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a b s t r a c t

With the increasing demand for electricity and the advent of smart grids, developed countries are
establishing demand side management (DSM) techniques to influence consumption patterns. The use of
dynamic pricing strategies has emerged as a powerful DSM tool to optimize the energy consumption
pattern of consumers and simultaneously improve the overall efficacy of the energy market. The main
objective of the dynamic pricing strategy is to encourage consumers to participate in peak load reduction
and obtain respective incentives in return. In this work, a game theory based dynamic pricing strategy is
evaluated for Singapore electricity market, with focus on the residential and commercial sector. The
proposed pricing model is tested with five load and price datasets to spread across all possible scenarios
including weekdays, weekends, public holidays and the highest/lowest demand in the year. Three pricing
strategies are evaluated and compared, namely, the half-hourly Real-Time Pricing (RTP), Time-of-Use
(TOU) Pricing and Day-Night (DN) Pricing. The results demonstrate that RTP maximizes peak load
reduction for the residential sector and commercial sector by 10% and 5%, respectively. Moreover, the
profits are increased by 15.5% and 18.7%, respectively, while total load reduction is minimized to ensure a
realistic scenario.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Electricity has grown to become an essential part of human life.
A reliable and seamless supply is required to facilitate economic
and industrial growth as well as to improve quality of life. Global
electricity demand has been increasing exponentially and is ex-
pected to double in value between 2002 and 2030 [1]. Electricity is
a non-storable commodity; its wholesale price varies across time
periods depending on demands [2]. In most cases however, the
consumer is charged a fixed price and the price fluctuations are
borne by the utility company. Since consumers are unaffected by
wholesale price changes, their demand shows drastic fluctuations
with low valleys at night and high peaks during the day. These
fluctuations decrease supply reliability, system efficiency and
reduce profits for utility companies. Moreover, many countries have
also chosen to restructure their power industry and introduce
ivasan), anurag@u.nus.edu
deregulation in their electricity markets. Hence, companies need to
establish Demand-Side Management (DSM) strategies to influence
user consumption patterns and thereby achieve peak-load reduc-
tion. The increasing penetration of renewables and market dereg-
ulation has further bolstered the need for operational flexibility in
the grid and resulted in development of efficient DSM techniques
[3e6]. It is noted that the availability of renewable generation will
impact the dynamic pricing strategy and thus, the DSM techniques
based on its intermittency and cheaper generation cost.

Demand response techniques can control and modify user
consumption patterns through incentive based dynamic pricing
techniques. Demand response algorithms have been widely adop-
ted in the literature as they result in significant electricity bill
savings and avoid undesirable peaks in the daily load demand,
thereby improving the efficiency of the system [7e14]. Today,
several developed countries such as USA, Canada andmany parts of
Europe have successfully developed and implemented dynamic
pricing strategies to perform DSM. A 2010 survey conducted by the
Federal Energy Regulatory Commission of USA shows that demand
response methods could lead to a 7.6% decrease in peak load
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demand and among various time based pricing techniques, TOU
pricing is proved to be the most effective [15]. Project Intekellion
conducted by the German Government shows that time-variable
tariffs for households bring about a 6% energy saving [16].

The electricity demand in Singapore is growing at an annual rate
of 5% approximately; 16% of the consumption comes from the
residential sector, 38% from the commercial and 46% from indus-
trial sector [17]. Currently, 75% of its market is liberalized and
moving towards complete liberalization soon. The residential
sector is still considered non-contestable and has a flat pricing of
256.5SGD/MWh throughout the year [18]. The peak period typically
occurs at mid-day especially during the afternoons (can be
explained by the tropical climate) and non-peak period is seen
especially at late night when the consumption is at its lowest. With
the increasing standards of living, and the global city status that
Singapore now enjoys, it is essential that electricity supply is
continuous and seamless. A dynamic pricing strategy is necessary
to manage electricity demand and supply patterns as it will help
meet user demands, boost profits for generation companies and
ensure a reliable supply of electricity at all times of the day.

Dynamic pricing includes techniques such as Real-Time Pricing
(RTP), Time-Of-Use pricing (TOU) and Critical-Peak Pricing (CPP).
RTP refers to a strategy where prices change for every period of the
day: utility companies forecast prices on a day-ahead or hour-
ahead basis. TOU pricing divides the day into intervals and
charges fixed rates within each interval. These pricing strategies
have been studied using different approaches, and tested on aca-
demic and practical systems across the world. Yang, Tang and
Nehorai proposed an interesting game-theoretic approach for
implementing TOU pricing in Ref. [19]. The study uses a multi-stage
approach and backward induction to develop a strategy that
maximizes profits for both consumers as well as the utility com-
pany. In Ref. [20], a RTP based demand response algorithm is pro-
posed to determine the optimal power consumption pattern and
pricing, and maximizing the comfort level of the consumers. An
equal-incremental cost rule is proposed as a rational solution to
determine the electricity pricing in Ref. [21]. It is noted that in-
cremental cost rule refers to a pricing rule which determines the
profit maximization based on the incremental cost of power
required to satisfy any variation in load demand. The effectiveness
of the method was tested with two types of simulated power
markets. The price elasticity of the customers was not taken into
consideration. A theoretical framework for RTP based on the
switched Markov chain model has been developed in Ref. [22].
However most of the above mentioned algorithms and models
have been tested using numerical simulations and have not been
evaluated using real and practical data sets.

