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Abstract
An analytical expression for the mutual inductance for long coaxial helical conductors or
solenoids is derived on the basis of Neumann’s formula for the whole range from 0 to ∞ of the
pitch length, including the cases of the mutual inductance of long concentric closely wound
helical solenoids and that of long parallel thin conductors as two extreme cases. In addition, an
approximate expression for the self-inductance for a long helical round conductor is obtained.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The inductance calculation of helical conductors or coils
has been studied analytically and numerically, using the
integral expression for the vector potential of an infinitely
long helical conductor [1–3]. Then, the analytical
expression for the intrinsic principal term of the mutual
inductance of long coaxial thin helical conductors was
obtained; however, the analytical expression for the self-
inductance was not obtained [1]. Then, numerical
calculation of the integral expression for inductance was
used for the analysis of the current distribution of a twisted
superconducting multifilamentary composite which consists of
many superconducting helical conductors [4]. However, the
numerical method of calculating the integral expression needed
a long time for calculating the inductance matrix of the circuit
equation.

In this paper, the full analytical expression for the mutual
inductance of long coaxial helical thin conductors is again
studied using Neumann’s formula. Then, the approximate
expression for the self-inductance for a long helical round
conductor is studied using the summation of external and
internal inductances. The external inductance of a helical
conductor is calculated as approximately the mean of the
mutual inductances of the filament at the inner or outer edge of
the conductor and the central filament. In this paper, the terms
‘helical conductor’, ‘helical coil’ and ‘solenoid’ are used with
the same meaning. In particular, ‘helical conductor’ is used to
emphasize an unclosed loop, like for the straight conductor.

2. Mutual inductance of long coaxial helical thin
conductors

2.1. Derivation using Neumann’s formula

A multipole expansion for a helical current which is obtained
by the Fourier expansion of a periodic delta function can be
used with Neumann’s formula. Then, the mutual inductance
between two long coaxial helical thin conductors of winding
radius r1 and twist pitch length l1 (=2π/k1), passing through
(r1, ϕ1, z = 0) of the circular cylindrical coordinate, r2 and
l2 (=2π/k2), passing through (r2, ϕ2, z = 0) as shown
in figure 1, can be obtained using Neumann’s formula, as
follows:

L12 = μ0

4π

1

I1 I2

∫ ∫
I1d�s1 · I2d�s2

|�s1 − �s2| = μ0

4π

1

I1 I2

×
∫ 2π

0

∫ l

0

∫ 2π

0

∫ l

0
[ �j1(θ1, z1)r1dθ1dz1 · �j2(θ2, z2)r2dθ2dz2]

× [r 2
1 + r 2

2 + (z1 − z2)
2 − 2r1r2 cos(θ1 − θ2)]−1/2. (1)

With the condition l � r2 (>r1), the above integration
can be performed analytically, like the derivation of the vector
potential of an infinitely long helical current [2, 3]. As shown
in figure 2, the geometrical relations between two coaxial
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Figure 1. Two coaxial helical conductors of winding radius r1 and
pitch length l1 (=2π/k1), and winding radius r2 and pitch length
l2 (=2π/k2). In this paper, the mutual inductance of two long coaxial
helical conductors is only discussed under the condition l � r2.

cylindrical currents can be expressed as follows:

ẑ1 = ẑ2 = ẑ

θ̂2 = sin(θ1 − θ2)r̂1 + cos(θ1 − θ2)θ̂1

θ̂1 = θ̂

r̂1 = r̂ .

(2)

Then, the numerator of equation (1), namely, the term
related to the current density, can be expressed as follows:

�j1(θ1, z1) · �j2(θ2, z2) = jz(θ1, z1) jz(θ2, z2)

+ jθ (θ1, z1) jθ2(θ2, z2) cos(θ1 − θ2) (3)

where the current densities jz(θ, z) and jθ(θ, z) can be
expressed as follows:

jz(θ, z) = I

a

∞∑
m=−∞

δ(θ − ϕ − kz − mklp)

= I

a

∞∑
m=−∞

δ(θ − (ϕ + kz) − 2πm)

= I

2πa

{
1 + 2

∞∑
n=1

cos[n(θ − ϕ − kz)]
}

(4)

jθ(θ, z) = I
∞∑

m=−∞
δ

(
z − θ − ϕ

k
− mlp

)

= I k
∞∑

m=−∞
δ(θ − ϕ − kz − 2πm)

= I k

2π

{
1 + 2

∞∑
n=1

cos[n(θ − ϕ − kz)]
}

(5)

Figure 2. Cross-sectional view of two coaxial helical conductors of
winding radii r1 and r2.

where k (=k1 or k2) is the twist pitch parameter. From
equation (1), the mutual inductance can be calculated as
follows:

L12 = L12,z + L12,θ (6)

L12,z = μ0

4π

1

(2π)2r1r2

×
∫ 2π

0

∫ l

0

∫ 2π

0

∫ l

0
[r1 dθ1 dz1r2 dθ2 dz2]

× [(z1 − z2)
2 + r 2

1 + r 2
2 − 2r1r2 cos(θ1 − θ2)]−1/2

×
{

1 + 2
∞∑

m=1

cos[m(θ1 − ϕ1 − k1z1)]

