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Abstract-Photo-voltaic (PV) is a static medium to convert solar energy directly into 10 

electricity. In order to predict the performance of a PV system before being installed, a 11 

reliable and accurate model design of PV systems is essential. To validate the design of a 12 

PV system like maximum power point (MPP) and micro-grid system through simulation, 13 

an accurate solar PV model is required. However, information provided by manufacturers 14 

in data sheets is not sufficient for simulating the characteristic of a PV module under 15 

normal as well as under diverse environmental conditions. In this paper, a particle swarm 16 

optimization (PSO) technique with binary constraints has been presented to identify the 17 

unknown parameters of a single diode model of solar PV module. Multi-crystalline and 18 

mono-crystalline technologies based PV modules are considered under the present study. 19 

Based on the results obtained, it has been found that PSO algorithm yields a high value of 20 

accuracy irrespective of temperature variations. 21 
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Nomenclature 

amin  minimum value of ideality factor 

amax  maximum value of ideality factor 

b  index of the best individual in population 

c1 and c2 acceleration factor 

D  component of each individual of population 

f(.)  objective function to be evaluated 

Fk
i  value of objective function for ith individual of population at iteration k  

Gbestk
  the global best individual of population up to iteration k 

Gbestkj  jth component of the best individual of population up to iteration k 

i  individuals of population i∈ {1, 2, . . ., N} 

j  components of an individual j ∈ {1, 2, . . ., D} 

k  iteration counter (k ∈ {1, 2, . . ., Maxite}) 

Maxite  maximum number of iterations 

N  population size 

Pbestk
i  personal best of ith individual of population up to iteration k 

Pbestki,j personal best jth component of ith individual of population up to iteration k 

rand( )  uniformly generated random number in the range[0, 1] 

Rs min  minimum value of series resistance factor 

Rs max  maximum value of series resistance factor 

Rp min  minimum value of shunt resistance factor 

Rp max  maximum value of shunt resistance factor 

Sign(.)  signum function on each variable of the input vector 

V  initial velocity of N individuals each having D components 

Vk
i,j  velocity of jth component of ith individual of population at iteration k 

X  population of N individuals each having D components (variables) 

Xk
i  ith individual of population X at iteration k, i.e., Xk

i=[Xk
i,1, X

k
i,2, . . ., X

k
i,D] 

ω  inertia factor 

ωmax  maximum value of inertia factor 

ωmin  minimum value of inertia factor 
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Abbreviations 

ABSO  Artificial Bee Swarm optimization  

BFA  Bacteria foraging algorithm  

CPSO  Chaos particle swarm optimization algorithm 

CSA  Cuckoo Search algorithm  

EAs  Evolutionary algorithms  

GA  Genetic algorithm 

MAE  Mean absolute error  

MPP  Maximum power point  

MPPT  Maximum power point tracking 

PSO  Particle swarm optimization 

PV  Photo-voltaic  

RMSE  Root mean square error 

SA  Simulated annealing  

STC  Standard test conditions 

 34 

1. Introduction 35 

In the current scenario, socio-economic development and human welfare around the 36 

world depends on energy. Fossil fuels account maximum share in the overall generation. 37 

However, carbon emissions and depletion are some issues associated with the use of fossil fuels. 38 

The energy demand around the world is continuously increasing. If this escalating demand is to 39 

be met with fossil fuels, the extensive use of fossil fuels will release a large amount of CO2 and 40 

other greenhouse gases. Renewable energy sources on the other hand are abundant in nature and 41 

contain quite low or no greenhouse-gas emissions. Therefore, it is the necessity of today’s world 42 

to concentrate on renewable energy sources for electricity generation. Solar energy has been a 43 

paramount part of renewable energy sources as it is available directly from the sun, whereas 44 

wind, wave, hydro etc. are indirectly derived. Solar energy is also available in abundance and is 45 

non exhaustible, but the technology to harness solar energy is still improving. Solar PV 46 

technology exploits the solar radiation and directly converts it into electricity. The utilization of 47 

photovoltaic (PV) technology as a source of power at user end is increasing, due to easy 48 

implementation and low maintenance cost compared to other forms of energy conversion [1]. PV 49 
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technology has the highest power density amongst all renewable energy resources with global 50 

mean of 170 W/m2 [2]. In order to predict the performance of a PV system, a reliable and 51 

accurate model design of PV systems is a necessary before being installed. 52 

Performance of the PV system is affected by change in temperature and insolation [3]. 53 

Ideally a PV module needs to be operated at maximum power point (MPP). This incorporates 54 

advance research in real time optimization techniques like fuzzy logic, artificial neural network, 55 

perturb and observe algorithms etc. [4]. Therefore, it is essential to have a comprehensive study 56 

and performance analysis of a PV model to predict the outcome of a PV module under diverse 57 

atmospheric conditions. 58 

The parameters provided in the manufacturers datasheet under standard test conditions 59 