Game Theory has been proven to be an essential tool in
capturing the complex and strategic interactions among market
participants and for strategic analysis of situations involving mul-
tiple independent players. In the previous studies, game theory has
been applied to various problems pertaining to electricity markets
and demand side management [23,24]. In this work, the main aim
is to demonstrate the ability of the proposed game theory based
dynamic pricing strategy [19], to implement demand side man-
agement, using the real and practical data sets of Singapore. The
problem has been formulated based on the modified pricing model
to accommodate the Singapore load and market scenario. More-
over, extensive case studies are implemented to evaluate dynamic
pricing strategies for Singapore using half-hourly Real-Time Pricing
(RTP), Time-of-Use (TOU) Pricing and Day-Night (DN) pricing for
residential, commercial and industrial sector (with special focus on
the residential and commercial sector). The pricing strategies are
tested on practical load and price datasets from Singapore, and all
possible scenarios have been considered to accurately measure the
robustness of the proposed model. The use of practical data sets of
Singapore is essential in the case studies to make the test scenarios
more realistic. The results as demonstrated in the 5 case studies for
5 different load and price data sets, including weekdays, weekends,
public holidays and the highest/lowest demand in the year, validate
the use of proposed dynamic price strategy to encourage the resi-
dential and commercial consumers in Singapore to opt for demand
side management. It is noted that the data for load demand and
market price are taken from Energy Market Company (EMC) of
Singapore [18], while the price elasticity of demand (PED) in
Singapore is hypothesized from the USA data based on Ameren Il-
linois studies [19,25e27]. The rest of the paper is organized as
follows: Section 2 introduces the proposed pricing model, Section 3
discusses the data collected and methodologies used, Sections 4e6
discuss the results obtained for the residential sector, commercial
and industrial sectors respectively and the paper is concluded in
Section 7.

2. The proposed pricing model

In this work, a game-theoretic based pricing model is developed
to achieve an efficient demand response technique. A multi-stage
game approach is adopted to maximize benefits for both con-
sumers and utility companies. The electricity demand, consump-
tion patterns, and Price Elasticity Demand (PED) are observed to
vary drastically for different sectors i.e. residential, commercial and
industrial sector. Hence, a single-sector approach has been adopted
in this work, where-in the sectors are optimized individually to
ensure that different strategies could be chosen for different sec-
tors. The pricing model developed in this work defines RTP pricing
as well as block pricing.

The utility company aims at maximizing profits while simulta-
neously adhering to industry regulations and customers' demands.
On the contrary, the customers aim at minimizing electricity bills
and expect a reliable, uninterrupted power supply. The end result is
expected to be a matrix p consisting of electricity sales prices for
different sectors over N time intervals. These prices result in
reduction of peak load leading to a flattened load curve l.

2.1. Variable and function definitions

2.1.1. Time period (N)
The day is divided intoN time intervals to reflect different values

for each variable. The subscript k corresponds to a particular period
in the day and can take values from 1 to N.

2.1.2. Electricity cost (ck), price (pk) and price elasticity of demand
(ek)

The marginal cost of electricity "ck" sis the cost paid by the
electricity company and varies depending on the time of day,
electricity market and demand.

The unit sales price of electricity "pk" corresponds to the price the
utility company will charge its customers and varies depending on
the time of the day. This price is fixed by the electricity company
and is obtained as a result of the mathematical simulations in this
model.

The fixed price "nk" can be interpreted as the price the con-
sumers are currently being charged for the electricity supplied and
varies according to the country/sector in picture. Both ck and nk are
considered as input data for the pricing model developed.

The short-run price elasticity of demand (PED) "ek" is used to
represent responsiveness or sensitivity of the quantity demanded
to the price change. It essentially provides the percentage change in
quantity demanded for every 1% change in price. It helps to
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understand the consumption patterns and estimate the change in
customers' responses with change in price. It depends on the
country/sector being considered and is also considered as input
data for the model. These values are obtained for N time periods or
for fixed blocks in the day. It is important to consider short-run
values while performing price calculations because the immedi-
ate consumption response must be estimated. Using longer-run
values would give incorrect results because they refer to cus-
tomers' responses to seasonal average prices. The values for this
function will always be negative and less than 1 as the quantity
consumed is always inversely proportionate to the price.

