3http://community.dynamics.com/b/msftdynamicsblog/archive/2015/04/10/

the-intelligent-service-technician-empowering-field-service-with-smartglasses

10

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

of experience and a reputation score. Most of this information can be gathered
from the context of the operators, which consists of devices carried by them, such
as smart glasses, PDAs/tablets, and smart watches. This context may change
dynamically due to different events: an operator forgets the PDA/tablet, an
operator switches from the PDA to a smart watch, the wireless connection be-
tween the system and the tablet is cut off due to problems with the device, etc.
Also, the operator may need a car to get to the place where the task is to be
performed; therefore the car would be added to the context of the operator,
and could provide further information that the DS can exploit to make a trust
decision, such as the remaining petrol in the tank (e.g. the DS cannot trust
an operator to complete a task if the operator cannot reach it before the finish
time). The system must be able to dynamically adapt to these changes in the
contexts of the operator in order to maximise the information gathered and its
utility before making a trust decision.

5.1. Use Case
Imagine a gas company. A sensor has detected that a pipe is leaking gas and

informs the Problem Detection System (PDS) of the location of the problem and
its criticality, which is set to high. The PDS, querying an internal Experience
Database, estimates the duration of the task and the most suitable professional
profile, and forwards all this information to the DS.

The DS initiates probes with all the things connected to the corporate net-
work. Anne’s smartphone receives a probe and sends an ack back to the DS.
The DS requests further information, such as Anne’s location, the name of the
smartphone’s owner (i.e. Anne) and the total work hours in the day. The smart-
phone sends GPS and the contact information of Anne back to the DS, but given
that it ignores the total work hours, it looks up other devices in the same con-
text until it finds Anne’s PDA. The latter controls the total hours of work and
sends it to the smartphone, which in turn forwards it back to the DS. Given
that the location of the task is a 20 minute walk away, the DS sends the location
to Anne’s car, which is in her context too, and which calculates whether the car
has enough petrol to get from its current location to the task’s location. In this
case, there is enough, and therefore the car sends a positive answer back to the
DS. With all this information, the DS computes a trust value that turns out to
be the highest of all operators in the surrounding area. Therefore, the DS sends
Anne’s PDA the new task assignment, but there is a connection problem and
so the DS sends it again but this time to an app installed on the smartphone.
A new task assignment pops up on the app providing Anne with information
about the location of the task. Upon arriving at the location, Anne requests
further information about the structure and material of the pipe, and the Task
Visualisation System sends such information as a Heads-Up Display interface
to her smart glasses.

The same process is done with another user, Bob. Thus, the gas company
will have information from both users in order to be able to make a decision as
to who is the best one to go to and solve the problem of the leaking pipe.

11

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5.2. Application of the Framework
The framework that we have introduced in Section 4 can be used to im-

plement the scenario (i.e. the framework is to be used by software engineers,
and not by the gas company). As we have seen in Section 4, the framework is
composed of different layers. In the following paragraphs, we will detail how
this framework can be applied in the use case presented in Section 5.1, layer
by layer. We will exemplify it in the case of operator Anne but, as we have
mentioned, the process will be similar for each operator in the field.

5.2.1. Scenarios Layer
The bottom layer of the framework (as depicted in Figure 2) defines the

use cases and identifies the contexts involved in each of them. For the sake of
simplicity for the description, we are going to identify only two contexts for the
use case described above, and only in the case of user Anne.

At the initial moment in time, t0, let us assume that the context of user
Anne comprises a PDA, a smart watch and smart glasses. The purpose, p, we
consider is the assignment of the task ‘attending to a leaking pipe’ by the gas
company. Thus, the context of user Anne (T0) is defined as C0 ≡ Ct0

T0
(p) and

contains the elements PDA, smart watch and smart glasses. As inferred from
the definition of context in Section 4, the user is also part of her own context
as one more thing in the whole set.

These things in the context of Anne will help gather information about her
proximity to the task, the remaining hours that Anne can work on assigned
tasks, the number of tasks completed and the reputation of Anne, which is
updated by a reputation model (run by the gas company) once Anne has finished
previously assigned tasks.

Let us assume that in a different moment in time, Anne leaves her PDA
and uses a car. Then, her context changes, being in this case, C1 ≡ Ct1

T0
(p)

composed of a smart watch, smart glasses and a car (assumming car has wire-
less connection). The information that the context of Anne will be gathering
and providing will be pretty much the same, although adding in this instance,
information about the petrol in the tank needed to reach the place of the leak.

