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Identification of Unknown Parameters of a Singled

Photovoltaic Model Using Particle Swarm Optimizatio

with Binary constraints
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Research Scholar, Professor
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Abstract-Photo-voltaic (PV) is a static medium to convert solar energy directly into
electricity. In order to predict the performance of a PV system before being installed, a
reliable and accurate model design of PV systems is essential. To validate the design of a
PV system like maximum power point (MPP) and micro-grid system through simulation,
an accurate solar PV model isrequired. However, information provided by manufacturers
in data sheets is not sufficient for simulating the characteristic of a PV module under
normal as well as under diverse environmental conditions. In this paper, a particle swarm
optimization (PSO) technique with binary constraints has been presented to identify the
unknown parameters of a single diode model of solar PV module. Multi-crystalline and
mono-crystalline technologies based PV modules are considered under the present study.
Based on the results obtained, it has been found that PSO algorithm yields a high value of

accuracy irrespective of temperature variations.

Keywords -Photovoltaic (PV) model, maximum power point (MPP), binary constraints,

particle swarm optimization (PSO).
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Nomenclature

Amin
Amax
b

cpand ¢

Mmax

@min

minimum value of ideality factor

maximum value of ideality factor

index of the best individual in population

acceleration factor

component of each individual of population

objective function to be evaluated

value of objective function fof"individual of population at iteration k
the global best individual of population up to @ton k

j™ component of the best individual of populationtoiteration k
individuals of populationd {1, 2, . . ., N}

components of an individuakj{1, 2, . . ., D}

iteration counter (ke {1, 2, . . ., Maxite})

maximum number of iterations

population size

personal best of'iindividual of population up to iteration k

personal bestjcomponent of'f individual of population up to iteration k

uniformly generated random number in the rang€]0, 1

minimum value of series resistance factor

maximum value of series resistance factor

minimum value of shunt resistance factor

maximum value of shunt resistance factor

signum function on each variable of the input vecto

initial velocity of N individuals each having D c@onents

velocity of fh component of' individual of population at iteration k
population of N individuals each having D composgntariables)

i individual of population X at iteration k, i.e.X¥[X" 1, X5, . . ., Xip]
inertia factor

maximum value of inertia factor

minimum value of inertia factor
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Abbreviations

ABSO Artificial Bee Swarm optimization
BFA Bacteria foraging algorithm
CPSO Chaos particle swarm optimization algorithm
CSA Cuckoo Search algorithm

EAs Evolutionary algorithms

GA Genetic algorithm

MAE Mean absolute error

MPP Maximum power point

MPPT Maximum power point tracking
PSO Particle swarm optimization

PV Photo-voltaic

RMSE Root mean square error

SA Simulated annealing

STC Standard test conditions

1. Introduction

In the current scenario, socio-economic developnam human welfare around the
world depends on energy. Fossil fuels account maxinshare in the overall generation.
However, carbon emissions and depletion are sosuessassociated with the use of fossil fuels.
The energy demand around the world is continuouglyeasing. If this escalating demand is to
be met with fossil fuels, the extensive use of ifdsels will release a large amount of génd
other greenhouse gases. Renewable energy sourtles other hand are abundant in nature and
contain quite low or no greenhouse-gas emissionsrefore, it is the necessity of today’s world
to concentrate on renewable energy sources fotrieiec generation. Solar energy has been a
paramount part of renewable energy sources asavadable directly from the sun, whereas
wind, wave, hydro etc. are indirectly derived. $a@aergy is also available in abundance and is
non exhaustible, but the technology to harnessr seteergy is still improving. Solar PV
technology exploits the solar radiation and disecthinverts it into electricity. The utilization of
photovoltaic (PV) technology as a source of powewmuser end is increasing, due to easy

implementation and low maintenance cost comparedher forms of energy conversion [1]. PV
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technology has the highest power density amongiseaéwable energy resources with global
mean of 170 W/A[2]. In order to predict the performance of a Pystem, a reliable and

accurate model design of PV systems is a necebséoye being installed.

Performance of the PV system is affected by chamgemperature and insolation [3].
Ideally a PV module needs to be operated at maxirpavwer point (MPP). This incorporates
advance research in real time optimization tectesdike fuzzy logic, artificial neural network,
perturb and observe algorithms etc. [4]. Therefires, essential to have a comprehensive study
and performance analysis of a PV model to pretlietdutcome of a PV module under diverse

atmospheric conditions.

