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Power grid is a complex system which closely links the power generation and power consumer through
transmission and distribution networks. With the development of smart grid, smart grid is more open to
external communication systems, it also has exposed some problems in the network attacks. A new false
data injection attack (called the unobservable attack) that can bypass the traditional BDD and inject ran-
dom errors into state estimation. We propose an improved extreme learning machine (ELM) for attack
detection. The artificial bee colony (ABC) incorporates the thought of differential evolution algorithm
(DE) to optimize ELM for improving detection precision. In this paper, Autoencoder is used to reduce
the dimensionality of the measurement data, which makes the low-dimensional data information basi-
cally and fully represent high-dimensional data. We verify the performance of the proposed method
on IEEE bus systems, and prove that the proposed method can effectively detect such unobservable
attack.

� 2017 Published by Elsevier Ltd.
1. Introduction

With the power grid changing to smart grid, it provides reliable,
inexpensive and sustained power services. Accurate state estima-
tion is of paramount importance to maintain normal operations
of smart power grid. But the unobservable false data injection
attack can bypass the bad data detection (BDD), make control cen-
ter do a series of wrong decisions, and result in the imbalanced
load distribution of power grid [1–3].

The generation capacity should closely follow the electricity
consumption because electrical energy cannot be stored in large
amount. The voltage mismatch and abnormal consumption will
cause the migration of power. For example, load fluctuations in
the power system will change the operating frequency and voltage
level of the power grid [4–8]. Therefore, the Supervisory Control
and Data Acquisition (SCADA) in the Energy Manage System
(EMS) must intensively monitor and control the power system to
ensure the operations of power system are safe and reliable.
Accurate state estimation makes the monitored systems running
in the best condition. Moreover, the constrained economic dispatch
(SCED) based on estimated states, which can reschedule power
output and reduce the total cost output of the system operation
[9].

Different from other communication networks, the measure-
ment data in smart grid is always passed to control center through
the way of information exchange, and the erroneous measure-
ments may interfere with the control center to make unreasonable
state estimation. It can be seen that malicious attacks against state
estimation cause a great threat to power grid. The different incen-
tives of attack can be summed up as follows: (1) Disturbing elec-
tricity market order and stealing electricity of end users, which
will bring social and economic impacts; (2) Disrupting electric sys-
tem, which will result in the imbalances of power dispatch and
control. Recent studies show that the attacker can inject the care-
fully synthetic false data into measurements, and bypass tradi-
tional detection to cause serious problems in power system. It
would lead to a wider load reduction and block power system from
entering safe operating status. Once the injected false data affects
the state estimation results, the intelligent control algorithm may
be misled and large scale regional power outages will be produced
ultimately.

False data injection attack (FDIA) is one of the most threatened
attack to smart grid, and it’s a Cyber-Physics fusion attack [10,11].
On the one hand, the attacker can use web hacking techniques to
invade the information and communication systems of smart grid.
On the other hand, the attacker can determine which data of
instruments should be tampered to achieve the purpose of destruc-
tion. Now, some methods are put forward to deal with FDIA, these
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methods can be divided into two categories: Detection based
methods, and Active protection based methods. These former
methods could discover the abnormal value by determining
whether the measurements meet the historical distribution of
the measured data [12–17], but if the attacker use measured data
conformed to previous historical data distribution instead of cur-
rent data, the detection method will be invalid. Active protection
based methods protect specific sensors to resist the false data
injection attacks in paper [18–21], but this method exists many
shortcomings. Firstly, only in selectively specific sensors with pro-
tection the measurements are credible, so this method will
increase the redundancy. Secondly, the protection methods may
not have been in a state of security if the attacker penetrate the
protection and modify the measurements, and the state estimation
may be at great risk.

This paper focuses on the detection method of unobservable
false data injection attack in smart grid. The detailed solutions
are listed as below:

Inspired by the literature [22–24], this paper analyzes the feasi-
bility of detecting the false data injection attacks using machine
learning algorithms, and applies the two-layer optimal-based
extreme learning machine (ELM) into unobservable false data
injection attack detection.

Power system contains multiple power plants, substations, dif-
ferent voltage levels and a large number of end users. There are a
lot of redundant measurements in power system. Using deep-
learning algorithm-Autoencoder to reduce the dimensionality of
the data (m-dimension to n-dimension, n � m), which leads to
lower computation complexities and makes the measurements to
be separable [25]. To verify the effectiveness of the two-layer
optimal-based algorithm for attack detection, we simulate a lot
of experiments for the IEEE-118 bus and IEEE-14 bus system.