+ 2
∞∑

n=1

cos[n(θ2 − ϕ2 − k2z2)]

+ 4
∞∑

m=1

∞∑
n=1

cos[m(θ1 − ϕ1 − k1z1)]

× cos[n(θ2 − ϕ2 − k2z2)]
}

(7)

L12,θ = μ0

4π

k1k2

(2π)2

×
∫ 2π

0

∫ l

0

∫ 2π

0

∫ l

0
[cos(θ1 − θ2)r1 dθ1 dz1r2 dθ2 dz2]

× [(z1 − z2)
2 + r 2

1 + r 2
2 − 2r1r2 cos(θ1 − θ2)]−1/2

×
{

1 + 2
∞∑

m=1

cos[m(θ1 − ϕ1 − k1z1)]

+ 2
∞∑

n=1

cos[n(θ2 − ϕ2 − k2z2)]

+ 4
∞∑

m=1

∞∑
n=1

cos[m(θ1 − ϕ1 − k1z1)]

× cos[n(θ2 − ϕ2 − k2z2)]
}
. (8)

By the following replacement of the integration variables
and the twist parameters:

2
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θ = θ1 − θ2

θ ′ = θ1 or θ2

z = z1 − z2

z′ = z1 + z2

ka = k1 + k2

2

kd = k1 − k2

2
,

(9)

the above integration for θ1 and θ2 can be reduced as follows:∫ 2π

0

∫ 2π

0
f

({
cos θ1

sin θ1

}
,

{
cos θ2

sin θ2

})
dθ1 dθ2

=
∫ θ=2π

θ=0

∫ θ ′=2π

θ ′=0
g

({
cos θ

sin θ

}
,

{
cos θ ′
sin θ ′

})
dθ dθ ′. (10)

By the following simple identity:

∫ 2π

0
g′

({
cos θ

sin θ

})
dθ

∫ 2π

0

{
cos θ ′
sin θ ′

}
dθ ′ = 0, (11)

the following common part of the integrand of equations (7)
and (8) can be simplified with the cancellation of the term
containing cos θ ′ and sin θ ′, as follows:

1 + 2
∞∑

m=1

cos[m(θ1 − ϕ1 − k1z1)]

+ 2
∞∑

n=1

cos[n(θ2 − ϕ2 − k2z2)]

+ 4
∞∑

m=1

∞∑
n=1

cos[m(θ1 − ϕ1 − k1z1)]
× cos[n(θ2 − ϕ2 − k2z2)]
→ 1 + 2

∞∑
n=1

{
cos[n{(ϕ1 − ϕ2) + kd z′}]

×{cos(nθ) cos(nkaz) + sin(nθ) sin(nkaz)}
+ sin[n{(ϕ1 − ϕ2) + kd z′}]{sin(nθ) cos(nkaz)

− cos(nθ) sin(nkaz)}}. (12)

As a result, roughly, the second term has a non-zero value only
for k1 = k2 (=k), as follows:

→ 1 + 2δ(k1, k2)

∞∑
n=1

{cos[n(ϕ1 − ϕ2)]{cos(nθ) cos(nkz)

+ sin(nθ) sin(nkz)} + sin[n(ϕ1 − ϕ2)]
× {sin(nθ) cos(nkz) − cos(nθ) sin(nkz)}},

δ(k1, k2) ≈
{

1 (k1 = k2)

0 (k1 �= k2).
(13)

In addition, the above integration for z1 and z2 can be reduced
as follows:∫ l

0

∫ l

0
f (z1, z2) dz1 dz2

=
∫ z=l

z=−l

∫ z′=2l−|z|

z′=|z|
g(z, z′)

∂(z1, z2)

∂(z, z′)
dz dz ′

= 1
2

∫ z=l

z=0

∫ z′=2l−z

z′=z
g(z, z′) dz dz ′

+ 1
2

∫ z=0

z=−l

∫ z′=2l+z

z′=−z
g(z, z′) dz dz ′

= 1
2

∫ z=l

z=0

∫ z′=2l−z

z′=z
g(z, z′) dz dz ′

+ 1
2

∫ z=l

z=0

∫ z′=2l−z

z′=z
g(−z, z′) dz dz ′

= 1
2

∫ z=l

z=0

∫ z′=2l−z

z′=z
{g(z, z′) + g(−z, z′)} dz dz ′. (14)

Furthermore, as the term containing sin(nθ) in equation (12)
cancels out, as shown below, equations (7) and (8) can be
reduced as follows:

L12,z = μ0

2(2π)3

×
∫ 2π

0

∫ 2π

0

∫ l

0

∫ 2l−z

z

dθdθ ′dzdz ′√
r 2

1 + r 2
2 + z2 − 2r1r2 cos θ

×
{

1 + 2δ(k1, k2)

∞∑
n=1

cos[n(ϕ1 − ϕ2)] cos(nθ) cos(nkz)

}

(15)