It is expected that this service will maintain records of all the contexts
in order to re-use them when a new one is received. The idea is to re-use
information about things and not have to define them all from the scratch.

5.2.2. Requirements Layer
This layer will be responsible for gathering the requirements derived from

each of the contexts for each use case. As shown in Figure 2, the requirements
are clustered in different categories. We are however interested in providing
more insight into trust requirements, given that the main purpose of the frame-
work is to include trust, although functional requirements should be taken into
account when designing the whole system. Privacy and identity requirements
are also of paramount importance as we consider they influence trust. Func-
tional requirements are beyond the scope of this paper.

12

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Identity requirements. One of the main features of our framework is that it
is based on dynamicity. This dynamicity is derived from the scenario and the
framework supports the implementation of such dynamic scenarios. Dynamicity
is reflected in the different identities that a thing could have, depending on the
context where it is. There should be an identity management system that
assigns an identity that it is context-dependent to each of the things. Thus,
for instance, the identity of the smart watch that Anne is wearing in Ct0

T0
(p)

should be different from the one she is wearing in context Ct1
T0
(p), as they may

be gathering different information because they are capturing different moments
in time.

Privacy Requirements. It is very important that the information that the com-
pany and Anne exchange, remains between them and is not displayed to another
employee. This is the main privacy requirement that we foresee for the scenario
that we are considering.

Trust Requirements. The ultimate goal of the gas company is to have all the
information available to make a decision as to the most suitable employee to
solve an incident, that is, who is most trusted by the company to accomplish
the task. To determine this, each of the things of each of the contexts provides
information to the gas company. This information is based on different factors
and it is processed by the gas company, using a trust engine for each of the
things. The trust engines are essential parts of the trust management systems of
the things. We consider that there is a trust relationship between each thing and
the company that it is handled by a trust management model for each of them.
These trust models help determine the reliability of the information passed
from the thing to the company. Therefore, another trust requirement is how the
relationship between the thing and the company is established. This relationship
should rely on different factors that the company establishes, for instance, if the
thing is measuring distance to the point of the task, the company should consider
how accurate this distance on other occasions was. Other examples include how
often the things had to be fixed in the past, the time of the last supervision,
whether the thing’s firmware or operating system have any security certification,
etc. All the trust relationships in the system are depicted in Figure 3. This figure
shows the scenario described in Section 5.1 with two contexts for Anne, at two
different moments in time. It also describes one context for Bob.

The company will also have a reputation system that evaluates the perfor-
mance of Anne with respect to the tasks she has been assigned to. Thus, there
must be a way to provide an a posteriori feedback about how Anne performed.
This feedback may be from her supervisors or from the sensors themselves once
they measure whether the pipe has been completely fixed or not. This reputa-
tion value will be another input for the trust engines for the decision-making
process. Thus, the final trust decision will be made by considering and combin-
ing the values obtained from the different aforementiones trust engines and the
reputation system.

13

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Gas	 Company	 	
(Dispatching	 System)	

Good

[0.5, 0.85]

Pretty
Good

Very Good

[0.8, 0.9]

8.25

High
Low

Anne Bob

Anne’s Context 1

Bob’s Context

(1, 0.8, 0.9]

Anne’s Context 2

Figure 3: Trust Relationships in the FST scenario

The Dispatching System establishes a trust relationship with each thing, which measures the
reliability of the information passed on by it. These trust relationships can use different
trust models, and thus different trust engines, which provide the output of trust values in
different formats, such as intervals or qualitative labels; hence the importance of providing
interoperability support. Likewise, the Dispatching System establishes trust relationships with
the operators with respect to a pending task.

5.2.3. Services Layer
This is the layer where the services that are offered to developers reside. Each

service has a very specific task and tackles the concerns discussed in Section 3.
We now explain further how these services will work.

Context definition. This service will implement the different contexts that are
present in each scenario. For the case we are considering, the two contexts we
have identified have several elements in common. Thus, the context definition
service will serve as a kind of a database for all the contexts and will re-use
information on their components, as in some cases (as occurs in our case with
C0 and C1), there are common elements.