(STC) include short-circuit current, open-circuit voltage, voltage at maximum power, current at 60 

maximum power and temperature coefficients of current, voltage and power. Although, provided 61 

data is essential but not enough to predict accurate I-V characteristic curves under varying 62 

insolation and temperature levels. Single diode PV model is extensively used by several 63 

researchers [5-9, 11, 12, 45-47] due to its simplicity. Humada et al. [12] compared and 64 

summarizes the techniques for parameter extraction. Further, they have also compared single-65 

diode and double diode models for one, two, three, four and five parameters by setting a model 66 

evaluation criterion. The study suggests that five parameter (single-diode) model is the most 67 

widely model due to its high accuracy and less complex design. 68 

The main issue associated with single-diode PV model is to identify five unknown 69 

parameters i.e. ideality factor (a), series resistance (Rs), shunt resistance (Rp), reverse saturation 70 

current (Io) and photovoltaic current (Ipv). Identification of these parameters by a suitable method 71 

is essential in order to accurately predict the PV module characteristics. The methods include 72 

analytical approach, iterative approach or real time approach. 73 

Studies have been carried out using an ideal model of a PV cell which does not include 74 

series and shunt resistance [13, 14] as shown in Fig. 1. 75 

 76 

Fig.1. Equivalent circuit of an ideal PV model 77 
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The previous studies suggested that ideal model is simple but less accurate. Researchers 78 

in [10, 15-18] proposed models with four parameters (a, Rs, Io, Ipv) accounting shunt resistance to 79 

be infinite. Although, the proposed four parameters model has not been proved accurate yet, it is 80 

considered to be favorable as the unknown parameters can be easily identified in comparison to 81 

the model with five parameters (a, Rs, Rp, Ioand Ipv). 82 

 To resolve the issue with the necessity of obtaining unknown parameters, a five 83 

parameter model based on the values of manufacturer datasheet was presented by Villalva et al. 84 

[19].Value of ideality factor was obtained through trial and error method. The new value of Rs 85 

and Rp depends upon the previous value of Rs. The new set of values was determined by 86 

continuously increasing Rs and simultaneously computing Rp. These values were determined till 87 

MPP of the presented model reaches to the same value as provided in manufacturer’s datasheet 88 

at STC. Once unknown parameters are extracted, these parameters are fixed and again calculated 89 

for same model under the influence of varying insolation and temperature levels. Under standard 90 

test conditions (STC), the developed method yields accurate MPP. However accuracy gets 91 

compromised under the effect of varying temperature [20]. 92 

W. Xiao et al. [21] used a database of MPP acquired from manufacturer in order to 93 

produce exact MPP at varying temperatures. At different values of temperature, MPP was 94 

matched by regulating ideality factor through iterative technique. The drawback associated 95 

herewith is to obtain the availability of MPP for varying temperatures, which is not provided in 96 

manufacturer datasheet. Park and Choi [22] employed a parameter extraction method based on 97 

datasheet values. MPP error formulation is incorporated as objective function and parameter 98 

optimization is achieved by using pattern search algorithm. 99 

Recently numerous evolutionary algorithms (EAs) were adopted to determine unknown 100 

parameters of a PV module under consideration. Jena and Ramana [23] presented a critical 101 

review based on modeling and parameter identification of a PV cell for simulation. They have 102 

analyzed Rs, Rp and two diode model along with different parameter identification schemes 103 

(analytical as well as soft computing). In recent years, the metaheuristic optimization algorithms 104 

such as genetic algorithm (GA) [24-26], simulated annealing (SA) [27], artificial Bee Swarm 105 

optimization (ABSO) algorithm [28, 29], and particle swarm optimization (PSO) [30], have 106 
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received considerable attention towards solar cell parameters identification problem. 107 

Metaheuristic algorithms are appropriate selections for resolving the drawback associated with 108 

parameter extraction at varying atmospheric conditions. 109 

In case of GA, serious shortcomings, namely low speed and degradation for highly 110 

interactive fitness function has been reported [31, 32]. El-Naggar et al. [27] employed Simulated 111 

Annealing (SA) to extract the parameters of single and two-diode models for cell and module. 112 

The trade-off between the cooling schedule and initial temperature is the major issue that makes 113 

SA a less preferable choice. Jieming et al. [33] utilized Cuckoo Search algorithm (CSA) to 114 

identify the parameters of the conventional and an advanced form of the single diode model for 115 

PV cell and module. Askarzadeh and Rezazadeh [34] employed ABSO to obtain the parameters 116 

of the single and double-diode models for PV module. Rajasekar et al. [35] presented a Bacteria 117 

Foraging algorithm (BFA) to compute all parameters of the single diode RP-model under varying 118 

operating temperature and insolation values. By utilizing parameters provided on the 119 

manufacturer’s datasheet, Ipv and I0 were analytically computed, whereas a, Rs, and Rp were 120 

obtained by optimizing equation of slope at MPP. 121 

Qin and Kimball [36] eliminated the idea of unknown parameters estimation for the SPV 122 

model. They exploited the field test data along with PSO algorithm to determine the value of a, 123 

Rs and Rp. Measurements of short circuit current and load data were required for the field test. 124 

Hengsi and Jonathan [30] employed PSO to extract PV cell parameters from the data measured 125 

under real operating conditions of varying insolation and temperature. Wei H et al. [37] used 126 

chaos particle swarm optimization algorithm (CPSO) to obtain unknown parameters of the single 127 

diode Rp model for a module. In CPSO, the chaotic search mechanism is utilized to re-initiate the 128 

stationary particles-causing an enhanced local and global search capability. Ye et al. [38] utilized 129 