L12,θ = μ0k1k2r1r2

2(2π)3

×
∫ 2π

0

∫ 2π

0

∫ l

0

∫ 2l−z

z

cos θdθdθ ′dzdz ′√
r 2

1 + r 2
2 + z2 − 2r1r2 cos θ

×
{

1 + 2δ(k1, k2)

∞∑
n=1

cos[n(ϕ1 − ϕ2)]

× cos(nθ) cos(nkz)

}
. (16)

The first term of equation (15) can be calculated on the
condition that l � r2, as follows:

μ0

2(2π)3

∫ 2π

0

∫ 2π

0

∫ z=l

z=0

∫ z′=2l−z

z′=z

dθdθ ′dzdz ′√
z2+r 2

1+r 2
2 −2r1r2 cos θ

= μ0

2(2π)2

∫ 2π

0

∫ l

0

2(l − z) dθdz√
z2 + r 2

1 + r 2
2 − 2r1r2 cos θ

≈ μ0l

(2π)2

∫ 2π

0

{
ln 2l− ln

√
r 2

1 +r 2
2 −2r1r2 cos θ−1

}
dθ

= μ0l

2π
(ln 2l − 1)

μ0l

(2π)2

∫ 2π

0

{
ln r2 −

∞∑
n=1

1

n

(
r1

r2

)n

× cos nθ

}
dθ = μ0l

2π

(
ln

2l

r2
− 1

)
. (17)

The first term of equation (16) can be calculated on the
condition that l � r2, as follows:

μ0k1k2r1r2

2(2π)3

×
∫ 2π

0

∫ 2π

0

∫ z=l

z=0

∫ z′=2l−z

z′=z

cos θdθdθ ′dzdz ′√
z2 + r 2

1 + r 2
2 − 2r1r2 cos θ

3
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≈ μ0k1k2r1r2l

(2π)2

∫ 2π

0

{
ln 2l−ln

√
r 2

1 +r 2
2 −2r1r2 cos θ−1

}

× cos θ dθ = −μ0k1k2r1r2l

(2π)2

×
∫ 2π

0

{
ln r2 −

∞∑
n=1

1

n

(
r1

r2

)n

cos nθ

}
cos dθ

= μ0k1k2r1r2l

(2π)2

∫ 2π

0

{ ∞∑
n=1

1

n

(
r1

r2

)n

×
{

cos{(n+1)θ}+ cos{(n−1)θ}
2

}}
dθ = μ0l

4π
k1k2r 2

1 .

(18)

The second term of equation (15) with k1 = k2 (=k), can be
calculated as follows:

μ0

2(2π)3

×
∫ 2π

0

∫ 2π

0

∫ z=l

z=0

∫ z′=2l−z

z′=z

cos(nθ) cos(nkz) dθ dθ ′dzdz ′√
r 2

1 + r 2
2 + z2 − 2r1r2 cos θ

= μ0

(2π)2

∫ 2π

0

∫ l

0

cos(nθ) cos(nkz)(l − z) dθdz√
r 2

1 + r 2
2 + z2 − 2r1r2 cos θ

≈ μ0l

(2π)2

∫ 2π

0
K0

(
nk

√
r 2

1 + r 2
2 − 2r1r2 cos θ

)

× cos(nθ)dθ = μ0l

(2π)2

∫ 2π

0

{ ∞∑
m=−∞

Im(nkr1)Km(nkr2)

× cos(mθ)

}
cos(nθ) dθ = μ0l

(2π)2
2π In(nkr1)Kn(nkr2)

= μ0l

2π
In(nkr1)Kn(nkr2). (19)

Similarly, the second term of equation (16) with k1 = k2 (=k),
can be calculated as follows:

μ0k2r1r2

2(2π)3

×
∫ 2π

0

∫ 2π

0

∫ z=l

z=0

∫ z′=2l−z

z′=z

[
cos(nθ) cos(θ)

× cos(nkz) dθdθ ′dzdz ′][r 2
1 + r 2

2 + z2 − 2r1r2 cos θ
]−1/2

≈ μ0l

4π2
k2r1r2

∫ 2π

0
K0

(
nk

√
r 2

1 + r 2
2 − 2r1r2 cos θ

)

× cos(nθ) cos θ dθ = μ0l

4π2
k2r1r2

×
∫ 2π

0

{ ∞∑
m=−∞

Im(nkr1)Km(nkr2) cos(mθ)

}

×
{

cos(n + 1)θ + cos(n − 1)θ

2
dθ

}

= μ0l

4π
k2r1r2{In+1(nkr1)Kn+1(nkr2)

+ In−1(nkr1)Kn−1(nkr2)}. (20)

It is shown that the term containing sin(nθ) in
equation (12) cancels out, through the replacement cos(nθ)

by sin(nθ) in equations (19) and (20). In the mathematical

manipulation of equations (19) and (20), the following relation
is used [5, 6]:

∫ ∞

0

cos(αx)dx√
β2 + x2

= K0(αβ) α > 0, Re β > 0. (21)

The addition theorem for Bessel functions is also used [6]:

K0

(
nk

√
r 2

1 + r 2
2 − 2r1r2 cos θ

)
=

∞∑
m=−∞

Im(nkr1)Km(nkr2)

× cos(mθ). (22)