Mathematically, the coefficient of the PED ‘e’ can be represented
by (1) below.

e ¼ dQ
dP

(1)

2.1.3. Electricity demand (dk) and generation (gk)
The user demand "dk" under fixed price, refers to the quantity of

electricity that is currently being consumed by the customers.
These values vary depending on the time of the day, electricity
market and demand, and hence must to be considered as input
data.

The electricity generation capacity "gk" refers to quantity of
electricity that is produced by the company. Since electricity is a
commodity that cannot be stored and must always be readily
available to the customers, in real life scenarios, gk can be said to be
the same as dk.

The user load response to dynamic prices "lk" is calculated
through the model and is used in the optimization process.

2.2. Evaluation indices

The user satisfaction function "sk" is used to define the user's
satisfaction in mathematical terms. It is essentially the difference
between the nominal user demand dk and the user load in response
to the dynamic price lk. The different possible outcomes for the
satisfaction function are summarized in Table 1. The satisfaction
function sk includes a variable weight MUS as seen in Eq. (2) and
since it's used on a comparative basis, units are not important.

sk ¼ MUS*dkbk

��
lk
dk

�ak

� 1
�

(2)

where

ak ¼
1
ek

þ 1ðalways<1Þ (3)

bk ¼ �nk
ak

(4)

It is noted that satisfaction is defined in terms of ek and nk i.e.
price elasticity of demand (PED) and current price (fixed) the
consumers are charged, along with nominal user demand (dk) and
new load demand (lk) under the influence of the proposed dynamic
Table 1
Summary of satisfaction function.

sk value Mathematical condition User status

Positive lk < dk The user con
Negative lk > dk The user con
Zero lk ¼ dk The user con
pricing strategy.
The load fluctuation function "f ðlÞ" defines the difference be-

tween the periodic user load response lk and the day's average lavg .
It displays a cost that is borne by the electricity company and
should ideally be as low as possible so as to allow the company to
have a predictable demand pattern that they can always satisfy. It is
used on a comparison basis and can be calculated using Eq. (5)
below. It also includes a variable weight MUF .

f ðlÞ ¼ MUF*
XN
k¼1

�
lk � lavg

�2 (5)

where

lavg ¼ 1
N

XN
k¼1

lk (6)

It is noted that MUF and MUS refer to the weight that is asso-
ciated with the load fluctuation and user satisfaction function. As
mentioned in the manuscript, these weights are not fixed and are
varied depending on the sector chosen i.e. residential, commercial
or industrial area, and their respective set of elasticity values. The
main use of these weights is to increase the flexibility of the pro-
posed dynamic pricing model to increase the importance given to
different parties i.e. utility or the consumer.

Profits for the utility company are calculated and included in
their respective utility function. They include the absolute profits as
well as change with respect to that of flat pricing. They can be
represented by (7) and (8) below.

Profits ¼
XN
k¼1

pklk �
XN
k¼1

cklk (7)

Change in Profits ¼ profitsdynamic � profitsflat
profitsflat

� 100 (8)

where, profitsdynamic is the profits achieved using the dynamic
pricing strategy and profitsflat refers to the profits achieved due to a
flat pricing scheme.

Total load reduction measures the effect of dynamic pricing on
total consumption and must be minimized. Similarly, peak load
reduction measures the effectiveness of peak clipping and hence
must be maximized. The total load and peak load reduction are
calculated according to Eqs. (9) and (10).

total load reduction ¼ ltotal � dtotal
dtotal

� 100 (9)

peak load reduction ¼ lpeak � dpeak
dpeak

� 100 (10)

where, the terms ltotal, dtotal, lpeak, and dpeak are defined in Table 2.
sumes less than it would have under nominal conditions, hence is unsatisfied.
sumes more than it would have under nominal conditions and is hence satisfied.
sumes as much as it would have under nominal conditions and is hence neutral.



Table 2
Definition of load functions.

Terms Definition

ltotal It refers to the total load demand by the users in response to
the proposed dynamic pricing strategy

dtotal It refers to the total nominal load demand by the users
lpeak It refers to the peak load demand by the users in response to

the proposed dynamic pricing strategy
dlpeak It refers to the peak nominal load demand by the users
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2.3. Utility functions and game theoretic approach

In this section, the utility functions considering the perspective
of both the utility as well as the consumer is defined.