The rest of this paper is organized as follows. Section 2 formu-
lates and shows the attack mechanism. Section 3 transforms false
data injection attack into classification problem, and analyzes the
dimension reduction method. The two-layer optimal-based attack
detection algorithm is proposed in Section 4. Section 5 gives the
numerical results. Conclusion and future work are discussed in
Section 6.

2. Attack model

2.1. Derivation of residual in DC state estimation

In state estimation, the measurements include the actual power
of the injection node and the actual power of the transmission line.
z 2 Rm�1 is the measurement includesmmeasure values. x 2 Rn�1is
the state vector includes n state values (generally m > n). In DC
state estimation, the phase angle of slack node can be set to 0, all
voltage amplitudes are assumed to be 1, parallel components and
branch impedance can be neglected. The phase angles of other
nodes constitute the state vector x. The linear measurement func-
tion for DC state estimation is shown as:

z ¼ Hxþ e ð1Þ
H is the m� n Jacobian matrix. e is the measurement noise, and it is
subject to Gaussian distribution. We convert the nonlinear relation-
ship between measured data to a local linear relationship, then the
measurement residual is described as:

r ¼ z� hðbxÞ ð2Þ
To get the state bx with minimum weighted sum of squared

residuals. The function can be established as:

min f ðxÞ ¼ ½z� hðxÞ�TR�1½z� hðxÞ� ð3Þ
where R�1 is the weight matrix of m-dimension measurement
value. In order to approximate the current operating status of
power system, the bx can be solved by weighted least squares state
estimation algorithm equation:

bx ¼ ðHTR�1HÞ�1
HTR�1z ð4Þ

We linearize bz around the true state values x as follows:bz � hðxÞ þ Hðx� bxÞ ¼ hðxÞ þ Hex ð5Þ
The measurement error covariance matrix can be expressed as:

EezezT ¼ HðEexexTÞHT ¼ HðHTR�1HÞ�1
HT ð6Þ

where ez is the error vector of the n-dimensional estimated state,
and ex is n-dimensional state. Residual equation can be expressed as:

r,z� bz ð7Þ
2.2. Unobservable false data injection attack

Traditional BDD (bad data detection) method uses the residual-
based method to detect false information, and the measurement
residual can be computed as:

krk ¼ kz� bzk ¼ khðxÞ þ n� hðxÞ � Hexk
¼ kðI � HðHTR�1HÞ�1

HTR�1Þnk � s ð8Þ
where I is unitary matrix, if measurement residual is less than the
given threshold s, the measurements can be thought of not
suffering attack. Assuming that the attacker knows about the matrix
H, zi represents measurement value after being attacked, and
a ¼ ða1; . . . ; amÞ represents the injected attack vector, where the
zero values of it represent no false data injected into measurements.
The false measurement is zi ¼ zþ a, and residual value can be com-
puted from formula Eqs. (1), (6), and (8):

kzi � bzk ¼ kzþ a� HðHTR�1HÞ�1
HTR�1ðzþ aÞk

� kz� Hxk þ ka� Hck � s ð9Þ
where c is interference factor when the system being attacked, it
can be an arbitrary value. When a ¼ Hc that the attack vector is
the linear combinations of selected Jacoby column vectors of the
matrix H, an attacker could invade smart grid and tamper the sys-
tem measurements to launch unobservable attacks and change
the power system operating state without being detected[26,27].

3. Feasibility of machine learning for attack detection

This chapter proposes using machine learning method to detect
the false data injection attack. According to the difference between
the data with attack and the normal data, the data can be classified
into a two different specific spaces. With the dimension of mea-
surement vector become larger, which may lead to the occurrence
of curse of dimensionality. Deep learning algorithm-Autoenchoder
is utilized to reduce the data dimension, so the subsequently
detection will become easier using the low-dimension data.

3.1. Classification using machine learning

The false data injection attack detection can be converted to a
binary classification problem. Define the data sample set
S ¼ fsigni¼1, category tag value Y ¼ fyigni¼1, yi 2 f1;�1g, and the
training data set TS ¼ ðsi; yiÞ 2 S� Y follows independent identical
distribution of the simultaneous distribution P. It is assumed that
the classification mark li, of a new data s0i, is predicted using the
predictably computable function li ¼ f ðs0iÞ. Therefore, the problem



Fig. 1. The structure of RBM.
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of unobservable false data injection attacks detection can be
defined as:

li ¼
1 if i–0
�1 if i ¼ 0

�
where i is the attack vector. If li ¼ 1, the i-th measurement vector is
attacked, otherwise, it is not attacked.