As part of the context definition, potential devices and their capabilities
must be modelled, contexts must be given unique identifiers and strategies must
be provided to detect and react to transitions between contexts. As part of
the service, several primitives should be included, such as a function that can
determine all the things that are part of a given context, at a given moment
in time. The service should also track the different contexts that exist over the
lifetime of the system (up to a limited amount of backup memory).

In our case, developers should model a plethora of devices, including smart-
phones, smartglasses and the on-board circuits of the car. Developers should

14

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

also model the human things that are part of the contexts, such as Anne and
Bob (i.e. operators in the general sense). The service should allow developers
to express ownership relationships (e.g. Anne has a car), information sharing
relationships (e.g. Anne’s car is sharing information about Anne) and purpose
information (e.g. Anne’s car is sharing information about Anne in order to fulfill
goal fix the pipe). With all this information, contexts and changes in contexts
can be deduced automatically without the need for manual updates. Whenever
a new context is detected, a new unique identifier is generated for this new
context, and a parent-child relationship is created to represent the transition
between contexts.

Trust Models Implementation. The use case that we are analysing has different
trust or reputation models that need to be implemented. This service allows
the identification and implementation of all the different building blocks that
constitute a trust or reputation model, according to the methodology described
in [18, 21].

The service defines the trust entities and their trust relationships, which
in our case means Anne, Bob, the DS and every thing that enters the scene.
Likewise, the service defines which entities can rate which other entities. In this
case, there may be sensors and supervisors that can act as sources of reputation
about Alice and Bob (i.e. operators).

The service also supports the creation of trust and reputation engines. Thus,
developers can specify which factors (i.e. inputs) the engine accepts, how these
factors can be updated, and how they are combined to yield a trust or reputation
score.

As for our case study, we have seen that each thing can hold a trust relation-
ship with the dispatching system. Developers could implement different models
based on the capabilities of the things or the information available to them.
As an example, let us consider the trust relationship between the DS and the
corporate PDA of Anne. The first step for the developers should be to model
the dispatching system and the PDA as trust entities. Then, developers should
think about how the trust model computes the trust value of its trust relation-
ships. In our example, consider that the PDA is checked every week by the IT
team of the company. The IT team provides a report on potential problems or
vulnerabilities detected in the PDA. This report becomes an objective factor
that developers can use as input for the trust engine of the model. Therefore,
developers could implement a trust model where trust is computed by averaging
all the fields of the report. As part of the model, developers could also add a
trust threshold computation. Thus, the dispatching system could make trust
decisions depending on whether the trust value of the trust relationship with
the PDA is above or below the computed threshold.

Trust Models Recommendation. This service is built on top of the Trust Mod-
els Implementation service and provides developers with templates for already-
existing, well-known trust models, including the trust engines and the factors
used by those engines. Developers can modify this template or complete it with

15

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

further information, like the specific instances that will represent the trust and
reputation entities (e.g. Anne, Bob and supervisors).

In our example, we consider that developers wish to apply Marsh’s model [15]
for the trust values and to compute threshold values between the dispatching
service and Anne’s smartphone. Therefore, developers can choose the model
from a pull-down menu, and this choice generates all the configuration files,
data structures and classes (in Object-Oriented terms) required to implement
the model. In particular, the DS and Anne’s smartphone become trust entities,
and the trust engine accepts as inputs, the utility of the collaboration, the
importance of the collaboration and the general trust (trust based on the history
of interactions). The output is a real value resulting from multiplying these
factors. Developers should instantiate these factors, meaning that they should
relate these factors to scenario-specific sources of information. Likewise, the
template generates a function for the computation of the threshold, which takes
as inputs the perceived risk, the perceived competence, the importance of the
collaboration and the general trust.

Trust Models Interoperability. In accordance with the trust requirements above,
the gas company uses the different trust engines belonging to the different trust
models from the different things to process the information they provide. It is
likely that the outputs from these engines take different forms. For example,
Marsh’s model yields real values in the interval [0, 1], but other models may
yield trust values in different formats, including discrete numbers or qualitative
labels like bad or good.

The way the DS processes the trust values obtained from the contexts can be
done in different ways. Depending on the scenario, the DS could either obtain a
global trust value that it derives somehow from all the things in all the contexts,
or it might compute a trust value for each of the contexts. If the choice is to
have a global trust value for each context, the DS may need to generate a unique
value from different sources. Thus, for example, in the case of context 2 of Anne
in Figure 3, the trust outputs from the car are in the form of numeric values
whereas the trust outputs from the PDA are in terms of qualitative attributes
such as Good. In this case, if we wish to combine these two different outputs,
the trust models’ interoperability service should provide a way to do so, either
by mapping from qualitative values to numeric ones or vice-versa.