2.3.1. Utility function 1 (U1 for the company)
The utility company wishes to maximize the profit, minimize

the deviation of load (hence the negative sign) as well as fulfill its
obligation to serve the public and satisfy the electricity users.
Therefore the utility function of the company is its profit minus the
satisfaction cost of the users, i.e.

U1 ¼
XN
k¼1

pklk �
XN
k¼1

cklke
XN
k¼1

sk � f ðlÞ (11)

2.3.2. Utility function 2 (U2 for the consumer)
The consumers on the other hand are interested in maximizing

their satisfaction (negative sign before sk can be explained based on
Table 1 i.e. negative sk means greater satisfaction) while simulta-
neouslyminimizing their costs. Their utility function is the negative
of the company's cost function, and is denoted as U2 as represented
below.

U2 ¼ �
XN
k¼1

pklk �
XN
k¼1

sk (12)

The goal is to maximize the utility function U1 and U2 under
certain constraints. The optimization problem is formulated as

�
p*; l*

� ¼ argmax U1 (13)

l* ¼ argmax U2 (14)

Subject to; lk;min � lk � lk;max; k ¼ 1;2;…;N
ck � pk; k ¼ 1;2;…;N

(15)

2.3.3. Game theory approach
The proposed game model adopts a multi-stage approach. The

utility company acts as the first mover by setting the price and the
consumer responds to it accordingly. The user response is consid-
ered as a function p.

The proposed pricing strategy P is explained using Eqs. (16) and
(17). The pricing model identifies the optimal price p*ε Р, and
optimal load response l*ε L in order to obtain a Nash equilibrium
(p*, l*)ε Р x L , between the user and the utility company.

c p ε Р; psp* : u1ðp*; lÞ � u1ðp; l*Þ (16)

c l ε L ; lsl* : u2ðp; l*Þ � u2ðp*; lÞ (17)

Next, the principle of backward induction is implemented in this
model to optimize the problem, and hence U2 is first maximized

with respect to flkgNk¼1 to identify the optimal load as l*k ¼
�
pk
n

	
ε
k

dk.

The calculated optimal load is then plugged back into U1 which is

subsequently maximized w.r.t fpkgNk¼1 to obtain optimal dynamic
prices.

In order to find a user's optimal demand response to the price
set by the utility company, we consider the electricity prices of

different time periods fpkgNk¼1 as given, and take the first and
second order derivatives of U2 with respect to flkgNk¼1,

vU2

vlk
¼ �pk � akbk

�
lk
dk

�ak�1

(18)

Settingð17Þequal to zero; l*k ¼
�
� pk
akbk

� 1
ak�1

dk (19)

The second-order derivative of U2 is

v2U2

vlkvli
¼

8>><
>>:

�akbkðak � 1Þ l
ak�2
k

dak�1
k

when k ¼ i

0 when ksi

(20)

Since ak < 1 and akbk < 0, the diagonal elements of the Hessian
matrix are all negative, and the off-diagonal elements are all zero.

The Hessian matrix is negative definite, meaning that fl*kg
N
k¼1 is the

optimal user load given price p. Let

2k ¼ 1
ak � 1

<0; k ¼ 1;2;…;N (21)

and nk ¼ akbk >0; k ¼ 1;2;…;N (22)

We can rewrite (19) as

l*k ¼
�
pk
nk

�2k

dk; k ¼ 1;2;…;N (23)

Optimal pricing based on l*k
Substituting (23) into the utility function U1 we determine its

value only in terms of p (earlier involved both p and l)

U1ðpÞ ¼
XN
k¼1

n
pk l

*
kðpk Þ � ck l

*
kðpk Þ � sk

h
l*kðpk Þ; dk

io
� f



l*ðpÞ�

(24)

The constraints on user loads can be rewritten as,

pk ¼
�
lk
dk

� 1
2k
nk (25)

Since, (25) is a decreasing function of lk, the constraints on
pricing can be written as

pk;min <pk <pk;max (26)

where, pk;min ¼ max

8><
>:ck; ðlk;max=dkÞ

1
2k

9>=
>; and pk;max ¼

8><
>:ðlk;min=dkÞ

1
2knk

9>=
>;. The optimization of U1 with respect to prices p



Table 4
Block definitions for TOU and DN pricing e residential sector.

Block Timings

TOU pricing

Off-Peak 12 a.m.e7 a.m.
Semi-Peak 7 a.m. e 9am, 6 p.m.e12 a.m.
Peak 9 a.m. e 6pm
DN pricing
Day 6 a.m.e10 p.m.
Night 10 p.m.e6 a.m.
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now becomes

max
p:

U1 ðpkÞ (27)

pmin < pk < pmax (28)

A*p ¼ 0 (29)

It is noted that the objective function for this problem is pre-
sented in Eq. (27) and solved as a single-objective optimization
problem, subject to constraints in (28) and (29).