On the choice of classification algorithms, [24] proposed using
SVM (Support Vector Machine), and k-Nearest Neighbor method
for detection. Although SVM shows better generalization ability,
its linear programming problems will increase the training time.
KNN can build the complex decision space model of ultra polygon,
but it spends large amount of computation and needs mass storage
support. The goal of detecting the unobservable false data injection
attacks is to get a higher detection accuracy, this paper improves
the detection accuracy on the basis of the optimal ELM.

3.2. Dimensional reduction using Autoencoder

Autoencoder provides a nonlinear mapping method for the
input and output spaces. The measurement dimension will be
reduced when the number of hidden units is smaller than the input
dimension. It contains two operations: forward compression oper-
ation Cf ðxÞ transforms the data space to the encode space, and
reverses expansion operation Sf ðxÞ transforms the encode space
to the data space. The purpose is to train the identity map meets
Cf ðSf ðxÞÞ ¼ x. Using RBM (restricted Boltzmann machine, see
Fig. 1) in the process of training. The appropriate network param-
eters (weights and bais) can be obtained through gradient descent
method [28].

Algorithm 1: Autoencoder

Pre-train weights using energy function
Eðv ;h; hÞ ¼ �P

ibiv i �
P

jbjv j �
P

i;jv ihjwij

Update weights
wijðt þ 1Þ ¼ wijðtÞ þ Dwij ¼ wijðtÞ þ eðhv ihjiþ � hv ihji�Þ

Unrolling process
The original RBM will be cut into multi-layer neural network

when its pre-training is completed, as shown in Fig. 1, this
paper doesn’t elaborate this process here.

Fine tuning using cross entropy function
Hm ¼ �Pm

i¼1½ti log yi þ ð1� tiÞ logð1� yiÞ�
Adjust output weight

Dwij ¼ �a @Hm
@wij

¼ aðti � yiÞOJ

End

As shown above, the optimal weights will be output. Where
h ¼ fwij; bi; bjg is the parameter vector; v i is the state of the i-th vis-
ible unit; hi is the state of the j-th hidden unit. Dwij is weight adjust-
ment; wij is the weights between the i-th and j-th neurons; wðtÞ is
the weight of t-th step; e is learning rate; hv ihjiþ and hv ihji� are the
positive and negative average correlation. ‘‘Sigmoid” function is the
activation function of the output layer and its domain ranges from 0
to 1, so we adopt the scale transformation method that the original
sample measurements matrix Zr can be normalized to the measure-
ments matrix Zn, the formula is shown as follows:

Zn ¼ aþ b
Zr �minðZrÞ

maxðZrÞ �minðZrÞ ð10Þ

where a and b are constant, and maxðZrÞ and minðZrÞ are the max-
imum and minimum of the vector in each group, respectively.
Autoencoder uses low dimension produced by neural networks to
represent the high dimension input. Compared with the linear
dimension reduction method PCA (Principal Component Analysis)
whose linearity limits the extracted feature dimensions. Autoen-
coder overcomes the limitation with the inherent nonlinear neural
network. Its principle corresponds to PCA when it has one hidden
layer, so Autoencoder not only can maximize the interval between
normal data and abnormal data, but also can choose the most
important data to compress which will minimize the reconstruction
error. Autoencoder’s encoding and decoding processes are shown in
Fig. 2.

3.3. Brief of classification with ELM

This section briefly presents the Extreme Learning Machine
(ELM) algorithm in data classification problem. ELM randomly gen-
erates input weights and hidden-layer bias, then the output weight
can be obtained by analysis and calculation. In hidden layer, we
choose ‘‘sigmoid” function as the activation function, and the out-
put layer can choose linear activation function as the activation
function [29–31].