PSO to determine the cell parameters of the single and two-diode models from the I–V curves. In 130 

comparison to GA, PSO was found to be more accurate with better computational speed. On the 131 

basis of operating conditions, module technology and type of model researchers have employed 132 

numerous parameter extraction techniques having advantages and disadvantages of their own. 133 

Among all the techniques, performance of PSO algorithm is found to have an adequate sense of 134 

balance between accuracy, speed and complexity. 135 
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The PSO algorithm is a swarm intelligence optimization algorithm based on observations 136 

of the social behavior of bird flocking or fish schooling [28-30, 36-41]. Several authors have 137 

utilized and improved many versions of PSO algorithm [28,29,38-41]. However, every version 138 

of PSO has different advantage for different complex optimal problem. The major disadvantages 139 

observed in PSO are of premature convergence and the loss of diversity in the population. 140 

In order to eliminate the mentioned disadvantage, a novel technique has been presented in 141 

this study to compute the unknown parameters (a, Rs and Rp) of a single diode PV model. In the 142 

present study, a PSO based single diode model is developed to predict unknown parameters 143 

under varying operating conditions. In order to retain these parameters within realistic ranges and 144 

considering the effects of temperature variation, a binary constraint has been imposed i.e. by 145 

penalizing the objective function when the solution attempts to exceed the predefined parameters 146 

boundary limits. The accuracy of the model is assured irrespective of the temperature change. 147 

 The present study deals with identification of PV model using PSO with binary 148 

constraints. An overview of mathematical modeling framework of a PV model is presented and 149 

further, the problem formulation along with the proposed optimization technique is discussed. 150 

Results and performance validation of the proposed technique are discussed in detail. Further, 151 

the obtained results are compared with the results of other methods proposed in [16] and [19]. 152 

The proposed technique is found to be advantageous as it has the capability of determining 153 

ideality factor, series and shunt resistance simultaneously without the need of estimating ideality 154 

factor and field data measurements. Also, the extracted parameters are computed as a function of 155 

insolation and temperature. 156 

 157 

2. Mathematical Modeling framework of a PV module based on single diode model. 158 

2.1.  Ideal PV cell model 159 

An ideal PV cell is represented by photo-generated current (Ipv) which diverges from the ideal 160 

outcome due to electrical and optical losses [23, 41]. Further, the effect of series and parallel 161 

resistance are not considered in this simplest PV model. Schematic for an ideal PV model is 162 
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shown earlier in Figure 1. Terminal current of an ideal model is represented by I-V 163 

characteristics and mathematically expressed as: 164 

� = ��� − ��           (1) 165 

The diode current (Id) signifies diffusion and recombination current in quasi steady state 166 

regions of emitter and excess concentration regions of PN junction. This diode current is 167 

represented by Shockley equation as: 168 

�� = ��	
��
 ���⁄ − 1�         (2) 169 

where q is the charge of an electron (1.6x10-19C), K is the Boltzmann constant (1.3805x10-23 J/K) 170 

T is temperature (K), I0 is leakage current and Vd is the diode voltage.  171 

The ideal mathematical model based on diode equation of Shockley and Queisser is 172 

expressed as: 173 

� = ��� − ���
��
 ���⁄ − 1�         (3) 174 

Ideal solar PV cell does not consider the effect of internal resistance, thus fails to 175 

establish an accurate relationship between cell current and voltage. 176 

2.2. Practical PV cell Model. 177 

In order to achieve accurate results, a series resistance is introduced to the ideal PV cell 178 

model. Although this model is simple but it reveals deficiencies when subjected to temperature 179 

variations. To overcome this limitation, the model has been extended further by considering a 180 

shunt resistance and is termed as Practical PV cell. Thus, the practical single diode PV or five 181 

parameter (Ipv, I0, a, Rs and Rp) model consists of current producer and a diode with series and 182 

shunt resistance as shown in Fig. 2[4-12, 42]. The characteristics I-V curve of a practical PV cell 183 

is shown in Fig. 3. 184 

 185 

Fig.2. Equivalent circuit of a practical PV cell 186 

 187 
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Fig.3. I-V characteristics curve of a PV cell. 188 

The series resistance signifies resistance (ohmic loss) offered to the current flow due to 189 

ohmic contact (metal-semiconductor contact) and impurity concentrations along with junction 190 

depth. Leakage current across the junction signifies shunt resistance, connected parallel to the 191 

diode. The mathematical representation of terminal current in Eq. (1) is modified as: 192 

� = ��� − �� − �� ��⁄           (4) 193 

�� = � + ���           (5)  194 

where V is input voltage and I is the terminal current.  195 

It is recognized that I-V characteristic curve of a PV cell is affected by both series 196 

resistance and shunt resistance. The output voltage is affected by series resistance; while shunt 197 

resistance is responsible for reduction in available current [14-15, 43-47].Eq. (3) is modified to 198 

obtain the equation of single diode PV model. The terminal current of a single diode(five-199 

parameter) model is given by: 200 

� = ��� − �� �
�� �� !"#��$ % − 1& − � !"#"'        (6) 201 

where VT  is the thermal voltage (nkT/q). 202 

2.3. Modeling of a PV module 203 

A PV module may consist of number of PV cells which can be connected in series or 204 

parallel. This series-parallel topology is represented in Fig. 4.  205 

 206 

Fig.4. Equivalent circuit model of a PV module 207 

The parameters of a PV cell are transformed in order to represent a PV module. Table 1 208 

represents the parameters which are transformed due to series/parallel PV topologies [45, 47]. 209 