The following conditionsmust be taken into considerationwhile
developing upper bound pmax and lower bound pmin.

1) The actual load demanded by the user lk cannot exceed the
minimumvalue between themaximum generation capacity and
maximum user load.

2) The user load should also always be less than the generation
capacity of the total system ðlk < gkÞ.

3) User demand must always be met ðgk ¼ dkÞ.
4) The company should limit the sale price to ensure a minimum

load lk; min (The corresponding price can be calculated
asnk*

lk; min

dk

1
=
εk ).

5) The sale price must always be greater than or equal to cost
priceck � pk.

The final lower and upper bound functions pmin and pmax are
presented in Eqs. (30) and (31) respectively. The formulated bound
function are capable of accounting for anomalies as well.

pmin ¼ max

8>><
>>:
ck; nk*

lk; max

dk

1
=
εk

9>>=
>>;

(30)

pmax ¼ max

8>><
>>:
pmin nk�

lk; min

dk

1
=
εk

9>>=
>>;

(31)

The maximum and minimum loads are sector-specific per-
centages which indicate the load boundaries. A refers to an NxN
constraint matrix used to limit prices within defined blocks. It
consists of values in the range [�1, 0, 1], and varies based on the
pricing strategy and sector. It is noted that more details about the
fosrmulation of the optimization function and modelling of the
solution can be found in Ref. [19].

3. Data and methodology used

The proposed model is implemented to evaluate dynamic
pricing strategies for Singapore, focusing particularly on the resi-
dential sector. However, a brief study is conducted for the com-
mercial and industrial sectors as well, and the results are limited
due to insufficient information on consumption trends. A day is
Table 3
Description of scenarios.

Scenario Date Description

1 25/9/13 Average Weekday
2 24/7/13 Highest Electricity Demand for 2013
3 14/9/13 Average Saturday
4 15/9/13 Average Sunday
5 01/2/14 Public Holiday (Lowest Demand- Chinese New Year Period)
divided into N ¼ 48 periods and consumption data ck and dk are
obtained from the Energy Market Company (EMC) of Singapore
[25]. The fixed price n ¼ 256.5 SGD/MWh.

The following assumptions have been made:

1) The total load data dk for Singapore can be divided into three
sectors namely residential (16%), commercial (38%) and indus-
trial (46%).

2) All consumers implement the same utility function.
3) The maximum and minimum load ratios percentages are

assumed to be 90 & 125 for residential, and 75 & 120 for com-
mercial respectively.

The values for PED ðεkÞ have been adopted from the following
datasets:
3.1. Residential sector

1) Weekday values for summer 2010 data for 10,000 households
are used from Ref. [26] and weekend values from summer 2008
data for 3000 households are used from Ref. [27]. These values
were used by Navigant Consulting Research for Ameren Illinois'
Power Smart Pricing Program (USA).

2) These values are hypothesized for weekdays, Saturdays and
Sundays/Public Holidays to represent Singapore data.

Commercial and Industrial Sector

1) Weekday values for 2010 summer USA data based on Ameren
Illinois studies over 4 years for 11,000 customers are taken from
Ref. [19].
Fig. 1. Half-Hourly PED Values for Weekdays from USA residential data.



Fig. 2. Half-Hourly PED Values for Weekends from USA residential data.
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2) The values from the above dataset are modified to represent
Singapore data consumption on weekdays.

The proposedmodel is tested on fivewide-spread scenarios that
provide unique trends in consumption data as shown in Table 3.

Three pricing strategies have been implemented and evaluated
viz. Half-Hourly RTP Pricing, TOU Block Pricing and Day-Night
Pricing. The best combination of MUS and MUF values has been
chosen based on maximum peak-load reduction and minimum
total-load reduction. The optimization for this problem is per-
formed using the KNITROMATLAB software as it is considered to be
very reliable and provides stable and accurate results. The interior
or direct optimization algorithm is used, as it is known to price the
best results especially in the cases where the Hessian and
Lagrangian are not considered.

4. Results and discussions e the residential sector

The proposed pricing model is initially implemented and eval-
uated for the residential sector. The strategy-wise time-block def-
initions for the residential sector are presented in Table 4. For TOU
pricing, the peak period is identified to be during the day while the
off-peak period is mostly observed either during late night or early
morning. The results are discussed using both the PED data of USA
and the hypothesized data for Singapore.
Fig. 3. Half-Hourly hypothesized PED values for weekdays.
4.1. Using USA PED data

PED datasets from Navigant Consulting Research for both
weekday and weekend are presented in Fig. 1 and Fig. 2
respectively.