Let wj 2 Rd as the weights of the connection between i-th hid-
den layer nodes and the input nodes. bj 2 Rm is the output weight
vector that connects the i-th hidden layer node. bj is the j-th hidden
layer node bias.xj � xi is the inner product ofxj and xi. For n differ-

ent training samples fxi; yi; i ¼ 1;2; . . . ;ng, xi 2 Rd, yi 2 Rm corre-
spond to m categories, category label is ys 2 f1;�1g ð1 < s < mÞ.
If yk ¼ 1, and other elements in yi are �1, this sample belongs to
the j-th category. The model of ELM classifier contains L hidden
layer nodes with activation function hð�Þ can be expressed as:

f oðxiÞ ¼
XL

j¼1

bjhðwj � xi þ bjÞ; i ¼ 1; . . . ;n ð11Þ

hðwj � xi þ bjÞ ¼ e

�kxi�wjk
2b2

j is nonlinear radial basis activation function.
The matrix form of Eq. (11) can be represented as:

Mb ¼ Y ð12Þ
where Y ¼ fy1; y2; . . . ; yng 2 Rn�m, b ¼ fb1; b2; . . . ;bng 2 RL�m. M is
the hidden layer output matrix, which can be expressed as:

M ¼
hðx1Þ
..
.

hðxnÞ

2664
3775 ¼

hðw1 � x1 þ b1Þ � � � hðwL � x1 þ bLÞ
..
. . .

. ..
.

hðw1 � xn þ b1Þ � � � hðwL � xn þ bLÞ

2664
3775 ð13Þ

where hðxiÞ is the output of hidden nodes, mapping D - dimensional
input data xi to L - dimensional feature space. The number of hidden
layer neurons is far less than the number of training samples
(L � n). The output weights W0 can be expressed as:

WO ¼ MyY ð14Þ
where My is the generalized inverse matrix of M. The output func-
tion of the ELM classifier can be expressed as:



Fig. 2. Encoding and decoding processes.
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f oðxiÞ ¼ hðxiÞb ¼ hðxiÞMT 1
e
þMMT

� ��1

Y ð15Þ

The predicted class label value for test sample xj is

ti ¼ argmaxs¼1;2;...;Cf sðxjÞ. Where f ðxjÞ ¼ ½f 1ðxjÞ; � � � ; f CðxjÞ�T .
Appending non-negative value 1=e to each element of the diag-

onal matrix MMT improves the stability and generalization ability
of the ELM classifier.

4. The proposed algorithm

From the respective of algorithm optimization, this paper
applies the improved ELM into attack detection. The artificial bee
colony (ABC) incorporates the thought of differential evolution
algorithm (DE) to optimize the ELM’s parameters and improve
the detection precision.

4.1. Artificial bee colony optimization algorithm

Artificial bee colony algorithm is a bionics algorithm proposed
by Karaboga [32–34]. In the ABC algorithm, the location of nectar
represents the possible solution of optimization problems. Nectar
amount stands for the quality of a feasible solution, which is called
as fitness. Half of the swarm consists of employed bees, half by the
onlookers.

The initial nectar (feasible solution) is a D-dimensional vector.
D is equal to the number of optimization parameters. Set the pop-
ulation size as SN, the max times of nectar exploited as lim it and
the max evolution number of the algorithm termination is MEN.
According to the fitness value, employing bees find nectar to
replace the original nectar with certain probability, which means
modifying the original feasible solutions to generate new solutions.
New nectar is generated by the lookers before forging. When the
new nectar is better than the original one, the new one is exploited.
The probability and the equation of generating new nectar are
defined as Eqs. (16) and (17)

Pi ¼ fitnessiPSN
j¼1fitnessj

ð16Þ

v ij ¼ xij þ /ijðxij � xkjÞ ð17Þ
where fitnessi ¼ 1
SN

PSN
j¼1

gj�tj
gj

��� ��� is the adaptation degree of i-the nectar,

the bigger it is the more probability it will be selected.
k 2 f1;2; . . . ; SNg, k–i, and j 2 f1;2; � � � ;Dg are all randomly selected
values. /ij is a random number ranges from -1 to 1. xij represents the
j -th parameter of the feasible solution of the i -th nectar location. v i

is candidate nectar location and xk is adjacent position of the orig-
inal nectar.

When the times of nectar exploiting reach foraging cycles pre-
determined limit, the employed bees become onlooker bees that
randomly selects new honey source near the original source xi.
The equation of new nectar generation is defined as Eq. (18)

xi ¼ x j
min þ randð0;1Þðx j

max � x j
minÞ ð18Þ

The max times of nectar exploited lim it will affect ABC’s search
capabilities, larger lim it will increase its exploiting capacity but
will also weak its detectability.