The parameters provided in the manufacturers de¢hsinder standard test conditions
(STC) include short-circuit current, open-circudltage, voltage at maximum power, current at
maximum power and temperature coefficients of curreoltage and power. Although, provided
data is essential but not enough to predict aceukdt characteristic curves under varying
insolation and temperature levels. Single diode MWYdel is extensively used by several
researchers [5-9, 11, 12, 45-47] due to its sintglicHumada et al. [12] compared and
summarizes the techniques for parameter extrackarther, they have also compared single-
diode and double diode models for one, two, thiea; and five parameters by setting a model
evaluation criterion. The study suggests that fiagameter (single-diode) model is the most

widely model due to its high accuracy and less dermgesign.

The main issue associated with single-diode PV mnaldo identify five unknown
parameters i.e. ideality factor (a), series rest#aRs), shunt resistancdr), reverse saturation
current (o) and photovoltaic currenty(). Identification of these parameters by a suitabéthod
is essential in order to accurately predict the rRddule characteristics. The methods include

analytical approach, iterative approach or reaktapproach.

Studies have been carried out using an ideal mafd@lPV cell which does not include
series and shunt resistance [13, 14] as showrginlFi

Fig.1. Equivalent circuit of an ideal PV model
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The previous studies suggested that ideal modghiple but less accurate. Researchers
in [10, 15-18] proposed models with four parametarg; Io, Ipy) accounting shunt resistance to
be infinite. Although, the proposed four parametamglel has not been proved accurate yet, it is
considered to be favorable as the unknown parameter be easily identified in comparison to

the model with five parameters @&, R,, l,andly).

To resolve the issue with the necessity of obmgnunknown parameters, a five
parameter model based on the values of manufadatasheet was presented by Villalva et al.
[19].Value of ideality factor was obtained througial and error method. The new valueRf
and R, depends upon the previous value Rf The new set of values was determined by
continuously increasings and simultaneously computiri®. These values were determined till
MPP of the presented model reaches to the same waalprovided in manufacturer's datasheet
at STC. Once unknown parameters are extractece ffaameters are fixed and again calculated
for same model under the influence of varying iagoh and temperature levels. Under standard
test conditions (STC), the developed method yieldsurate MPP. However accuracy gets

compromised under the effect of varying temperaf20¢

W. Xiao et al. [21] used a database of MPP acquirech manufacturer in order to
produce exact MPP at varying temperatures. At wdiffe values of temperature, MPP was
matched by regulating ideality factor through ite@a technique. The drawback associated
herewith is to obtain the availability of MPP foarying temperatures, which is not provided in
manufacturer datasheet. Park and Choi [22] emplaypdrameter extraction method based on
datasheet values. MPP error formulation is incafea as objective function and parameter

optimization is achieved by using pattern seargbrahm.

Recently numerous evolutionary algorithms (EAs)avadopted to determine unknown
parameters of a PV module under consideration. dmaaRamana [23] presented a critical
review based on modeling and parameter identiboatif a PV cell for simulation. They have
analyzedRs R, and two diode model along with different parametiEntification schemes
(analytical as well as soft computing). In receeang, the metaheuristic optimization algorithms
such as genetic algorithm (GA) [24-26], simulatethealing (SA) [27], artificial Bee Swarm
optimization (ABSO) algorithm [28, 29], and parécbwarm optimization (PSO) [30], have
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received considerable attention towards solar qedrameters identification problem.
Metaheuristic algorithms are appropriate selectimngesolving the drawback associated with

parameter extraction at varying atmospheric cooioiti

In case of GA, serious shortcomings, namely lowedpand degradation for highly
interactive fitness function has been reported 821, EI-Naggar et al. [27] employed Simulated
Annealing (SA) to extract the parameters of siragie two-diode models for cell and module.
The trade-off between the cooling schedule andhirtémperature is the major issue that makes
SA a less preferable choice. Jieming et al. [38]zatd Cuckoo Search algorithm (CSA) to
identify the parameters of the conventional ancdvanced form of the single diode model for
PV cell and module. Askarzadeh and Rezazadeh [Bp]ayed ABSO to obtain the parameters
of the single and double-diode models for PV modRigasekar et al. [35] presented a Bacteria
Foraging algorithm (BFA) to compute all parametarghe single diode Rmodel under varying
operating temperature and insolation values. Byizimtg parameters provided on the
manufacturer's datashedt, andl, were analytically computed, whereasRs, and R, were

obtained by optimizing equation of slope at MPP.