4.1.1. Weekdays
Results with MUF ¼ 2 and MUS ¼ 1 provide the highest peak

load reduction and highest profits for all three cases, however they
also cause a very high total load reduction. This is reflected in the
satisfaction function with a very high positive value (of the order
106), thereby indicating that consumer demands are not met. It is
evident that these values are not applicable for Singapore load data.
Using MUF ¼ 3 and MUS ¼ 1:5, a very high peak load reduction is
achieved, however the 7% decrease in total load consumption for
RTP pricing appears unrealistic as reflected in high positive values
for the satisfaction function. The combination MUF ¼ 4, MUS ¼ 2 is
chosen as the best combination that maximizes peak and minimize
total load reduction. RTP pricing appears to be the most suitable
strategy as it provides a maximum peak load reduction of 7%, earns
maximumprofits and achievesminimum fluctuation. Although this
dataset provides results for scenario 1, it is unable to model sce-
nario 2 as block constraints (A matrix) could not be met. For
example, the PED value is as low as �0.274 during the night and
goes up to a value of �0.891 during the day, especially in the
afternoon.

4.1.2. Weekends and holidays
The PED from USA data need to be adapted for Singapore

weekend data. Values during the day are high, implying a very
elastic condition whereas those during the night are extremely low
implying an almost inelastic situation. The following impacts are
seen on the results. Numerous simulations are completed in order
to find a suitable combination of values for MUF and MUS.

MUF ¼ 4 and MUS ¼ 2 (as used in the case for weekdays) leads
to erroneous results such as massive load reduction with no peak-
trimming. The load curve after dynamic pricing follows the exact
trend as that before the change but scaled down drastically.

4.2. Using hypothesized PED data

Due to a large difference in the consumption patterns in USA
and Singapore data, the PEDs for USA can not be applied on
Singapore data. The elasticity values have therefore been hypoth-
esized to represent the current trend for Singapore's residential
electricity consumption using the actual load data. Two datasets
have been developed to reflect trends for weekdays and weekends,
including public holidays as illustrated in Figs. 3 and 4.

4.2.1. Weekdays
The hypothesized half-hourly PED values for average weekdays

in Singapore are presented in Fig. 3. The lowest PED is seen at the
peak afternoon time between 2 and 5 p.m. (k ¼ 29e34) and during
the night due to the expected use air-conditioner. The highest
elasticity is observed late in the night and early in the morning.
MUF andMUS values are chosen based on simulations conducted on
data for any particular day and the results are presented. MUF ¼ 2
and MUS ¼ 1 gives the highest peak load change of an average
of �9.67% across all different pricing strategies while an average
total load reduction of�1.67%. The profits are seen to be the highest
as compared to any other combination of values as well. MUF ¼ 3
and MUS ¼ 1:5 lead to a very minimal peak load change with an
average of�1.67% and a very high change in total load consumption
with an average of 7%. Profits are lower than in the case ofMUF ¼ 2
and MUS ¼ 1 since the satisfaction function is highly negative



Fig. 4. Half-Hourly hypothesized PED values for weekends.
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(approximately 106). This indicates that customers consume more
electricity than they would without dynamic pricing, which is a
highly unlikely scenario.

MUF ¼ 4 and MUS ¼ 2 leads in 0% peak load change and very
high increase in total load consumption with an average of 8.67%.
Satisfaction is higher in value than in the previous case that pushes
profits down even further. Hence, the final values chosen areMUF ¼
2 and MUS ¼ 1.

Figs. 5e7 show the obtained results for the pricing and load
curves for RTP, TOU and DN pricing respectively with MUF ¼ 2 and
MUS ¼ 1 applied to Scenario 1. All three load curves show peak
trimming and valley filling indicating that the pricing strategies
have the desired impact on consumer consumption. The pricing
trends appear to be correct as they show higher prices for the peak
periods of the day (afternoons) making these PED values appear
more suitable for Singapore data. Block Pricing results show a sharp
drop at k ¼ 14 in the load curve that is caused by the change in the
block period and the sudden increase in the price. This is a sharp
theoretical drop although in real-life this might not be the case. RTP
pricing achieves the least load fluctuation of the order 104 as
compared to other strategies where fluctuations are of the order
105.It is observed from Figs. 5 and 6 that the maximum peak load
reduction is 10%. TOU Pricing ensures no change in total load
consumed and hence has the lowest (ideal) satisfaction function
value indicating that customers are the most satisfied. Other
Fig. 5. Pricing (left) and load (right) results for
strategies show minimal total load changes. RTP pricing shows the
maximum profits because it has the lowest combination of satis-
faction and fluctuation.

Thus, RTP Pricing is found to be most suitable for Singapore's
data as it maximizes peak load reduction, profits and satisfaction,
and minimizes total load reduction and fluctuation. It is observed
that the hypothesized elasticity values fit the Singapore data well.
There is an average peak load reduction of 9.67% and a slight
decrease in average overall consumption at 1.67%.