Table 1: Transformed parameters for series and parallel topologies. 210 

Terminal current for series-parallel configuration of a PV module can be written as; 211 
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� = (� )��� − �*+ ,
�� -� !"#./#/'0
�1#�$ 2 − 134 − )� !"#./#/'0

"#5./#/'0 4     (7) 212 

A single PV module is a particular case of PV cells connected in series. Therefore, the 213 

number of cells connected in series (i.e. Ns) will be scaled with Vt. Now, equation (6) can be 214 

rewritten as; 215 

� = ��� − �� �
�� �� !"#�1#�$ % − 1& − � !"#"'        (8) 216 

Depending upon the load requirements, the numbers of modules are connected in series 217 

to increase voltage levels, whereas modules are connected in parallel to increase current levels. 218 

When the terminals of a PV module are short-circuited, the current that flows through the 219 

circuit is termed as short-circuit current (Isc). It is the maximum current that flows through a PV 220 

cell. Isc of a PV module depends on incident insolation, which is determined by the spectrum of 221 

incident light, i.e. AM 1.5 spectrum. Isc also depends on cell area and its ability to absorb incident 222 

solar radiation [23].At a given temperature T, V=0 and I=I sc, Eq.(8) becomes: 223 

�*6789 = "'"# "' :��� − �� �
�� �!#;7�9 "#�1#�$7�9 % − 1&<      (9) 224 

Open circuit voltage (Voc) is the maximum voltage that can be delivered by a PV module. 225 

The Open circuit voltage corresponds to forward bias voltage, at which dark current compensates 226 

the photo-generated current and Vocis dependent on the density of photo-generated current. At 227 

open circuit condition I=0, V=Voc and Eq. (8) becomes; 228 

�=6789 = �� :��� − �� �
�� � �>;7�9
�1#�$7�9% − 1&<       (10)  229 

At a given temperature, maximum power is determined by the product of maximum 230 

current and voltage as shown in Fig. 3. By substituting I=I mp and V=Vmp, the maximum power at 231 

a given temperature can be determined from Eq. (8) as: 232 

?@�789 = "'�A'7�9
"# "' × C��� − �� �
�� ��A'7�9 !A'7�9"#�1#�$7�9 % − 1& − �A'7�9

"' D   (11) 233 
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Equations (9-11) are the data points used by the optimizer to provide the finest set of 234 

values for a, Rp and Rs. Also, the proportional effect of insolation intensity (G) and operating 235 

temperature (T) on the PV output current are given in Eqs. (9-11) [10, 13-15, 42-47]. 236 

The insolation dependence of PV current is given by; 237 

���7E, 89 = G
GH ����,I + J!#;∆��         (12) 238 

Where Ipv,n is PV current and Gn is the solar radiation intensity in W/m2 at STC under nominal 239 

conditions, KIsc is the temperature coefficient of short circuit current (mA/oC) and ∆T (=T-Tn) is 240 

the difference of temperature between the present moment and STC. 241 

2.4. Effect of Temperature 242 

Solar  cells  work  best  at  low  temperature  as  determined  by  their  material  243 

properties. The cell efficiency decreases as the temperature escalates above operating 244 

temperature. A substantial part of incident insolation is lost in the form of heat resulting in high 245 

temperature of cells. To determine the effect of temperature on maximum power, Pmpp,e(T), open 246 

circuit voltage, Voc,e(T) and short circuit current, Isc,e(T)at a given temperature are expressed as; 247 

�*6,L789=�*6,I+J!#;∆�          (13) 248 

�=6,L789=�=6,I+J�>;∆�          (14) 249 

?@�,L789 = ?@�,I + J�A'∆�         (15) 250 

where Pmpp,n, Voc,n and Isc,n respectively represents maximum power, open circuit voltage and 251 

short circuit current under nominal circumstances. KVoc and KPmp are the temperature coefficient 252 

of open circuit voltage and maximum power point provided by the manufacturers as shown in 253 

Table 2. The datasheets of the considered modules are provided in Ref. [48], [49] and [50]. 254 

 255 

 256 

 257 

 258 
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Table 2: Parameters provided by the manufacturers of different PV modules at STC. 259 

The values of maximum voltage and maximum current temperature coefficient are not 260 

available and are approximated [57] as: 261 

KNOP ≈ 	J�>;           (16) 262 

J!A'
≈	J!#;           (17) 263 

Therefore, at different temperatures values of Vmp and Imp are anticipated as; 264 

 265 

�@�789=�@�,I+J�>;∆�          (18) 266 

�@�789=�@�,I+J!#;∆�          (19) 267 

3. The Proposed Method and Problem Formulation 268 

The PV model, represented in Eq. (8), is a mystical function which includes three 269 

unidentified parameters (a, Rs, and Rp). Conventional techniques like Newton–Raphson method 270 

triggers singularity due to large situation number of the Jacobin matrix. In order to overcome this 271 

drawback, a PSO based technique is considered and presented to eradicate the necessity for 272 

matrix inversion and partial differentiation. 273 

3.1. Objective function 274 

 Based on the manufacture’s data given in Table 2, the unidentified parameters of a single 275 

diode model as shown in Figure 1 are to be identified in order to match the generated I-V and P-276 