Qin and Kimball [36] eliminated the idea of unknowarameters estimation for the SPV
model. They exploited the field test data alonghRSO algorithm to determine the valueapf
Rs andR,. Measurements of short circuit current and loath aeere required for the field test.
Hengsi and Jonathan [30] employed PSO to extractéiMparameters from the data measured
under real operating conditions of varying insaatand temperature. Wei H et al. [37] used
chaos particle swarm optimization algorithm (CP&D9btain unknown parameters of the single
diode R, model for a module. In CPSO, the chaotic searcthar@sm is utilized to re-initiate the
stationary particles-causing an enhanced localgiotthl search capability. Ye et al. [38] utilized
PSO to determine the cell parameters of the simgtetwo-diode models from the 1-V curves. In
comparison to GA, PSO was found to be more accuvittebetter computational speed. On the
basis of operating conditions, module technology &mpe of model researchers have employed
numerous parameter extraction techniques havingradges and disadvantages of their own.
Among all the techniques, performance of PSO algariis found to have an adequate sense of

balance between accuracy, speed and complexity.
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The PSO algorithm is a swarm intelligence optimaratlgorithm based on observations
of the social behavior of bird flocking or fish sdhing [28-30, 36-41]. Several authors have
utilized and improved many versions of PSO algarifl28,29,38-41]. However, every version
of PSO has different advantage for different complptimal problem. The major disadvantages

observed in PSO are of premature convergence andsgh of diversity in the population.

In order to eliminate the mentioned disadvantage\eel technique has been presented in
this study to compute the unknown parametars{andR,) of a single diode PV model. In the
present study, a PSO based single diode modelvislafeed to predict unknown parameters
under varying operating conditions. In order t@iethese parameters within realistic ranges and
considering the effects of temperature variatiomjireary constraint has been imposed i.e. by
penalizing the objective function when the solutdtempts to exceed the predefined parameters

boundary limits. The accuracy of the model is asdinrespective of the temperature change.

The present study deals with identification of PNodel using PSO with binary
constraints. An overview of mathematical modelirgnfework of a PV model is presented and
further, the problem formulation along with the posed optimization technique is discussed.
Results and performance validation of the propdsetinique are discussed in detail. Further,
the obtained results are compared with the resdltdher methods proposed in [16] and [19].
The proposed technique is found to be advantagaeus$ has the capability of determining
ideality factor, series and shunt resistance samelbusly without the need of estimating ideality
factor and field data measurements. Also, the etddaparameters are computed as a function of

insolation and temperature.

2. Mathematical Modeling framework of a PV module based on single diode model.
2.1. Ideal PV cell model

An ideal PV cell is represented by photo-generatadent (,,) which diverges from the ideal
outcome due to electrical and optical losses [23, Rurther, theeffect of series and parallel

resistance are not considered in this simplest RPdeahn Schematic for an ideal PV model is
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shown earlier in Figure 1. Terminal current of ateal model is represented by I-V
characteristics and mathematically expressed as:
I = Ipv — Iy (1)

The diode currentl) signifies diffusion and recombination currentguasi steady state
regions of emitter and excess concentration regmn®N junction. This diode current is

represented by Shockley equation as:
Iy = Ip{e9Va/akT — 1} (2)

whereq is the charge of an electron (1.6¥20), K is the Boltzmann constant (1.3805%£0/K)

T is temperature (K)pls leakage current and; is the diode voltage.

The ideal mathematical model based on diode equaifoShockley and Queisser is

expressed as:
I =1, —I)(edVa/aKT — 1) (3)

Ideal solar PV cell does not consider the effectimtérnal resistance, thus fails to

establish an accurate relationship between celentiand voltage.
2.2. Practical PV cell Model.

In order to achieve accurate results, a seriestegsie is introduced to the ideal PV cell
model. Although this model is simple but it revedéficiencies when subjected to temperature
variations. To overcome this limitation, the motiels been extended further by considering a
shunt resistance and is termed as Practical PV Healls, the practical single diode PV or five
parameterl(, lo, a, R andR,) model consists of current producer and a diodé series and
shunt resistance as shown in Fig. 2[4-12, 42]. diferacteristics I-V curve of a practical PV cell

is shown in Fig. 3.

Fig.2. Equivalent circuit of a practical PV cell
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Fig.3. I-V characteristics curve of a PV cell.

The series resistance signifies resistance (ohosg) loffered to the current flow due to
ohmic contact (metal-semiconductor contact) andunity concentrations along with junction
depth. Leakage current across the junction signgieunt resistance, connected parallel to the

diode. The mathematical representation of terngnaient in Eq. (1) is modified as:
I=1Ip,—Is—V4/R, 4)
Vg =V +IRg (5)

whereV is input voltage and | is the terminal current.