4.2.2. Weekdays and holidays
The chosen values are similar to those for weekdays except for a

few minor changes. Saturday in general is considered slightly less
elastic as more people are expected to be at home and using
maximum electricity. Thus especially during the day, the values are
slightly lower than that on a weekday. Figs. 8e10 show the ob-
tained results for the pricing and load curves for RTP, TOU and DN
pricing respectively withMUF ¼ 2 andMUS ¼ 1 applied to Scenario
3.

The results are observed to have similar characteristics to those
presented for weekdays. Successful peak trimming, valley filling
and correct pricing trends are achieved. A sharp drop in block
pricing (k ¼ 4) is observed as seen in Figs. 9 and 10. The lowest
fluctuation, highest profits and maximum peak load reduction are
observed for RTP Pricing whereas the lowest peak load reduction is
for DN Pricing and lowest total load reduction is for TOU Pricing
respectively. The total load reduction is higher than in the case of
weekdays at an average of 3.33% across all sectors. This is reflected
with generally higher satisfaction function values. Hence, perhaps
the PED values hypothesized for this scenario are not as accurate as
those presented for weekdays. Once again RTP Pricing is observed
to be most suitable. Hypothesized PED values appear to fit
Singapore data (average peak load reduction of 9% and average total
load change of �3.337%). These results are good, but not as good as
those during weekdays indicating that the values can be improved.
Table 5 and Table 6 list out the various model parameters for Sce-
nario 1(Weekday) and Scenario 3 (Weekend).

5. Results/discussions e commercial sector

This section presents and discusses the results obtained using
dynamic pricing strategies for the commercial sector using PED
values. The values for the weekdays are taken from the USA data
that is based on Ameren Illinois data for four years and 11,000
RTP pricing e Scenario 1 Residential sector.



Fig. 6. Pricing (left) and load (right) results for TOU pricing e Scenario 1 Residential sector.

Fig. 7. Pricing (left) and load (right) results for DN pricing for eScenario 1 Residential sector.

Fig. 8. Pricing (left) and load (right) results for RTP pricing e Scenario 3 Residential sector.
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Fig. 9. Pricing (left) and load (right) results for TOU pricing e Scenario 3 Residential sector.

Fig. 10. Pricing (left) and load (right) results for DN pricing for e Scenario 3 Residential sector.

Table 5
Model parameters for scenario 1 - residential sector.

Strategy MUF MUs Utility
(*106 utils)

Profits
(M SGD)

Satisfaction
(*105)

Fluctuation
(*105)

Total load change Peak load change

RTP 2 1 5.00 6.88 12.40 6.45 �10% �10%
TOU 2 1 4.32 6.18 9.82 8.77 �8% �9%
DN 2 1 4.15 5.56 7.71 6.33 �6% �9%
RTP 3 1.5 4.17 5.87 1.26 4.40 �7% �10%
TOU 3 1.5 3.57 4.63 5.95 4.66 �3% �9%
DN 3 1.5 3.64 4.88 7.11 5.25 �4% �9%
RTP 4 2 3.90 3.71 �3.87 1.96 3% �7%
TOU 4 2 3.44 3.44 �4.54 4.51 3% �4%
DN 4 2 3.28 4.36 3.77 7.09 �1% �6%

Table 6
Model parameters for scenario 3 e residential sector.

Strategy Utilityð�106 utilsÞ Profits
(M SGD)

Satisfaction
(*105)

Fluctuation
(*104)

Total load change Peak load change

RTP 4.40 4.94 5.06 3.73 �4% �10%
TOU 4.27 4.57 2.45 5.87 �2% �9%
DN 3.81 4.6 6.48 23.1 �4% �8%
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Table 7
Block definitions for TOU and DN pricing e residential sector.

Block Timings

TOU pricing

1 10pm e 7am
2 7 a.m. �10 a.m., 8 p.m.e10 p.m.
3 10 a.m.e1 p.m., 5 p.m. e 8pm
4 1 p.m.e5 p.m.
DN pricing
Day 8 a.m.e8 p.m.
Night 8 p.m.e8 a.m.

Fig. 11. Half hourly hypothesized PED values for weekdays.

D. Srinivasan et al. / Energy 126 (2017) 132e143 141
customers [12]. Hypothesized values are obtained by modifying
this data in order to reflect peak period during the afternoon. The
block definitions for TOU and DN pricing strategies are defined
below in Table 7. Since the hypothesized data is obtained by slightly
Table 8
Model parameters for scenario 1 e commercial sector.