Furthermore, the condition l � r2 is used as follows:∫ z=l

z=0

cos(nkz)(l − z)dz√
r 2

1 + r 2
2 + z2 − 2r1r2 cos θ

= l
∫ z=l

z=0

cos(nkz)dz√
r 2

1 + r 2
2 + z2 − 2r1r2 cos θ

−
∫ z=l

z=0

cos(nkz)zdz√
r 2

1 + r 2
2 + z2 − 2r1r2 cos θ

≈ l
∫ z=∞

z=0

cos(nkz)dz√
r 2

1 + r 2
2 + z2 − 2r1r2 cos θ

−
∫ z=l

z=0
cos(nkz) dz

= l K0

(
nk

√
r 2

1 + r 2
2 − 2r1r2 cos θ

)
. (23)

As a result, the analytical expression for the mutual inductance
is obtained as follows:

L12 = μ0l

2π

(
ln

2l

r2
− 1

)
+ δ(k1, k2)

μ0l

π

∞∑
n=1

In(nkr1)Kn(nkr2)

× cos[n(ϕ2 − ϕ1)] + μ0l

4π
k1k2r 2

1 + δ(k1, k2)
μ0l

2π
k2r1r2

×
∞∑

n=1

{In+1(nkr1)Kn+1(nkr2) + In−1(nkr1)Kn−1(nkr2)}
× cos[n(ϕ2 − ϕ1)]. (24)

As two extreme cases of k1, k2 → ∞ and k1, k2 → 0
(or k → 0) of equation (24), two limiting extreme mutual
inductances for two parallel straight thin conductors and two
solenoids can be obtained as follows:

lim
k1,k2→0

L12 = μ0l

2π

(
ln

2l

r2
− 1

)
+ μ0l

π

∞∑
n=1

{
lim
k→0

In(nkr1)

×Kn(nkr2)
}

cos[n(ϕ2 − ϕ1)] = μ0l

2π
(ln 2l − 1) − μ0l

2π

× ln r2 + μ0l

π

∞∑
n=1

1

2n

(
r1

r2

)n

cos[n(ϕ2 − ϕ1)]

= μ0l

2π

⎛
⎝ln

2l√
r 2

1 + r 2
2 − 2r1r2 cos(ϕ2 − ϕ1)

− 1

⎞
⎠

= μ0l

2π

(
ln

2l

r12
− 1

)
(25)

4
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lim
k1,k2→∞ L12 = μ0l

2π

(
ln

2l

r2
− 1

)
+ μ0l

4π
k1k2r 2

1

= μ0l

2π

(
ln

2l

r2
− 1

)
+ μ0n1n2πr 2

1 l (26)

where r12 is the distance between two points, (r1, ϕ1, z =
0) and (r2, ϕ2, z = 0) in cylindrical coordinates, and
n1 (=1/ l1) and n2 (=1/ l2) are the turn numbers per unit
length of the inner and outer solenoids, respectively. In the
mathematical manipulation of equations (25) and (26), the
following asymptotic forms of the modified Bessel functions
are used [7]:

lim
k→0

In(nkr1)Kn(nkr2) = 1

n!
(

nkr1

2

)n
(n − 1)!

2

(
2

nkr2

)n

= 1

2n

(
r1

r2

)n

(27)

lim
k→∞

In(nkr1)Kn(nkr2) = lim
k→∞

1√
2πnkr1

enkr1

√
π

2nkr2
e−nkr2

= lim
k→∞

π

2nk
√

r1r2
e−nk(r2−r1) = 0. (28)

2.2. Derivation using the vector potential of an infinitely long
helical thin conductor

The mutual inductance of long coaxial helical conductors has
been discussed, using the vector potential of an infinitely long
helical thin conductor [1]. Generally, the mutual inductance
L12 for two parallel long straight conductors of length l with
arbitrary conductor boundary can be expressed, using the
geometrical mean distance (g.m.d.) R12, as follows [8–10]:

L12 = μ0l

2π

(
ln

2l

R12
− 1

)
= μ0l

2π
(ln 2l − 1) − μ0l

2π
ln R12

(29)

ln R12 = 1

S1 S2

∫ ∫
ln r12 dS1 dS2 (30)

Lcom = μ0l

2π
(ln 2l − 1) (31)

L12,r = −μ0l

2π
ln R12 (32)

where S1 and S2 are the cross-sectional areas of each of
the conductors and r12 is the distance between two parallel
filaments within each conductor.

Then, we can formally decompose the inductance L12

into two terms, i.e. the common term Lcom and the intrinsic
principal term L12,r, related to the g.m.d. The subscript
r is used in equation (32), as the intrinsic principal term
has been called ‘the reduced inductance’ [1]. This formal
decomposition can also be applied for a helical conductor,
as shown in equation (24). As equations (31) and (32) do
not satisfy the requirement that the argument of the logarithm
should be dimensionless, they should be thought of as formal
expressions. However, equation (30) originally presented by
Maxwell has been widely used as the defining equation for the
g.m.d. [8–10].