It is recognized that I-V characteristic curve ofP¥ cell is affected by both series
resistance and shunt resistance. The output voisagected by series resistance; while shunt
resistance is responsible for reduction in avadahlrrent [14-15, 43-47].Eq. (3) is modified to
obtain the equation of single diode PV model. Taentnal current of a single diode(five-
parameter) model is given by:

= e (22 1] - ©

whereVr is the thermal voltagenkT/q).

2.3. Modeling of a PV module

A PV module may consist of humber of PV cells whagn be connected in series or

parallel. This series-parallel topology is représdnn Fig. 4.

Fig.4. Equivalent circuit model of a PV module
The parameters of a PV cell are transformed inrai@eepresent a PV module. Table 1
represents the parameters which are transformetbciezies/parallel PV topologies [45, 47].
Table 1: Transformed parameters for series andlpii@pologies.

Terminal current for series-parallel configuratmfra PV module can be written as;
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V+IRg( 1S V+IRg(3S
I=N, {Ipv — Iy [exp (—angt”)> - 1]} - {—RSh (;3’)} (7)

A single PV module is a particular case of PV cetisnected in series. Therefore, the
number of cells connected in series (Ng) will be scaled withV;. Now, equation (6) can be
rewritten as;

==l ) -1]- 52

(8)

Depending upon the load requirements, the numlfensodules are connected in series

to increase voltage levels, whereas modules ameented in parallel to increase current levels.

When the terminals of a PV module are short-ciezyjithe current that flows through the
circuit is termed as short-circuit curremd. It is the maximum current that flows through\a P
cell. Isc of a PV module depends on incident insolation,ciwhs determined by the spectrum of
incident light, i.e. AM 1.5 spectrun.also depends on cell area and its ability to absuident
solar radiation [23].At a given temperatureVEQO andl=l ., EQ.(8) becomes:

ISC(T) = R—p{lpv - IO [exp (M) - 1]} (9)

Rs+Rp aNgV;(T)

Open circuit voltageMy) is the maximum voltage that can be delivered By}amodule.
The Open circuit voltage corresponds to forwardg bialtage, at which dark current compensates
the photo-generated current avigis dependent on the density of photo-generateceicurAt
open circuit condition=0, V=V,c.and Eq. (8) becomes;

Voe(T) = Ry {Iy = Io [exp (-5 ) — 1]} (10)

aNgVi(T)

At a given temperature, maximum power is determibgdthe product of maximum
current and voltage as shown in Fig. 3. By substigu=I ,, andV=Vy,,, the maximum power at
a given temperature can be determined from Ecag8)

RpVimp(T) Vinp (T) +Imp (T)Rs Vinp (T)
Pmp(T) - I;es:zp x {Ip” —Io [exp( - aNth(;)") ) N 1] - :p } (11)

Jaded
EE}-E]



234
235
236

237

238

239
240
241

242

243

244

245

246

247

248

249

250

251
252
253
254

255

256

257

258

11

Equations (9-11) are the data points used by thiener to provide the finest set of
values fora, R, andRs. Also, the proportional effect of insolation ins#ty (G) and operating
temperature (T) on the PV output current are gimefgs. (9-11) [10, 13-15, 42-47].

The insolation dependence of PV current is given by

Ipv(G: T) = GG_n (Ipv,n + KISCAT) (12)

Wherely,n is PV current ands, is the solar radiation intensity in Wrat STC under nominal
conditions Ks is the temperature coefficient of short circuitrent (MAPC) andAT (=T-T,) is
the difference of temperature between the presemtent and STC.

2.4.  Effect of Temperature

Solar cells work best at low temperature dstermined by their material

properties. The cell efficiency decreases as thapéeature escalates above operating

temperature. A substantial part of incident insofats lost in the form of heat resulting in high
temperature of cells. To determine the effect nfgerature on maximum powe?;,,, {T), open

circuit voltage Vo { T) and short circuit currenksc {T)at a given temperature are expressed as;

Isce (T =lsen +KISCAT (13)
Voc,e (T =Vocn +KV0CAT (14)
Pmp,e (1) = Pmp,n + KPmpAT (15)

where Pyppn Vocn @nd lse nrespectively represents maximum power, open cireoitage and
short circuit current under nominal circumstand&s,. andKenp are the temperature coefficient
of open circuit voltage and maximum power pointyided by the manufacturers as shown in
Table 2. The datasheets of the considered modiggszravided in Ref. [48], [49] and [50].
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Table 2: Parameters provided by the manufacturfedgferent PV modules at STC.