V curves of the presented model with the manufactures data at a specified temperature. The 277 

objective function for calculating PV module unknown parameters like ideality factor (a), series 278 

resistance ( sR ) and parallel resistance (pR ) is defined as: 279 

minfobj = |fIsc |+ |fVoc|+ |fPmp|         (20) 280 

 Contrasting the distinctive methodology that determines the model parameters by means 281 

of MPP only, the objective function in Eq. (20) consists of three data points [0, Isc], [Vmp, Imp] and 282 

[Voc, 0] for optimization. It also contemplates the consequences of temperature on the PV module 283 

for identifying a, Rs and Rp in comparison to other techniques that are dependent on STC only. 284 
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To normalize the objective function, the numerator and denominator of equations from 285 

Eq. (21-23) are obtained from Eqs. (9-11) and (13-15), respectively. This ensures that the range 286 

of the terms in the objective function is same. 287 

R�*6�S, �*, ��, 8� =
!#;7�9

!#;,T7�9
− 1         (21) 288 

 289 

R�=6�S, �*, ��, 8� =
�>;7�9

�>;,T7�9
− 1         (22) 290 

 291 

R?@��S, �*, ��, 8� =
�A'7�9

�A',T7�9
− 1        (23) 292 

3.2. Binary Constraints Handling Approach 293 

 PV modules’ parameters like ideality factor, series resistance and parallel resistance must 294 

be within their limits. Three set of constraints are imposed to handle this problem. The 295 

constraints are expressed as: 296 

min max   a a a< <           (24) 297 

,min ,max  s s sR R R< <           (25) 298 

,min ,max   p p pR R R< <           (26) 299 

where the minimum and maximum values of the parameters to be determined are represented by 300 

the subscripts ‘min’ and ‘max’, respectively. The binary constraints considered for simulation are 301 

given in Table 3. 302 

Table 3: Binary constraints considered for simulation 303 

A binary constraint handling approach is proposed to penalize the objective function if 304 

any of the above constraint violates. The proposed approach for handling binary constraints is 305 

expressed as follows: 306 

2 2 2

min max ,min ,max ,min ,max[( ( - ) ( - )) ( ( - ) ( - )) ( ( - ) ( - )) ]barrier s s s s p p p pf sign a a sign a a sign R R sign R R sign R R sign R R= + + + + +  (27) 307 

where sign(x) is a function return as -1, 0 and 1 if x < 0, x = 0 and x > 0, respectively. This 308 

binary constraint handling approach is having advantages over the other constraints handling 309 

approach as it only penalizes the objective function if there is a constraint violation. 310 
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By introducing binary constraint handling approach term into the objective function, i.e., 311 

fobj = |fIsc|+ |fVoc|+ |fPmp|+| fbarrier|, the problem is transformed into an unconstrained optimization 312 

problem. 313 

The objective function given by Eq. (20) is minimized in order to determine a, Rs and Rp 314 

by formulating the PSO approach. In previous studies [37-39, 45-50], PSO algorithm based 315 

technique has been used for maximization of the objective function. Whereas in the present 316 

study, the objective function is minimized to zero for different values of temperature and 317 

insolation using an absolute function. 318 

3.3. PSO algorithm 319 

 Particle swarm optimization is inspired by social and cooperative behavior displayed by 320 

various species to fill their needs in the search space. The algorithm is guided by personal 321 

experience (Pbest), overall experience (Gbest) and the present movement of the particles to 322 

decide their next positions in the search space. Further, the experiences are accelerated by two 323 

factors c1 and c2 known as acceleration coefficients, and two random numbers generated between 324 

[0, 1], whereas the present movement is multiplied by an inertia factor ‘ω’ varying between 325 

[ωmin, ωmax]. The size of the population is considered as ‘N’ and the dimension of each element 326 

of the population is considered as D, where D represents the total number of variables. The initial 327 

solution is denoted as X = [X1, X2..., XN]T, where ‘T’ denotes the transpose operator. Each 328 

individual Xi (i = 1, 2... N) is given as Xi = [Xi,1, Xi,2, ..., Xi,D]. The initial velocity of the 329 

population is denoted as V = [V1, V2…., VN]T. Thus, the velocity of a particle Xi (i = 1, 2, ..., N) 330 

is given as Vi = [Vi,1, Vi,2, ..., Vi,D].  331 

The flowchart of the proposed PSO-based inverse barrier technique is shown in Fig. 5. 332 

 333 

Fig.5.Flowchart of the proposed technique 334 

The different steps of PSO are as follows for ∀I and ∀j (where ‘i’  represents particle and ‘j’  335 

its dimension): 336 

Step 1. Set parameter ωmin, ωmax, c1 and c2 of PSO 337 
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Step 2. Initialize population of particles having positions X and velocities V 338 