In summary, this service allows developers to define mapping policies to
translate the semantics of one model into the semantics of another. One way
to accomplish this would be to attach meta-data to the models, either as part
of annotations in code or as XML/JSON tags in configuration files. The meta-
data of a trust model includes the possible maximum and minimum values of
the model, whether a minimum value means distrust or simply a lack of in-
formation, or whether complete trust is ever achievable. Whenever there is a
new collaboration between the dispatching system and a thing, this metadata
is sent together with the rest of information, and the system can therefore store
this information and use it whenever it needs to translate from one model to
another.

16

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Dynamicity & Evolution. The specification of reconfiguration policies refers to
the specification of the conditions in which the system must be changed. For
example, developers can specify that if the trust value of the trust relationship
between the dispatching system and Anne’s smartphone falls below the thresh-
old specified by the trust model (e.g. Marsh’s model, as discussed earlier), the
communication interface should be cut off and the dispatching system should
look for other, more trusted things in Anne’s context from which to retrieve the
required information.

6. Conclusion

The rise of the IoT paradigm is bringing with it new challenges concerning
security and trust. In this paper, we have discussed the challenges inherent in
trust that have to be overcome for IoT scenarios and have introduced a frame-
work to be used by developers to include trust concerns in IoT systems. The
architecture of the framework comprises different layers, where the upper layers
depend on the bottom ones. The framework ensures that trust is included in all
the phases of the development of IoT systems following a proactive approach,
as opposed to an afterthought service, which has been the standard in tackling
trust until now. The key points of the framework are the considerations of the
triad comprising trust, identity and privacy requirements and the possibility of
taking into account dynamicity and evolution.

We have described a scenario and a use case that show an exemplification
of the IoT and how the framework is applied to it. It remains for the future to
work on an implementation of the framework, which will principally concern the
implementation of all the intermediate layers and services that are part of it.
We have provided some hints as to how the implementation can be approached
for each service. An initial step towards this is the inclusion of privacy and
identity requirements into existing requirements specification languages defined
for trust, such as those based on SI*.

Acknowledgements

This research has been partially supported by the Spanish Ministry of Econ-
omy and FEDER trhough the projects PRECISE (TIN2014-54427-JIN) and
PERSIST (TIN2013-41739-R), and the European Training Network NeCS (H2020-
MSCA-ITN-2015- 675320).

References

[1] Gartner newsroom, http://www.gartner.com/newsroom/id/2828722.

[2] Are Facebook Users more Privacy Aware Now? (2012).

[3] The Gartner report, http://www.gartner.com/imagesrv/pdf/Gartner_
2013_annual_report.pdf (2013).

17

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[4] L. Atzori, A. Iera, G. Morabito, M. Nitti, The social internet of things (siot)
– when social networks meet the internet of things: Concept, architecture
and network characterization, Computer Networks 56 (2012) 3594–3608.

[5] F. Bao, I.-R. Chen, Dynamic trust management for internet of things ap-
plications, in: International Workshop on Self-aware Internet of Things,
ACM, 2012, pp. 1–6.

[6] F. Bao, I.-R. Chen, Trust management for the internet of things and its
application to service composition, in: IEEE International Symposium on
World of Wireless, Mobile and Multimedia Networks (WoWMoM), IEEE,
2012, pp. 1–6.

[7] G. Blair, N. Bencomo, R. B. France, Models@ run.time, Computer 42 (10)
(2009) 22–27.

[8] M. Blaze, J. Feigenbaum, J. Lacy, Decentralized Trust Management, in:
Proceedings of the 1996 IEEE Symposium on Security and Privacy, IEEE
Computer Society Press, 1996, pp. 164–173.

[9] D. Chen, G. Chang, D. Sun, J. Li, J. Jia, X. Wang, Trm-iot: A trust man-
agement model based on fuzzy reputation for internet of things, Computer
Science and Information Systems 8 (4) (2011) 1207–1228.

[10] F. Fouquet, O. Barais, N. Plouzeau, J.-M. Jézéquel, B. Morin, F. Fleurey,
A Dynamic Component Model for Cyber Physical Systems, in: 15th In-
ternational ACM SIGSOFT Symposium on Component Based Software
Engineering, Bertinoro, Italy, 2012.