The values of maximum voltage and maximum currentperature coefficient are not

available and are approximated [57] as:
Kvmp =~ KVOC (16)
K[mp ~ KISC (17)

Therefore, at different temperatures value¥gfandln, are anticipated as;

Vmp (T) :Vmp,n +KV0CAT (18)
Imp (M= mp,n +KISCAT (19)

3. The Proposed Method and Problem Formulation

The PV model, represented in Eqg. (8), is a mystfoalction which includes three
unidentified parameters( R, andR;). Conventional techniques like Newton—Raphson otéth
triggers singularity due to large situation numbgthe Jacobin matrix. In order to overcome this
drawback, a PSO based technique is considered msgérged to eradicate the necessity for

matrix inversion and partial differentiation.
3.1.  Objective function

Based on the manufacture’s data given in Tabtee2unidentified parameters of a single
diode model as shown in Figure 1 are to be ideatiin order to match the generated I-V and P-
V curves of the presented model with the manufastutata at a specified temperature. The

objective function for calculating PV module unknowarameters like ideality factoa], series

resistance R,) and parallel resistancdr() is defined as:

minfb; = [fisc [+ [fvod+ |fpmd (0)

Contrasting the distinctive methodology that deiees the model parameters by means
of MPP only, the objective function in Eq. (20) s@sts of three data point8,[lsd, [Vmp Imp and
[Voo, O] for optimization. It also contemplates the consatpes of temperature on the PV module

for identifyinga, RsandR,in comparison to other techniques that are depeérmdeSTC only.
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To normalize the objective function, the numeratnd denominator of equations from
Eq. (21-23) are obtained from Eqgs. (9-11) and (&jB-flespectively. This ensures that the range
of the terms in the objective function is same.

[SC(T)
flsc(a' RS’ Rp’ T) = Isc e(T) h 1 (21)
Voc(T
e R Ry T) = 525 =1 22)
_ Pmp(D)
fPup(a,Rs, R, T) = Py~ L (23)

3.2.  Binary Constraints Handling Approach

PV modules’ parameters like ideality factor, seresistance and parallel resistance must
be within their limits. Three set of constraintse amposed to handle this problem. The
constraints are expressed as:

a‘min <acx< anax (24)
I1,min < & < I%max (25)
Rp,min < R) < I%,max (26)

where the minimum and maximum values of the pararadb be determined are represented by
the subscripts ‘min’ and ‘max’, respectively. Thadry constraints considered for simulation are
given in Table 3.

Table 3: Binary constraints considered for simolati

A binary constraint handling approach is proposegdnalize the objective function if
any of the above constraint violates. The propaggaroach for handling binary constraints is

expressed as follows:
fbarrier :[(Slgr( anin - a+ SIQ(I %x- »’2 +( Slqn sain- SR+ sgns%- )R*—( $Igmnﬁ g)‘R (5|%aB ))ZR (27)

where sign(x) is a function return as -1, 0 and £ « 0, x = 0 and x > 0, respectively. This
binary constraint handling approach is having athges over the other constraints handling

approach as it only penalizes the objective fumctithere is a constraint violation.
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By introducing binary constraint handling appro&eim into the objective function, i.e.,
fobj = |fisd* |fvodt [fpmd+| fbarierd, the problem is transformed into an unconstramdnization
problem.

The objective function given by Eq. (20) is minimdkzin order to determing Rs andR,
by formulating the PSO approach. In previous swdi&7-39, 45-50], PSO algorithm based
techniqgue has been used for maximization of theathje function. Whereas in the present
study, the objective function is minimized to zdwr different values of temperature and

insolation using an absolute function.
3.3.  PSO algorithm

Particle swarm optimization is inspired by so@at cooperative behavior displayed by
various species to fill their needs in the searnghcs. The algorithm is guided by personal
experience (Pbest), overall experience (Gbest) thadpresent movement of the particles to
decide their next positions in the search spacgh&uy the experiences are accelerated by two
factors ¢ and ¢ known as acceleration coefficients, and two randombers generated between
[0, 1], whereas the present movement is multipigdan inertia factord’ varying between
[®min, ®may. The size of the population is considered asdNd the dimension of each element
of the population is considered as D, where D ggts the total number of variables. The initial
solution is denoted a¥ = [X1, Xz..., Xn]', where ‘T’ denotes the transpose operator. Each
individual X; (i = 1, 2... N) is given a¥; = [Xi1, Xi2, ..., Xp]- The initial velocity of the
population is denoted a5= [V, Vs...., V\]'. Thus, the velocity of a partick (i = 1, 2, ..., N)
is given asv; = [Vi1, Vi2, ..., ip].

The flowchart of the proposed PSO-based inversgebaechnique is shown in Fig. 5.