Step 3. Set iteration k = 1 339 

Step 4. Calculate fitness of particles Fk
i=f (Xk

i) and find the index of the best particle b 340 

Step 5. Select Pbestki= Xk
i and Gbestk= Xk

b 341 

Step 6. Take ω= ωmax− k × (ωmax− ωmin)/Maxiteation 342 

Step 7. Update velocity and position of particles as; 343 

Vk+1
i,j= w × Vk

i,j+ c1 × rand( ) × (Pbestki,j− Xk
i,j) + c2 × rand( ) × (Gbestkj− Xk

i,j); ∀j and ∀i 344 

Xk+1
i,j= Xk

i,j+Vk+1
i,j;∀j and ∀i 345 

Step 8. Evaluate fitness Fk+1
i= f (Xk+1

i) and find the index of the best particle b1 346 

Step 9. Update Pbest of population 347 

If Fk+1
i <Fk

i, then, Pbestk+1
i= Xk+1

ielsePbestk+1
i = Pbestki 348 

Step 10. Update Gbest of population 349 

If Fk+1
b1<Fk

b then Gbestk+1 = Pbestk+1
b1 and set b = b1 else Gbestk+1= Gbestk 350 

Step 11. If k <Maxite then k = k +1 and go to step 6 else go to step 12 351 

Step 12. Print optimum solution as Gbestk 352 

Based on the randomly generated population, the PSO technique provides a collection of 353 

different solutions for a, Rs and Rp with each new execution of the optimization technique. This 354 

provides a set of I-V curves.  355 

The technique provides several I-V and P-V curves as shown in Figure 6 and 7 356 

respectively that meet the objective function to confirm the authentication of the presented 357 

algorithm. The circle markers on these curves indicate [0, Isc], [Vmp, Imp] and [Voc, 0] which are 358 

the points that the I-V curve of the proposed method (indicated by the solid lines) must pass 359 

through. 360 

 361 

Fig.6. I-V curves obtained by the presented technique 362 

 363 

Fig.7 P-V curves obtained by the presented technique. 364 
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The overall model error defined for each set of curves in Figure 6 and 7 is represented by 365 

the following equation; 366 

WX = Y?@�,@Z
789 − ?@�,L789| + Y�@�,@Z

789 − �@�,L789|     (28) 367 

Where ε is the overall model error and subscript i signifies the specific curve under assessment. 368 

From all the possible optimized solution, outcome with the least value of ε is selected as the best 369 

solution. 370 

4. Results and Discussions 371 

Performance of the proposed optimization technique (PSO approach) has been investigated 372 

first. The parameters such as population size ‘ps’ and acceleration coefficients c1 and c2 affect the 373 

execution of PSO. MATLAB environment is used to conduct this mathematical study. The 374 

parameters set up for considered PSO algorithm is shown in Table 4: 375 

Table 4: Parameters setup for considered PSO algorithm 376 

4.1.  Convergence of PSO 377 

In order to study the convergence of PSO for the proposed technique, PV modules of two 378 

different technologies have been used. As the temperature varies, for each value of temperature, 379 

PSO is implemented and gets terminated after 1000 generations. The optimization has been 380 

repeated for 100 times with some new sets of population in order to achieve the average of 381 

optimized results. Figure 8 shows the best fitness value versus generations plot for different 382 

values of temperature. 383 

 384 

Fig.8. Best fitness versus generations for T= 00C to 750C for Shell SQ85 385 

The fitness value in curves converges to zero for SQ85 PV module irrelevant of the operating 386 

temperature. Similar results can be achieved for KD210GH-2PU and SP70 PV module. It is 387 

observed that after every 100 generations the fitness value drops down to zero in 8ms of time to 388 

confirm the convergence of the fitness value. 389 

4.2.  Model validation 390 
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 Based on the convergence of the proposed algorithm, the PV modules of two different 391 

technologies are used to evaluate the proposed model under the present study. The parameters 392 

and constraints of these technologies are specified earlier in Tables 2 and 3, respectively. The 393 

identified parameters obtained by applying the proposed optimization technique are presented in 394 

Figure 9. 395 

 396 

Fig.9. Model parameters for KD210GH-2PU, SP70 and SQ85 at 0◦C to 75◦C. (a) Ideality factor. (b) Series 397 

resistance. (c) Shunt resistance. 398 

Ideality factor, series resistance and shunt resistance for two different technologies 399 

(Mono-crystalline, KD210GH-2PU and Poly-crystalline, SP70 and SQ85 PV modules) have 400 

been extracted by the proposed technique for different values of temperature in the range of T = 401 

0oC to 75oC. Parameters exhibit non-linear characteristics and the ideality factor is on an urge of 402 

decrease [Figure 9(a)]. On the other hand, series resistance shows escalating tendency [Figure 9 403 

(b)] for SP70 and SQ85 PV modules. However, KD210GH-2PU PV module indicates the 404 

declining tendency in series resistance and inclining trend in ideality factor with increase in 405 

temperature. In case of shunt resistance, the values identified approximately remains constant for 406 

KD210GH-2PU, SP70 and SQ85 PV modules. Series resistance decreases with increase in the 407 

ideality factor and vice-versa. However, a slight variation has been observed in case of shunt 408 

resistance. 409 

Out of 100 independent runs, the best value, mean value and worst value of ideality 410 

factor, series resistance and shunt resistance at different temperatures for KD210GH-2PU and 411 

SQ85 PV modules are presented in Table 5. 412 

Table 5: Identified parameters for KD210GH-2PU and SQ85 PV modules 413 

Based on the obtained values of the unknown parameters, I-V and P-V curves of 414 

KD210GH-2PU PV module at different insolation and temperature are obtained as shown in 415 

Figure 10 and Figure 11 respectively. 416 

 417 
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Fig.10. I–V and P–V curves of proposed model (solid line) and manufacturer’s experimental data (circle marker at 418 