[11] H. Hanen, J. Bourcier, Dependability-Driven Runtime Management of Ser-
vice Oriented Architectures, in: PESOS - 4th International Workshop on
Principles of Engineering Service-Oriented Systems - 2012, Zurich, Switzer-
land, 2012.

[12] P. Herrmann, H. Krumm, Trust-adapted enforcement of security policies in
distributed component-structured applications, in: Sixth IEEE Symposium
on Computers and Communications, 2001, pp. 2–8.

[13] L. Klejnowski, Y. Bernard, J. Hähner, C. Müller-Schloer, An Architecture
for Trust-Adaptive Agents, in: 2010 Fourth IEEE International Conference
on Self-Adaptive and Self-Organizing Systems (SASO), IEEE, 2010, pp.
178–183.

[14] M. Li, X. Sun, H. Wang, Y. Zhang, J. Zhang, Privacy-aware access control
with trust management in web service, World Wide Web 14 (4) (2011)
407–430.

[15] S. Marsh, Formalising trust as a computational concept, Ph.D. thesis, Uni-
versity of Stirling (April 1994).

18

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[16] F. Moyano, Trust engineering framework for software services, Ph.D. thesis,
University of Malaga (2015).

[17] F. Moyano, C. Fernandez-Gago, J. Lopez, A conceptual framework for
trust models, in: S. Fischer-Hübner, S. Katsikas, G. Quirchmayr (eds.), 9th
International Conference on Trust, Privacy & Security in Digital Business
(TrustBus 2012), vol. 7449 of Lectures Notes in Computer Science, Springer
Verlag, Springer Verlag, Vienna, 2012, pp. 93–104.

[18] F. Moyano, C. Fernandez-Gago, J. Lopez, Building trust and reputation in:
A development framework for trust models implementation, in: A. Jøsang,
P. Samarati, M. Petrocchi (eds.), 8th International Workshop on Security
and Trust Management (STM 2012), vol. 7783 of LNCS, Springer, Springer,
Pisa, 2013, pp. 113–128.

[19] F. Moyano, C. Fernandez-Gago, J. Lopez, A framework for enabling trust
requirements in social cloud applications, Requirements Engineering 18
(2013) 321–341.

[20] F. Moyano, C. Fernandez-Gago, J. Lopez, Towards engineering trust-aware
future internet systems, in: X. Franch, P. Soffer (eds.), 3rd International
Workshop on Information Systems Security Engineering (WISSE 2013),
LNBIP, Springer-Verlag, Valencia, Spain, 2013, pp. 490–501.

[21] F. Moyano, C. Fernandez-Gago, J. Lopez, A model-driven approach for
engineering trust and reputation into software services, Journal of Network
and Computer Applications 69 (2016) 134–151.

[22] F. Paci, C. Fernandez-Gago, F. Moyano, Detecting insider threats: a trust-
aware framework, in: IEEE (ed.), 8th International Conference on Avail-
ability, Reliability and Security (ARES), 2013, pp. 121–130.

[23] H. Psaier, L. Juszczyk, F. Skopik, D. Schall, S. Dustdar, Runtime Behavior
Monitoring and Self-Adaptation in Service-Oriented Systems, 2013 IEEE
7th International Conference on Self-Adaptive and Self-Organizing Systems
(SASO) 0 (2013) 164–173.

[24] Y. Qin, Q. Z. Sheng, N. J. Falkner, S. Dustdar, H. Wang, A. V. Vasilakos,
When things matter: A survey on data-centric internet of things, Journal
of Network and Computer Applications 64 (2016) 137 – 153.

[25] Y. B. Saied, A. Olivereau, D. Zeghlache., Trust management system design
for the internet of things: A context-aware and multi-service approach,
Computers & Security 39 (2013) 351–365.

[26] Q. Vu, S. Hassas, F. Armetta, B. Gaudou, R. Canal, Combining trust
and self-organization for robust maintaining of information coherence in
disturbed mas, in: Fifth IEEE International Conference on Self-Adaptive
and Self-Organizing Systems (SASO), IEEE, 2011, pp. 178–187.

19

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[27] Z. Yan, C. Prehofer, Autonomic Trust Management for a Component-Based
Software System, Dependable and Secure Computing, IEEE Transactions
on 8 (6) (2011) 810–823.

20