Fig.5.Flowchart of the proposed technique

The different steps of PSO are as follows¥dandVvj (where'i’ represents particle ang

its dimension):

Step 1. Set parametabmin, ®max €1 andc, of PSO
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338 Step 2. Initialize population of particles having positiodsand velocitied/

339 Step 3. Setiteratiork =1

340 Step 4. Calculate fitness of particld=i=f (X¥) and find the index of the best particle b
341 Step 5. SelectPbest’= X* andGbest= X,

342 Step 6. Takew= wmax K X (@max @min)/Ma&Xteation

343 Step 7.  Update velocity and position of particles as;

344 VKL= wox VK i+ o x rand( ) x (Pbestj— X5;) + cox rand( ) x (Gbes§— X¥;); ¥j and W
345 Xk+1i,j: in,j+Vk+1i,j; 17] and vi

346 Step 8. Evaluate fitnes§*"%;= f (X**%) and find the index of the best particle bl

347 Step 9. Update Pbest of population

348 If F<"% <F¥ then,Pbest“Yi= X**%elsePbest“"!; = Pbest";

349 Step 10. Update Gbest of population

350 If F*"'1<F¥, thenGbest** = Pbest“*",; and seb = b1 elseGbest**'= Gbest*

351 Step 11. If k <Maxitethenk = k +1 and go to step 6 else go to step 12

352 Step 12. Print optimum solution aGbest®

353 Based on the randomly generated population, the ®S8knique provides a collection of

354  different solutions fol, Rs andR, with each new execution of the optimization tecgei This

355  provides a set of I-V curves.

356 The technique provides several |-V and P-V curvesshown in Figure 6 and 7
357 respectively that meet the objective function tamfoen the authentication of the presented
358 algorithm. The circle markers on these curves m@id, ls, [Vimp Img and Mo, 0] which are
359 the points that the I-V curve of the proposed metfiadicated by the solid lines) must pass
360  through.

361
362 Fig.6. I-V curves obtained by the presented technique

363
364 Fig.7 P-V curves obtained by the presented technique.
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The overall model error defined for each set ofearin Figure 6 and 7 is represented by

the following equation;

& = |Pmp,mi (T) - Pmp,e(T)l + |Vmp,mi(T) - Vmp,e (T)l (28)

Wheree is the overall model error and subsciigignifies the specific curve under assessment.

From all the possible optimized solution, outcomthvhe least value of is selected as the best

solution.
4. Results and Discussions

Performance of the proposed optimization technigtf®O approach) has been investigated
first. The parameters such as population 98eand acceleration coefficients@and ¢ affect the
execution of PSO. MATLAB environment is used to doct this mathematical study. The

parameters set up for considered PSO algorithimagis in Table 4:
Table 4: Parameters setup for considered PSO #igori

4.1. Convergence of PSO

In order to study the convergence of PSO for tloppsed technique, PV modules of two
different technologies have been used. As the testyre varies, for each value of temperature,
PSO is implemented and gets terminated after 1@@rgtions. The optimization has been
repeated for 100 times with some new sets of pdipanlan order to achieve the average of
optimized results. Figure 8 shows the best fitnesse versus generations plot for different

values of temperature.

Fig.8. Best fitness versus generations for P€ @ 75C for Shell SQ85

The fitness value in curves converges to zero @85PV module irrelevant of the operating
temperature. Similar results can be achieved foR KIEH-2PU and SP70 PV module. It is
observed that after every 100 generations thestvalue drops down to zero in 8ms of time to
confirm the convergence of the fitness value.

4.2. Model validation
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Based on the convergence of the proposed algaritfenPV modules of two different
technologies are used to evaluate the proposedlmader the present study. The parameters
and constraints of these technologies are spea#igelier in Tables 2 and 3, respectively. The
identified parameters obtained by applying the psag optimization technique are presented in

Figure 9.

Fig.9. Model parameters for KD210GH-2PU, SP70 and SQ8%-@tto 75C. (a) Ideality factor. (b) Series

resistance. (c) Shunt resistance.

Ideality factor, series resistance and shunt @st&t for two different technologies
(Mono-crystalline, KD210GH-2PU and Poly-crystallineP70 and SQ85 PV modules) have
been extracted by the proposed technique for éiftevalues of temperature in the range of T =
0°C to 75C. Parameters exhibit non-linear characteristicstae ideality factor is on an urge of
decrease [Figure 9(a)]. On the other hand, seeigistance shows escalating tendency [Figure 9
(b)] for SP70 and SQ85 PV modules. However, KD216&H) PV module indicates the
declining tendency in series resistance and imdirtrend in ideality factor with increase in
temperature. In case of shunt resistance, the vaheatified approximately remains constant for
KD210GH-2PU, SP70 and SQ85 PV modules. Seriestaesis decreases with increase in the
ideality factor and vice-versa. However, a slightiation has been observed in case of shunt
resistance.