Strategy MUF MUS Utilityð106 utilsÞ Profits
(MSGD)

Increase in profits

RTP 2 2 11.1 12.2 18.7%
TOU 2 2 9.68 11.1 7.97%
DN 2 2 8.15 9.69 �5.74%

Fig. 12. Pricing (left) and load (right) results for D
modifying the US PED data, the results are discussed directly for the
hypothesized data only. Since we are dealing with the commercial
sector, only the weekday scenario is taken into consideration. The
half-hourly commercial data for weekdays is shown in Fig. 11.
MUF ¼ 2 and MUS ¼ 2 are chosen as they give the best results.

Table 8 and Figs. 12e14 show the results obtained when the
developed pricing model is applied to Scenario 1. It is clearly
observed that the new PED dataset now fits the Singapore patter
and favourable results are obtained with the expected price/load
trends. RTP Pricing is indeed the most suitable as it provides the
highest peak load reduction and highest increase in profits. Overall,
a peak load reduction of 4.44% and an increase in profits of 7% are
obtained.

6. Results/discussions e industrial sector

This section presents PED values from USA data for weekdays
and attempts to use it to model Singapore's industrial sector. Sec-
tion 2.1 uses values from 2010 Ameren Illinois data that is pre-
sented in Ref. [12] and Section 2.2 uses values from 2005 USA data
from Ref. [21]. The PED values could not be hypothesized success-
fully because there isn't enough information on the trend of con-
sumption patterns in Singapore. There are no results to be
presented because neither of the dataset was suitable for
Singapore. Figs. 15 and 16 represent the PED datasets used for the
industrial sector in USA.

6.1. Using 2010 USA PED data from Ref. [12]

This dataset presents very high PED values indicating a unit
elastic situation inmost cases. PED values are unexpectedly high for
expected peak periods, and minimal variation throughout the day
makes it harder to identify distinct peak/non-peak periods. This is a
very futuristic scenariowhere loads can be shifted to any part of the
(%) Satisfaction
(*105)

Fluctuation
(*106)

Total load change Peak load change

4.53 0.63 0.27% �5.00%
1.02 1.27 0.60% �5.00%
�4.73 2.02 1.34% �3.32%

N pricing for eScenario 3 Commercial sector.



Fig. 13. Pricing (left) and load (right) results for DN pricing for eScenario 1 Commercial sector.

Fig. 14. Pricing (left) and load (right) results for TOU pricing e Scenario 1 Commercial sector.

Fig. 15. Half-Hourly hypothesized PED values for weekdays in 2010. Fig. 16. Half-Hourly hypothesized PED values for weekends in 2010.
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day and consumption is almost perfectly elastic. However, consid-
ering the current load/price data and the assumption that industrial
load is 46% of the total at all times of the day, Singapore's load is not
as elastic and cannot be modelled with this dataset.

6.2. Using 2005 USA PED data from Ref. [21]

This dataset presents very low PED values indicating an almost
inelastic situation where consumption is not flexible. Since the
study was published in 2005, the values can be considered obso-
lete, as the advent of smart grids has made load shifting far more
convenient. Results show unrealistically high prices in the order of
~104 with normally used values of MUF andMUS. It is also observed
that increasing the weights results in negative values for the utility.

7. Conclusion

This work proposes a game-theoretic study of dynamic pricing
strategies for the electricity market in Singapore. The pricing
models are developed and tested on data obtained from EMC,
Singapore. The residential and commercial models are tested
extensively to obtain the best pricing strategy. Many load/price
datasets from real and practical Singapore consumption data
including weekdays, weekends and public holidays are used, and
three pricing strategies namely half hourly RTP Pricing, TOU Pricing
and DN Pricing are evaluated. Results obtained are very promising:
RTP Pricing is identified as the best strategy with a 10% and 5% peak
load reduction and a 15.5% and 18.8% increase in profits for the
utility company in the residential and commercial sectors respec-
tively. These results indicate that the game-theoretic based dy-
namic pricing model is indeed a promising strategy for demand
side management. With capable and universal energy intelligence
systems, this pricing strategy would be very useful for the elec-
tricity market.

The model is considerably robust, as it can be used to develop
numerous pricing strategies, model multiple sectors, shift focus
between the consumer and company's utility by changing the
values of MUF and MUSÞ and simultaneously be applied to a wide
range of price/load data. The industrial sector is also tested with the
model; however, results are limited owing to the insufficient in-
formation on Singapore's consumption trends. Future work will
include testing on different satisfaction functions, including mul-
tiple user types in the case studies, understand the impact of
renewable generation sources on DSM considering dynamic pricing
technique, and to understand the impact of the dynamic pricing on
short-term PEDs for long term. Although the testing and compar-
ison are conducted only using Singapore data, the proposed model
can be used to develop pricing strategies for other countries as well.
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