4.2. Hybrid ABC-DE algorithm

From the Eq. (17), the search strategy of employed bees and
onlooker bees only updates one element of nectar each time. This
paper introduces mutation and crossover operation into employed
bees phase. And add the accelerating evolution operation to
increase the local search ability of the onlooker bees, and the opti-
mal nectar source will be improved at last.

For the employed bee, the crossover operator can find all optimal
locations. Operations on all elements instead of the operations on
one element, in order to increase the diversity of each variation indi-
vidual xiðtÞ, the variation individuals can be generated as follows:

v iðtÞ ¼ ðv1
i ðtÞ; . . . ;vD

i ðtÞÞ
v j
i ðtÞ ¼ x j

r1ðtÞ þ F � ðx j
r2ðtÞ � x j

r3ðtÞÞ

(
ð19Þ

where i ¼ 1;2; � � � ; SN, j ¼ 1;2; � � � ;D; and r1; r2; r3 2 f1;2; � � � SNg
ði–r1–r2–r3Þ. v j

i ðtÞ is the j -th component value of the i -th
variation individual in the t-th generation population. F 2 ð0;2Þ is
the scaling factor of evolution parameter. We use the crossover
operator to crossover individuals, then the experimental individual
uiðtÞ can be achieved by xiðtÞ and v iðtÞ.

uj
i ðtÞ ¼

v j
i ðtÞ; randð0;1Þ � CR or j ¼ j rand

x j
i ðtÞ; else

(
ð20Þ

where CR 2 ð0;1Þ is the crossover factor of evolution parameter.
Comparing the fitness of the testing individual with that of the orig-
inal individual, we can choose the individual with the better fitness
as an individual of the new generation.

xiðt þ 1Þ ¼ xiðtÞ; fitðxiðtÞÞ < fitðuiðtÞÞ
uiðtÞ; else

�
ð21Þ

In ABC-DE, the onlooker bees assess the quality of nectar
through the feedback information by employed bees. The idea of
ABC may provide more opportunities of local search for the indi-
viduals with better evolution. The number of individual accelerat-
ing evolution is computed as follows:

Ti ¼ SN 	 Pi ð22Þ
In order to get the optimal individual, the number of individual evo-
lution and the upper limit of evolution times can be defined as
lim it ¼ SN 	 D. According to Eq. (19), the randomly qualified indi-
vidual will be regenerated by onlooker bees to replace the aban-
doned individuals, and the number of individual accelerating
evolution is set to 0. For clarity, Fig. 4 presents the flowchart of
the ABC-DE algorithm.

The schematic diagram for the classification and ELM parameter
optimization is shown in Fig. 3. First, the Autoencoder reduces n
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independent measurements from the available data set. Then we
will find optimal parameters (number of hidden nodes and input
weights) such that the validation performance of the ELM binary
classifier improved.

Algorithm 2: ABC-DE-ELM

Input:- Training dataset D
Output:- Classification result
Step 1) Initialization:
Step 1.1) Set the index of generation Gen ¼ 0, generate random

target vector v i;gen
����!

, i ¼ 1; . . . SN .
Step 1.2) Randomly initialize a population of SN individuals xi.
Initialize the parameter F;CR; lim it of DE.

Step 1.3) For each vector v i;gen
����!

, run ELM classifier on the
training dataset and compute the corresponding objective

function gð v i;gen
����!Þ. Set the number of function evalutions

FES ¼ SN .
Step 2) ABC employed by DE
Step 2.1) Evaluate the fitness for each individual in Pi .
Step 2.2) for i=1 to SN, do Mutation; Crossover; Selection

Step 3) Set FES ¼ SN þ FES
Step 4) Go to step 6) if FES geq lim it, otherwise set

Gen ¼ Genþ 1 and return to step 2.

Step 5) Select the optimal vector v	
i

�!
corresponding to the

minimum objective function gð v	
i

�!Þ.
Step 6) Train the ABC-DE-ELM using the optimal parameter

vector v	
i

�!
,and compute the decision function for test

sample according to the ELM classification theory.
End
5. Experimental results

This part selects the IEEE 118-bus and IEEE 14-bus systems to
evaluate the performance of the proposed method. Using
MATPOWER to simulate the operation of the power network
[35–37], and collecting active measurement data from the testing
systems, there are 304 and 54 kinds of measurements in the two
IEEE bus systems, respectively, that is to say, there are 304 and
54 features. Assume that all load on the bus satisfy the uniform dis-
tribution ½0:8L0;1:2L0�, where L0 is the base load of power system.