Out of 100 independent runs, the best value, medmevand worst value of ideality
factor, series resistance and shunt resistancéfatedt temperatures for KD210GH-2PU and

SQ85 PV modules are presented in Table 5.
Table 5: Identified parameters for KD210GH-2PU &@B5 PV modules

Based on the obtained values of the unknown pammet-V and P-V curves of
KD210GH-2PU PV module at different insolation amanperature are obtained as shown in

Figure 10 and Figure 11 respectively.
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Fig.10. I-V and P-V curves of proposed model (solid limejl manufacturer's experimental data (circle masgter
lse PmpandVye) of KD210GH-2PU (Multi-crystalline) PV module unddifferent irradiation, T = 2&.

Fig.11. I-V and P-V curves of proposed model (solid limejl manufacturer's experimental data (circle masgter
lse, PmpandVyg) of KD210GH-2PU (Multi-crystalline) PV module aifi@rent temperature, G = 1000WIm

The circle marker alts,, Pmp andVyc indicates manufacturer’s experimental data and the
results based on the proposed method are indidayethe solid lines. So, the proposed
methodology and obtained results clearly indichiat the achieved characteristic curves are

quite similar to the manufacturer’s data, irrespecof varying atmospheric conditions.
4.3 Comparison of the proposed technique

In order to keep point of reference of the propdsetinique with techniques used in [16]
and [19], the relation between absolute error iwgroand voltage is shown in Figure 12. It is
seen that a similar range of accuracy is obtairtddren the presented method and method used
in [19] for different values of temperature. The@posed method offers better accuracy at MPP,
whereas, the method presented in [16], shows adsmable amount of error for different values

of temperature.

Fig.12. Absolute power error for KD210GH-2PU (Multi-crydtak) at () T = 28C, (b) T = 56C, and (¢) T =
75C, G = 1000W/m2, A.M = 1.5.

By making the variations of°C in the range of temperature froMiCOto 75C, the
findings based on two other PV modules (SP70 an85$@Qave also been observed. Figure 13

illustrates the average result of SP70 PV moduld ®@ data sets.

Fig.13. Absolute error at MPP for SP-70 (Mono-crystalline}lifferent temperature,G=1000 W/m.M =1.5.

Under STC, the error in results illustrated by mdde] is 0.013% forP,, and 0.0515%
for Vimp at MPP. As the temperature deviates from STC, racgudecreases up to 2.73% and
2.11% at 8C and 78C temperature, respectively. Also variation of efiroVy,, is observed at
0°C to 78C (mean=0.573% and standard deviation=0.289%).
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In the present study, error of 0.001% fBr,, and 0.10% foVmpat STC are found. The
maximum error 0.011% foPy, is observed for specified temperature range antasmdard
deviation of 0.045 foW, is obtained. The obtained value is six times loasecompared to [19].
A similar pattern of results is obtained for SQ8% Rodule. Table 6 gives the mean and
standard deviation values for SP70 and SQ85 PV fasdu

Table 6: Comparison of absolute error at MPP (A.5] 1000 W/m)

It is therefore recommended that in order to atkam modeling error under temperature

variation, it is essential to adjustRs andR,.
5. Conclusions and futureworks

A novel approach of optimization technique basadP&O with binary constraints is
presented in order to identify the unknown paramseté a single diode model. The proposed
method completely eliminates the requirement otiaésg the ideality factor. It also includes

the temperature variations to identify the unkng@anameters.

The evaluation of three different PV modules ensuble robustness of the proposed
technique. The two novel approaches have been dwesi as a point of reference for the
proposed technique. Appreciable accuracy in theltsegs achieved irrespective of temperature
variations. The PSO algorithm has been executedid@®3 with same initial condition as well as
with standard parameter values provided by the fiaatwrer. The mean of maximum modeling
error at MPP is found to be less than 0.02 % foximam voltage and 0.26 % for maximum

power.
In future, following works are proposed to imprdtie performance of PV model:

» With growing interests in the study of partial simgdand accuracy concerns associated with
low insolation and large PV installations, perfonoa prediction is important for accurate
energy Yyield. More elaborate and accurate mod&ks tivo-diode model (or three-diode
model) must be incorporated for performance anslykthe PV system.