The vector potential due to an infinitely long straight
conductor parallel to the z axis passing through some point

(r = a, θ = ϕ) at the z = 0 plane can be expressed in circular
cylindrical coordinates as follows:

Az(r, θ, z) = −μ0 I

2π
ln

√
a2 + r 2 − 2ar cos(θ − ϕ)

c

= − μ0 I

2π
ln

r12

c
= −μ0 I

2π
ln r12 + μ0 I

2π
ln c (33)

where r12 is the distance between (a, ϕ) and (r, θ), and
c is an arbitrary constant with the dimension of length,
needed to make the argument of the logarithm dimensionless.
Furthermore, for a helical thin conductor carrying the current
I , with a pitch length lp (=2π/k), passing through some point
(r = a, θ = ϕ) at the z = 0 plane, the vector potential at
the general point (r, θ, z) can be expressed with an arbitrary
constant c in circular cylindrical coordinates as follows [2, 3]:

for r � a,

Ar (r, θ, z) = −μ0 I

2π
ka

∞∑
n=1

{
Kn+1(nka)In+1(nkr)

− Kn−1(nka)In−1(nkr)
}

sin[n(θ − ϕ − kz)]

Aθ (r, θ, z) = μ0 I

4π
kr + μ0 I

2π
ka

∞∑
n=1

{
Kn+1(nka)

× In+1(nkr) + Kn−1(nka)In−1(nkr)
}

× cos[n(θ − ϕ − kz)]

Az(r, θ, z) = −μ0 I

2π
ln

a

c
+ μ0 I

π

∞∑
n=1

Kn(nka)In(nkr)

× cos[n(θ − ϕ − kz)]

(34)

and for r � a,

Ar (r, θ, z) = −μ0 I

2π
ka

∞∑
n=1

{
In+1(nka)Kn+1(nkr)

− In−1(nka)Kn−1(nkr)
}

sin[n(θ − ϕ − kz)]

Aθ (r, θ, z) = μ0 I

4π
k

a2

r
+ μ0 I

2π
ka

∞∑
n=1

{In+1(nka)

× Kn+1(nkr) + In−1(nka)Kn−1(nkr)}
× cos[n(θ − ϕ − kz)]

Az(r, θ, z) = −μ0 I

2π
ln

r

c
+ μ0 I

π

∞∑
n=1

In(nka)Kn(nkr)

× cos[n(θ − ϕ − kz)].

(35)

The asymptotic form of the vector potential, equa-
tions (34) and (35), for a helical thin conductor coincides with
equation (33) for a straight thin conductor on k → 0 [1].

Then, it can be thought that the intrinsic principal
term L12,st,r of the mutual inductance of two long straight
conductors at distance d can be formally obtained from the
vector potential without an arbitrary constant c for an infinitely
long straight conductor from equations (29) and (30), as
follows:

L12,st,r

l
= − μ0

2πl

∫ l

0
ln r12 dz = − μ0

2π
ln r12. (36)
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As an extension, it is expected that the intrinsic principal
term L12,r of the mutual inductance of two long coaxial helical
conductors of winding radius r1 and twist pitch parameter
k1 (=2π/ l1), and winding radius r2 and twist pitch parameter
k2 (=2π/ l2), as shown in figure 1, can be expressed as
follows [1]:

L12,r

l
= 1

l I

{∫ l

0
Az(r2, ϕ2 + k2z, z) dz

+
∫ k2l

0
Aθ

(
r2, ϕ2 + θ,

θ

k2

)
r2 dθ

}
(37)

where Az(r, θ, z) and Aθ (r, θ, z) are the vector potential
without an arbitrary constant c for an infinitely long helical
conductor passing through (r1, ϕ1, z = 0). The twist pitch
length l2 of equation (32) in [1] is correctly replaced by the
whole length l in equation (37). Then, the intrinsic principal
term of the mutual inductance of two long helical conductors
can be obtained as follows:

L12,r

l
= − μ0

2π
ln r2 + μ0

π

∞∑
n=1

In(nk1r1)Kn(nk1r2)

× 〈cos[n(ϕ2 − ϕ1)]〉av + μ0

4π
k1k2r 2

1 + μ0

2π
k1k2r1r2

×
∞∑

n=1

{
In+1(nk1r1)Kn+1(nk1r2) + In−1(nk1r1)

× Kn−1(nk1r2)
}〈cos[n(ϕ2 − ϕ1)]〉av (38)

where

〈cos[n(ϕ2 − ϕ1)]〉av

= 1

l

∫ l

0
cos[n{(ϕ2 − ϕ1) + (k2 − k1)z}] dz

= 1

k2l

∫ k2l

0
cos

[
n

{
(ϕ2 − ϕ1) + k2 − k1

k2
θ

}]
dθ

= δ(k1, k2, ϕ1, ϕ2, n, l) cos[n(ϕ2 − ϕ1)

δ(k1, k2, ϕ1, ϕ2, n, l) = sin[n(k2 − k1)l]
n(k2 − k1)l

+ sin[n(ϕ2 − ϕ1)]
cos[n(ϕ2 − ϕ1)]

(cos[n(k2 − k1)l] − 1)

n(k2 − k1)l

lim
(k2−k1)→0

δ(k1, k2, ϕ1, ϕ2, n, l) = 1

lim
(k2−k1)l→∞

δ(k1, k2, ϕ1, ϕ2, n, l) = 0. (39)

As a result, it is shown that equation (38) is identical to
equation (24), except for the common term.