Isc, Pmp and Voc) of KD210GH-2PU (Multi-crystalline) PV module under different irradiation, T = 25◦C. 419 

 420 

Fig.11. I–V and P–V curves of proposed model (solid line) and manufacturer’s experimental data (circle marker at 421 

Isc, Pmp and Voc) of KD210GH-2PU (Multi-crystalline) PV module at different temperature, G = 1000W/m2. 422 

The circle marker at Isc, Pmp and Voc indicates manufacturer’s experimental data and the 423 

results based on the proposed method are indicated by the solid lines. So, the proposed 424 

methodology and obtained results clearly indicate that the achieved characteristic curves are 425 

quite similar to the manufacturer’s data, irrespective of varying atmospheric conditions. 426 

4.3 Comparison of the proposed technique 427 

In order to keep point of reference of the proposed technique with techniques used in [16] 428 

and [19], the relation between absolute error in power and voltage is shown in Figure 12. It is 429 

seen that a similar range of accuracy is obtained between the presented method and method used 430 

in [19] for different values of temperature. The proposed method offers better accuracy at MPP, 431 

whereas, the method presented in [16], shows a considerable amount of error for different values 432 

of temperature. 433 

 434 

Fig.12. Absolute power error for KD210GH-2PU (Multi-crystalline) at (a) T = 25◦C, (b) T = 50◦C, and (c) T = 435 

75◦C, G = 1000W/m2, A.M = 1.5. 436 

By making the variations of 10C in the range of temperature from 00C to 750C, the 437 

findings based on two other PV modules (SP70 and SQ85) have also been observed. Figure 13 438 

illustrates the average result of SP70 PV module for 100 data sets. 439 

 440 

Fig.13. Absolute error at MPP for SP-70 (Mono-crystalline) at different temperature,G=1000 W/m2, A.M =1.5. 441 

Under STC, the error in results illustrated by model [19] is 0.013% for Pmp and 0.0515% 442 

for Vmp at MPP. As the temperature deviates from STC, accuracy decreases up to 2.73% and 443 

2.11% at 00C and 750C temperature, respectively. Also variation of error in Vmp is observed at 444 

00C to 750C (mean=0.573% and standard deviation=0.289%). 445 
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 In the present study, error of 0.001% for ‘Pmp’ and 0.10% for Vmp at STC are found. The 446 

maximum error 0.011% for Pmp is observed for specified temperature range and a standard 447 

deviation of 0.045 for Vmp is obtained. The obtained value is six times lower as compared to [19].  448 

A similar pattern of results is obtained for SQ85 PV module. Table 6 gives the mean and 449 

standard deviation values for SP70 and SQ85 PV modules. 450 

Table 6: Comparison of absolute error at MPP (A.M 1.5, 1000 W/m2) 451 

It is therefore recommended that in order to attain low modeling error under temperature 452 

variation, it is essential to adjust a, Rs and Rp. 453 

5. Conclusions and future works 454 

 A novel approach of optimization technique based on PSO with binary constraints is 455 

presented in order to identify the unknown parameters of a single diode model. The proposed 456 

method completely eliminates the requirement of assuming the ideality factor. It also includes 457 

the temperature variations to identify the unknown parameters.  458 

The evaluation of three different PV modules ensures the robustness of the proposed 459 

technique. The two novel approaches have been considered as a point of reference for the 460 

proposed technique. Appreciable accuracy in the results is achieved irrespective of temperature 461 

variations. The PSO algorithm has been executed 100 times with same initial condition as well as 462 

with standard parameter values provided by the manufacturer. The mean of maximum modeling 463 

error at MPP is found to be less than 0.02 % for maximum voltage and 0.26 % for maximum 464 

power. 465 

In future, following works are proposed to improve the performance of PV model:   466 

• With growing interests in the study of partial shading and accuracy concerns associated with 467 

low insolation and large PV installations, performance prediction is important for accurate 468 

energy yield. More elaborate and accurate models like two-diode model (or three-diode 469 

model) must be incorporated for performance analysis of the PV system. 470 

• Further, one of the promising alternatives for computing the model parameters under these 471 

conditions could be hybrid approach. 472 
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• Furthermore, the PV models are still based on mono-crystalline and poly-crystalline 473 

technology. For instance, amorphous thin film modules have high ideality factor due to low 474 

fill factors. However, models presume fill factor in the range of 1 < a < 2. There are very few 475 

committed efforts carried out for multi-junction, organic and dye synthesized PV cells. These 476 

are emerging areas of interests and particular problems related to them must be resolved.  477 

• Finally, problems associated to cell degradations with time and weather conditions must be 478 

addressed. Additional coefficients can be added to mimic the cell deterioration for different 479 

module technologies. This effort will offer a greater understanding of the module 480 

performance over an extensive period of time. 481 
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Table 1: Transformed parameters for series and parallel topologies. 

S.No. 
Parameters of SPV 

cell 
Parameters of PV module  

(NS cells connected in series) 
Parameters of PV module 

(Np cells connected in parallel) 

1. IPv IPv NpIPv 

2. Vt NsVt Vt 

3. Rs NsRs Rs/Np 

4. Rsh NsRsh Rsh/Np 

 

Table 2: Parameters provided by the manufacturers of different PV modules at STC. 