5.1. False data injection attack generating

According to the attack model, when the attack vector satisfied
a ¼ Hc, false measurement values and normal measurement values
satisfy: Za ¼ Z þ a ¼ Hðhþ cÞ þ e, the attacker can successfully
bypass the traditional threshold detection. This paper focuses on
IEEE-14 bus and IEEE-118 bus systems, and we define the tam-
pered state value as ha ¼ hþ c and set c = 1.0. Fig. 5 and Fig. 6 show
the histogram of false measurements with or without attack.

Fig. 5 and Fig. 6 show measurements of different power system
are very close 0. When the false data injected into power system,
the histograms of false measurements are different from that of
normal measurements. It can be found that the attack will affect
the distribution of the measurements.

5.2. The performance of Autoencoder in dimension reduction

To verify the training effect of initial weights in training process
and final reduction results in fine-tuning process, we select 600
samples from the 900 normal measurements of IEEE 118-bus as
the training samples, and the rest as test samples. Select Mean
Squared Error (MSE) as the evaluation standard during measure-
ment pre-training process and fine-tuning process, and MSE can
be defined as follows:

MSE ¼ 1
N

XN
i¼1

ðZdata � ZreconÞ2 ð23Þ

where N is the size of training sample or testing sample. Zdata is
training sample data or testing sample data. Zrecon is the different
reconstructed data during pre-training process of RBM, or the
reconstructed data during fine-tuning process. The pre-training
process is composed of four layers of RBM, extracting ‘‘codes” from
data sets according the structure ‘‘304–500–350–150–15”. The top-
most hidden layer of RBM has real-valued status and it is decided by
the Gaussian function of the unit, and its mean value is determined
by the input of visible RBM logic units. Generally, the probability is
rðbj þ

P
jv iwijÞwhen the state of neuron j on the hidden-layer set to

1, and rðxÞ represents Sigmoid logical function, bj is deviation, v i

and wij represents the status value and the weight value of
hidden-layer, respectively. After determining the state of the hidden
layer, producing reconstructed data through setting the state of the
visible layers to 1 according probability rðbi þ

P
jhjwijÞ. The state of

the hidden layer will be updated several times to mediate the
weights for obtaining better initial weight. This experiment eventu-
ally reduces the data dimension to 15, and achieves reconstruction
error of different layers RBM in the pre-training process after 10
epochs, when the number of iterations in pre-training process is
set to greater than or equal to 2, the reconstruction error become
stable, and we can get the initial weights used for fine-tuning, as
shown in Fig. 7. To visualize the difference of measurement data
after dimension reduction, this paper analyzes the 2-dimensional
data, as shown in Fig. 8, the invasive data has been identified. The
red circle represents illegal measurements, others as legal
measurements.

We use Autoencoder and PCA to reduce the experimental data
to the same dimension, compare the squared reconstruction error
of both the training MSE and the test MSE to evaluate performance
of Autoencoder. We achieve the average reconstruction error
through fine-tuning 10 times for the training process and testing
process. As shown in Table 1, when the dimension drops to 15,
minimum reconstruction error of training and test data is 0.331
and 0.339, respectively.

5.3. ABC-DE-ELM based false data injection detection

We select ‘‘sig” function as ELM’s activation function finally. The
ABC searches for the best input weight and bias values such that
the analytically calculated output weight in the ELM classifier
achieves better performance. Assume not changing the normal
variables, we improve the accuracy of attack detection as far as
possible. Using 5 standard measures, such as precision, False Posi-
tive Rate (FPR), Recall, F value and True Positive Rate (TPR) to eval-
uate the performance of the proposed method, the 5 performance
measures are defined as follows:

precision ¼ jTPj
jTPj þ jFPj ; Recall ¼ jTPj

jFNj þ jTPj ; FPR ¼ jFPj
jFPj þ jTNj

TPR ¼ jTPj
jTPj þ jTNj ; F ¼ jPrecisionj � jRecallj � 2

jPrecisionj þ jRecallj ;

where TP is the number of legitimate measurement which is cor-
rectly classified as legitimate, TN is the number of illegal measure-



Fig. 3. Schematic diagram of attack detection using ABC-DE-ELM.
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Fig. 4. The flowchart of the ABC-DE algorithm.
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Fig. 5. (a) IEEE-14 bus system without false data. (b) IEEE-14 bus system with false
data.