3. Rigorous calculation of the self-inductance

3.1. Mutual inductance of long helical conductors

The mutual inductance L12,S of two coaxial helical thin
conductors of finite cross-section with uniform helical current
density can be expressed using a double surface integral, as
follows:

L12,S = 1

S1S2

∫
S1

∫
S2

L12 dS1 dS2 (40)

where S1 and S2 are the cross-sectional areas of each of the
conductors. In this paper, the self-inductance of a long helical

Figure 3. Two coaxial helical tape conductors with thin arcuate
cross-sections.

conductor is rigorously or approximately calculated, using the
above expression. In this paper, only a helical conductor with
uniform helical current density is discussed. In addition, except
for the common term, the integral expression for equation (40)
is equivalent to equations (30) and (37) of [1].

3.2. Self-inductance of a long helical thin tape conductor

For a special case of helical tape conductors with thin arcuate
cross-section, as shown in figure 3, the self-inductance and
mutual inductance can be rigorously obtained, as shown
below. This result is useful for the inductance calculation
for a superconducting power cable which consists of tape
conductors wound on a circular cylinder. The mutual
inductance L12,arc of two coaxial helical tape conductors
with thin arcuate cross-section with the same pitch length
lp (=2π/k) and the same axial length l, located at (r1, ϕa ±
	ϕ/2z = 0) and (r2, ϕb ± 	ϕ/2z = 0), can be easily
calculated from equations (24) and (40) for r1 < r2 as follows:

L12,arc = 1

r1	ϕ1r2	ϕ2

×
∫ ϕ1=ϕa+	ϕ1/2

ϕ1=ϕa−	ϕ1/2
×

∫ ϕ2=ϕb+	ϕ2/2

ϕ2=ϕb−	ϕ2/2
L12r1 dϕ1r2 dϕ2

= μ0l

2π

(
ln

2l

r2
− 1

)
+ μ0l

π	ϕ1	ϕ2

∞∑
n=1

{
In(nkr1)Kn(nkr2)

× 4

n2
cos[n(ϕb − ϕa)] sin(n	ϕ1) sin(n	ϕ2)

}

+ μ0l

4π
k2r 2

1 + μ0l

2π	ϕ1	ϕ2
k2r1r2

×
∞∑

n=1

{{In+1(nkr1)Kn+1(nkr2) + In−1(nkr1)Kn−1(nkr2)}

× 4

n2
cos[n(ϕb − ϕa)] sin(n	ϕ1) sin(n	ϕ2)}. (41)

In particular, the self-inductance L11,arc of a helical tape
conductor with a thin arcuate cross-section is expressed as
follows:

L11,arc = μ0l

2π

(
ln

2l

r1
− 1

)
+ μ0l

π(	ϕ1)2

∞∑
n=1

In(nkr1)Kn(nkr1)

× 4

n2
sin2(n	ϕ1) + μ0l

4π
k2r 2

1 + μ0l

2π(	ϕ1)2
k2r 2

1

×
∞∑

n=1

{In+1(nkr1)Kn+1(nkr1) + In−1(nkr1)Kn−1(nkr1)}

× 4

n2
sin2(n	ϕ1). (42)

6
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Figure 4. Contour plot of r × Aθ (r, z) and the vector plot of the
magnetic field due to the annular ring of a circular conductor with
ring radius r = 100 mm and conductor radius a = 50 mm.

Then, it is confirmed that the above self-inductance with
	ϕ1 = 2π , is equal to the well-known expression for a closely
wound solenoid, as shown in equation (26) with r1 = r2 and
n1 = n2.

4. Approximate calculation of the self-inductance

4.1. Self-inductance of an annular ring

The approximate expression for the self-inductance of an
annular ring has been investigated since Kirchhoff and
Maxwell, using the analytical expression for the mutual
inductance of two concentric circular rings [8, 9, 11]. One
simple approximate method is to calculate the self-inductances
as the sum of the external and internal inductances. A helical
conductor is geometrically intermediate between a straight
conductor (k = 0) and a stack of annular rings (k = ∞).
Therefore, if an approximate method is valid for both a straight
conductor and an annular ring, it is expected that this method
is also valid for a helical conductor. The self-inductance L of
a long straight round conductor is rigorously expressed as the
sum of the external and internal inductances [8–11].