» Further, one of the promising alternatives for catimqg the model parameters under these

conditions could be hybrid approach.
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Furthermore, the PV models are still based on nwgstalline and poly-crystalline

technology. For instance, amorphous thin film medutave high ideality factor due to low

fill factors. However, models presume fill factorthe range of 1 < a < 2. There are very few

committed efforts carried out for multi-junctiorrganic and dye synthesized PV cells. These
are emerging areas of interests and particular@nubrelated to them must be resolved.
Finally, problems associated to cell degradatiorth ime and weather conditions must be
addressed. Additional coefficients can be addeahitnic the cell deterioration for different
module technologies. This effort will offer a gresatunderstanding of the module

performance over an extensive period of time.
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Table 1: Transformed parameters for series and parallel topologies.

SN Parameters of SPV Parameters of PV module Parameters of PV module
T cell (Nscellsconnected in series) | (N, cells connected in parallel)
1. Ipy Ipy Nplpy
2. Vi NsVy V4
3. Rs NsRs RY/Np
4, R« NsRa Rs/Np
Table 2: Parameters provided by the manufacturers of different PV modules at STC.
Parameters | Unit Multi-crystalline Mono-crystalline | Mono-crystalline
Kyocera KD210GH-2PU | Shell SP70 Shell SQ85
I A 8.58 4.70 5.45
Voc V 33.20 21.40 22.20
I mp A 7.90 4.25 4.95
Vmp V 26.60 16.50 17.20
Kvoc (mV/°C) -120 -76 -72.50
Kis (mA/°C) 5.15 2 0.8
Kpmp (%/°C) -0.45 -0.45 -0.43
N Nos. 54 36 36
Table 3: Binary constraints considered for simulation
¢ Multi-crystalline Mono-crystalline | Mono-crystalline
Parameters | Uit -8 cera, KD210GH-2PU | Shell, SP70 Sndl, SO85
3min - 0.5 0.5 0.5
Bmax - 2.0 2.0 2.0
Rpmin ohm 0.001 0.001 0.001
Rpmax ohm 1.0 1.0 1.0
Rsmin ohm 50 50 50
Rsmax ohm 200 200 200
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Table 4: Parameters setup for considered PSO agorithm

S.No. Parameters Values
1. | Population size (ps) 60
2. | Acceleration coefficients (c;=cy) 2.0
3. | Minimum value of inertia factor, (wmin) 0.4
4. | Maximum value of inertiafactor, (wmax) 0.9
5. | Maximum iteration 1000
6. | Maximum tolerance for objective function | 10°

Table5: Identified parameters for KD210GH-2PU and SQ85 PV modules

Temperature

Vaues

KY OCERA-KD210GH-2PU

SHELL-SQ85

a Rs ()

Rp ()

a

Rs (Q2)

Rp ()

25°C

Best Value (Goe)

1.6016

0.0012

104.5979

1.60

56 | 0.0284

55.7392

Mean Vaue (Grean)

1.4809

0.0909

142.7663

1.56

03 | 0.2161

130.1744

WOrSt Va| ue (Gworst)

0.6785

0.4989

193.9616

0.91

77 | 0.5473

193.6260

50°C

Best Value (Gpe)

1.5996

0.0010

199.9060

1.59

98 | 0.0010

199.9962

Mean Vaue (Gmean)

1.5582

0.0186

165.0791

1.5448

0.0309

181.9622

Worst Vaue (Gyors)

0.5577

0.4393

107.2338

0.67

85 | 0.4989

193.9616

75°C

Best Value (Gpest)

1.5996

0.0010

199.9773

1.59

98 | 0.0009

199.9274

Mean Vaue (Gmean)

1.5793

0.0099

158.1982

1.57

26 | 0.0160

171.7543

Worst Value (Gyors)

0.5517

0.4393

107.2338

0.67

86 | 0.4988

193.9616

Table 6: Comparison of absolute error at MPP (A.M 1.5, 1000 W/m?)

Shell SP70

Shell SQ85

Standard Deviation (%)

Standard Deviation (%)

Method

Prp Error

Vmp Error

Prp Error

Vmp Error

[19]

0.726

0.289

0.829

0.282

Proposed

0.002

0.045

0.002

0.047

T
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Fig.5. Flowchart of the proposed technique
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Fig.11. I-V and P-V curves of proposed model (solid limejl manufacturer's experimental data (circle masgter
lsc, Pmp @ndVo) of KD210GH-2PU (Multi-crystalline) PV module aifigrent temperature, G = 1000W/m
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HIGHLIGHTS

In the proposed study, unknown parameters (idedhtgtor, series resistance, shunt
resistance) of the single diode model are idewtiiensidering binary constraints using PSO
based approach.

Based on the results of the proposed techniquehhracteristic curve of the PV module is

validated with the manufacturer’'s experimental data

The two novel approaches have been consideredpasnt of reference for the proposed

technique.
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