Fig. 6. (a) IEEE-118 bus system without false data. (b) IEEE-118 bus system with
false data.

Fig. 7. Reconstruction Error for RBM pre-training.

Fig. 8. Dimension reduction into R2 space.
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ment which is correctly classified as illegal, FN is the number of
legal measurements, which is misclassified as illegal, FN is the num-
ber of illegal measurement which is misclassified as legal, and F
value is used to comprehensively reflect the whole performance
of algorithm.

To verify the superiority of the proposed method, and the prac-
ticality of the selected dimension reduction method. The final
dimension is reduced to 5 by Autoencoder. We analyze the receiver
operating characteristics curve (ROC) of different methods, then
compare with the detection method with different dimension
reduction methods. We select 1800 measurement samples as
experimental data, and the training samples with the testing sam-
ples in a 2 to1 ratio.

Fig. 9 and 10 demonstrate that the proposed method can accu-
rately identify illegal measurement data with lower error detection
rate. In the IEEE118-bus system, when the False Positive Rate (FPR)
is 10.53%, the True Positive Rate (TPR) of three methods are 94.8%,
88.8% and 76%, respectively. In the IEEE14-bus system, when the
FPR is 11.6%, the TPR of three methods are 95.5%, 88.8 and 76.8%,
respectively. The proposed algorithm is superior to ABC-ELM and
ELM, and has a good generalization ability in different IEEE-bus
measurements.



Table 1
MSE comparison among different dimensionality reduction methods.

Reduced dimension Autoencoder PCA

Training MSE Test MSE Training MSE Test MSE

5 3.31e�01 3.39E�01 4.74e�01 9.17�01
10 3.31e�01 3.34E�01 9.42e�01 1.83E+00
15 3.31e�01 3.39E�01 2.73e+00 1.41E+02
20 3.32e�01 3.41E�01 1.87e+02 3.64E+02

Fig. 9. The performance of the proposed algorithm for IEEE118-bus. ROC curves of
EML, ABC-ELM, ABC-DE-ELM, respectively.

Fig. 10. The performance of the proposed algorithm for IEEE14-bus. ROC curve of
ELM, ABC-ELM, and ABC-DE-ELM, respectively.

Fig. 11. Training time versus reduced measurement dimension for ABC-DE-ELM
classifier with Autoencoder and PCA.

Fig. 12. Testing precision comparison of the proposed algorithm with Autoencoder
and PCA.
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As shown in Figs. 11and 12, the IEEE118-bus data is reduced to
2–50 dimension by Autoencoder and PCA. Use the reduced mea-
surement to train ABC-DE-ELM classifier, when the dimension
ranges from 2 to 25, the dimension method based on Autoencoder
can save little time than that based on PCA, but with the dimension
getting lower, the time difference is obvious. In terms of precision,
the proposed method with Autoencoder is more superior than
other methods. When the data dimension is reduced to 5, the
detection accuracy is 95.3%, while the detection accuracy with
PCA is 93.9%. At the end of our paper, we use Weka (Wikato Envi-
ronment for Knowledge Analysis tool) to compare with the existing
machine learning methods, the experimental results are shown in
Table 2.



Table 2
Comparison of different classifiers.

Classifer TP rate FP rate Precision Recall F-score

Native bayes 0.853 0.182 0.824 0.886 0.854
RBF network 0.925 0.076 0.924 0.925 0.924
Decision stump 0.881 0.105 0.894 0.905 0.899
SVM 0.934 0.091 0.9108 0.923 0.917
ELM 0.953 0.068 0.933 0.958 0.945
ABC-DE-ELM 0.964 0.047 0.953 0.961 0.957
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6. Conclusion and future work

This paper firstly constructs attack vector, then simulates the
normal and false measurements. We use the generated active
power measurements as experimental data. The deep learning
algorithm is used to reduce the dimensionality of data, which not
only normalizes the experiment data, but also makes data show
the good divisibility in low dimension space. In order to improve
the performance of detection methods, we blend the thought of
differential evolution into artificial bee colony algorithm. Using
ABC-DE to optimize the weights and the parameters of ELM classi-
fier, we verify the proposed detection method is superior to other
machine learning methods. This paper opens a new era of using
ELM with deep learning method to detect the false data injection
attack, and the relevant work will be furtherly carried out in the
future.
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