The magnetic energy of the annular ring of a circular
conductor can be expressed as follows:

E = 1
2 L I 2 = 1

2

∫
Sθ

jθ Aθ (r, z)r dr dz (43)

where Aθ (r, z) is the azimuthal vector potential in the circular
cylindrical coordinate system at radius r and the axial distance
z from the z = 0 plane due to a filamentary circle at the z = 0
plane with radius a. The azimuthal vector potential and the
related modulus ka are expressed as follows:

Aθ (r, z) = μ0 I

kaπ

√
a

r

{(
1 − k2

a

2

)
K (ka) − E(ka)

}
(44)

k2
a = 4ar

(a + r)2 + z2
(45)

where K (ka) and E(ka) are the complete elliptic integrals of
first and second kinds with modulus ka. In addition, the mutual

Figure 5. Self-inductance versus ring radius from 55 to 500 mm, for
the annular ring of a circular conductor with radius a = 50 mm,
together with the numerically and analytically calculated results.

inductance of two coaxial filamentary circles with radii r1 and
r2, and distances between centres zd, are expressed as follows:

M(r1, r2, zd) = μ0
√

r1r2

{(
2

km
−km

)
K (km)− 2

km
E(km)

}

(46)

k2
m = 4r1r2

(r1 + r2)2 + z2
d

. (47)

From equations (43) and (44), the self-inductance of the
annular ring of a circular conductor can be numerically
calculated.

For the self-inductance of the annular ring of a circular
conductor with ring radius r and conductor radius a,
the following expressions have been typically obtained by
Kirchhoff, Rayleigh and Niven as follows [8, 9, 11, 12]:

L = μ0r

(
log

8r

a
− 1.75

)
(48)

L = μ0r

{(
1 + a2

8r 2

)
log

8r

a
+ a2

24r 2
− 1.75

}
. (49)

Equation (48) given by Kirchhoff can be obtained as the sum
of the external and internal inductances by using equation (46)
for the mutual inductance of the filamentary circular ring at
the inner edge and the central circular ring as the external
inductance [9, 11]. On the other hand, equation (49) has
been more accurately obtained using a double surface integral
equivalent to equation (40) for an expanded form of the mutual
inductance of equation (46), given by Rayleigh and Niven [12].

In addition, the self-inductance can be calculated from the
mean of two extreme mutual inductances, of the filamentary
ring at the inner edge of radius r −a and the central filamentary
ring of radius r , and of the filamentary ring at the outer edge
of radius r + a and the central filamentary ring. Then, the self-
inductance of the annular ring can be calculated as follows:

Lmean = L(1) + L(2)

2
= M(r, r − a, 0) + M(r, r + a, 0)

2

+ μ0r

4
(50)

where L(1) and L(2) are the self-inductances calculated from
the mutual inductance of the filamentary ring at the inner edge
of radius r − a or at the outer edge of radius r + a, and the
central filamentary ring of radius r , respectively.

7
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Figure 6. Self-inductance versus ring radius from 55 to 80 mm, for
the annular ring of a circular conductor with conductor radius
a = 50 mm.

A contour plot of r × Aθ (r, z) and the vector plot of the
magnetic field due to the annular ring of a circular conductor
with ring radius r = 100 mm and conductor radius a = 50 mm
are shown in figure 4. The ring radius dependence of the self-
inductance for the annular ring of a circular conductor with
conductor radius a = 50 mm is shown in figures 5 and 6. In
figures 5 and 6, the numerical calculation using equation (43)
and the analytical calculations using equation (48), the formula
of Kirchhoff, and equation (49), the formula of Rayleigh and
Niven, and using equation (50) for the simple mean are plotted,
together with the calculated results for L(1) and L(2) which are
plotted as dashed lines. From figure 5, it is seen that every
analytical calculation has a good agreement with the numerical
calculation for the large ring radius. From figure 6 for the small
ring radius, it is shown that the approximation with the simple
mean has a good agreement with the numerical calculation.
However, equation (49), the formula of Rayleigh and Niven,
is better than equation (50), the approximation of the simple
mean.

In this paper, this calculation method with the simple mean
is applied for the self-inductance of a helical conductor, as
shown below.

4.2. Self-inductance of a helical conductor

If the external inductance Le is approximated by the
mean of two extreme mutual inductances of the inner
helical filament located at (r − a, ϕ, z = 0) and the
central helical filament of the conductor passing through
(r, ϕ, z = 0), and the outer helical filament passing
through (r + a, ϕ, z = 0) and the central helical
filament is taken, the self-inductance of a thin helical
conductor can be calculated, using equation (24) as
follows:

L = L(1)+L(2)

2
= Le(1)+Le(2)

2
+L i=μ0l

2π

(
ln

2l√
r(r + a)

−1

)

+ μ0l

2π

∞∑
n=1

{
Kn(nkr)In(nk(r − a)) + Kn(nk(r + a))

× In(nkr)
} + μ0l

8π
k2{(r − a)2 + r 2} + μ0l

8π

√
1 + k2r 2

+ μ0l

4π
k2r(r − a)

∞∑
n=1

{Kn+1(nkr)In+1(nk(r − a))

+ Kn−1(nkr)In−1(nk(r − a))} + μ0l

4π
k2r(r + a)

×
∞∑

n=1

{
Kn+1(nk(r + a))In+1(nkr) + Kn−1(nk(r + a))

× In−1(nkr)
}

(51)

where the internal inductance L i of a helical conductor can be
calculated from the magnetic energy within the helical con-
ductor, taking account of the length along the conductor, as
follows:

L i = μ0l

8π

√
l2
p + (2πr)2

lp
= μ0l

8π

√
1 + k2r 2 (52)

where the cross-sectional shape perpendicular to the central
axis of the helical conductor is always assumed as
circular.