Parameters Unit 
Multi-crystalline Mono-crystalline Mono-crystalline 

Kyocera  KD210GH-2PU Shell SP70 Shell SQ85 
Isc A 8.58 4.70 5.45 
Voc V 33.20 21.40 22.20 
Imp A 7.90 4.25 4.95 
Vmp V 26.60 16.50 17.20 
KVoc (mV/oC) -120 -76 -72.50 
KIsc (mA/oC) 5.15 2 0.8 
KPmp (%/oC) -0.45 -0.45 -0.43 
Ns Nos. 54 36 36 

 

Table 3: Binary constraints considered for simulation 

Parameters Unit 
Multi-crystalline Mono-crystalline Mono-crystalline 

Kyocera,  KD210GH-2PU Shell, SP70 Shell, SQ85 
amin - 0.5 0.5 0.5 
amax - 2.0 2.0 2.0 
RPmin ohm 0.001 0.001 0.001 
RPmax ohm 1.0 1.0 1.0 
RSmin ohm 50 50 50 
RSmax ohm 200 200 200 
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Table 4: Parameters setup for considered PSO algorithm 

S.No. Parameters Values 
1. Population size (ps) 60 
2. Acceleration coefficients (c1=c2) 2.0 
3. Minimum value of inertia factor, (ωmin) 0.4 
4. Maximum value of inertia factor, (ωmax) 0.9 
5. Maximum iteration 1000 
6. Maximum tolerance for objective function 10-8 

 

 

Table 5: Identified parameters for KD210GH-2PU and SQ85 PV modules 

Temperature Values 
KYOCERA-KD210GH-2PU SHELL-SQ85 

 a Rs (Ω) Rp (Ω) a Rs (Ω) Rp (Ω) 

250C 
Best Value (Gbest)  1.6016 0.0012 104.5979 1.6056 0.0284 55.7392 
Mean Value (Gmean) 1.4809 0.0909 142.7663 1.5603 0.2161 130.1744 
Worst Value (Gworst) 0.6785 0.4989 193.9616 0.9177 0.5473 193.6260 

500C 
Best Value (Gbest)  1.5996 0.0010 199.9060 1.5998 0.0010 199.9962 
Mean Value (Gmean) 1.5582 0.0186 165.0791 1.5448 0.0309 181.9622 
Worst Value (Gworst) 0.5577 0.4393 107.2338 0.6785 0.4989 193.9616 

750C 
Best Value (Gbest)  1.5996 0.0010 199.9773 1.5998 0.0009 199.9274 
Mean Value (Gmean) 1.5793 0.0099 158.1982 1.5726 0.0160 171.7543 
Worst Value (Gworst) 0.5517 0.4393 107.2338 0.6786 0.4988 193.9616 

 

 

Table 6: Comparison of absolute error at MPP (A.M 1.5, 1000 W/m2) 

 
Method 

Shell SP70 Shell SQ85 
Mean (%) Standard Deviation (%) Mean (%) Standard Deviation (%) 

Pmp 
Error 

Vmp 
Error 

Pmp Error Vmp Error 
Pmp 

Error 
Vmp 

Error 
Pmp Error Vmp Error 

[19] 1.246 0.573 0.726 0.289 1.373 0.420 0.829 0.282 
Proposed 0.003 0.068 0.002 0.045 0.001 0.077 0.002 0.047 
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Fig.1. Equivalent circuit of an ideal PV model 

 

Fig.2. Equivalent circuit of a practical PV cell 

 
Fig.3. I-V characteristics curve of a PV cell. 

 
Fig.4. Equivalent circuit model of a PV module 
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Fig.5. Flowchart of the proposed technique 
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Fig.6. I-V curves obtained by the presented technique 

 

 

 
Fig.7 P-V curves obtained by the presented technique. 
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Fig.8. Best fitness versus generations for T= 00C to 750C for Shell SQ85 

 

 

 
Fig.9. Model parameters for KD210GH-2PU, SP70 and SQ85 at 0◦C to 75◦C. (a) Ideality factor. (b) Series 

resistance. (c) Shunt resistance. 

 

 

 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

 
Fig.10. I–V and P–V curves of proposed model (solid line) and manufacturer’s experimental data (circle marker at 

Isc, Pmp and Voc) of KD210GH-2PU (Multi-crystalline) PV module under different irradiation, T = 25◦C. 

 

 

 
Fig.11. I–V and P–V curves of proposed model (solid line) and manufacturer’s experimental data (circle marker at 

Isc, Pmp and Voc) of KD210GH-2PU (Multi-crystalline) PV module at different temperature, G = 1000W/m2. 
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Fig.12. Absolute power error for KD210GH-2PU (Multi-crystalline) at (a) T = 25◦C, (b) T = 50◦C, and (c) T = 

75◦C, G = 1000W/m2, A.M = 1.5. 

 
Fig.13. Absolute error at MPP for SP-70 (Mono-crystalline) at different temperature, G=1000 W/m2, A.M =1.5. 
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HIGHLIGHTS 

• In the proposed study, unknown parameters (ideality factor, series resistance, shunt 

resistance) of the single diode model are identified considering binary constraints using PSO 

based approach. 

• Based on the results of the proposed technique the characteristic curve of the PV module is 

validated with the manufacturer’s experimental data. 

• The two novel approaches have been considered as a point of reference for the proposed 

technique. 

 

 

 

 