In the limit of k → 0 (or lp → ∞), the above
self-inductance becomes that of a long straight conductor as
follows:

lim
k→0

L = μ0l

2π

(
ln

2l√
r(r + a)

− 1

)
+ μ0l

2π

∞∑
n=1

lim
k→0

{Kn(nkr)

× In(nk(r − a)) + Kn(nk(r + a))In(nkr)} + μ0l

8π

= μ0l

2π

(
ln

2l√
r(r + a)

− 1

)
− μ0l

4π

(
ln

a

r
+ ln

a

r + a

)

+ μ0l

8π
= μ0l

2π

(
ln

2l

a
− 3

4

)
. (53)

On the other hand, in another limit, k → ∞ (or lp → 0), the
self-inductance per unit length becomes the following result for
r � a:

lim
k→0

L = μ0l

2π

(
ln

2l√
r(r + a)

− 1

)
+ μ0l

8π
k2{(r − a)2 + r 2}

≈ μ0l

2π

(
ln

2l

r
− 1

)
+ μ0n2πr 2l. (54)

As a result, it is shown that equation (54) is equal to
equation (42) for 	ϕ1 = 2π , i.e. the self-inductance of a long
closely wound solenoid.

4.3. Self-inductance of a helical conductor or a solenoid as a
closed loop

The inductance of a solenoid is discussed as that of a
closed loop in most textbooks on classical electromagnetism.
However, as mentioned above, it is reasonable to treat a twisted
superconductor, e.g. a superconducting multifilamentary
conductor, as a parallel circuit of unclosed helical conductors.
Then, the self-inductance calculation for an unclosed helical
conductor and a closed helical conductor (or solenoid with
return conductor) must be distinguished.

Then, the self-inductance per unit length Lclosed/ l of an
infinitely long solenoid of winding radius r and conductor
radius a with the return conductor as a closed loop is calculated

8
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Figure 7. Whole integral path of C1, C2, C3, and C4 for the magnetic
flux enclosed in one period of a closed solenoid, which is not
identical to the substantial integral path C1 for an unclosed solenoid
or helical conductor.

for a closed path of C (=C1 + C2 + C3 + C4), as shown in
figure 7, as follows:

Lclosed

l
= Le + L i

l
= 
e

lp I
+ L i

l
= 1

lp I

∮
c

�A · d�s + L i

l

= 1

lp I

(∫
c1

�A · d�s +
∫

c3

�A · d�s
)

+ L i

l

= 1

lp I

{∫ lp

0
Az(r − a, θ, z) dz

+
∫ 2π

0
Aθ (r − a, θ, z)(r − a) dθ −

∫ lp

0
Az(0, θ, z) dz

}

+ L i

l
= μ0

2π
k2r(r − a)

∞∑
n=1

{
Kn+1(nkr)In+1(nk(r − a))

+ Kn−1(nkr)In−1(nk(r − a))
}

+ μ0

π

∞∑
n=1

Kn(nkr)In(nk(r − a)) + μ0

8π

√
1 + k2r 2. (55)

In the limit of k → ∞ (or lp → 0), the self-inductance per unit
length becomes the following result for r � a:

lim
k→∞

Lclosed

l
= μ0

4π
k2r(r − a) ≈ μ0n2πr 2. (56)

On the other hand, Lclosed/ l for another limit, k → 0 (or
lp → ∞), has no meaning, because the central axis loses the
meaning in the limit of k → 0 (or lp → ∞). Then, this means
that the self-inductance of a straight conductor cannot be
discussed by means of the calculation of the magnetic flux of
the closed loop. It is thought that an unclosed helical conductor
actually produces extra magnetic flux, which does not pass
through the closed loop formed by C = C1 + C2 + C3 + C4.

Figure 8. Pitch length dependence of self-inductance per unit length,
L/l , versus lp, for a long helical conductor of winding radius 10 mm,
and conductor radius 0.5 mm.

The above calculated result obtained using equation (56) is
well known as the self-inductance of a solenoid, but it is
different from that of the unclosed helical conductor, as shown
by equation (54). Furthermore, the self-inductance of a closed
long solenoid consisting of a helical conductor with a return
straight thin conductor at the z axis as shown in figure 7 can
be also obtained, using equations (51), (53) and (24), with the
equivalent result of equation (55).

5. Calculated results

For the circuit system consisting of a superconducting
composite and a return conductor, the circuit equation for the
transport current or the shielding current under the external
field in a long superconductor is generally described without
the length dependence due to the cancellation of the common
term [1, 4, 13].

For the calculated results shown below, the intrinsic
principal term L12,r is concentrated on, and it is presented
without the subscript r.

5.1. A single helical conductor

The result calculated using equation (51) for the self-
inductance of a helical conductor with the radius a = 0.5 mm
and the winding radius r = 10 mm, is shown in figure 8,
together with the conventional approximate self-inductance of
the solenoid as a closed loop, L/ l ≈ μ0n2πr 2 = μ0πr 2/ l2

p ,
shown as a dashed line with the results shown as circular
points, which were numerically calculated using equation (40).
In this calculation, the analytical expressions up to the first
hundred terms (n = 100) in equation (51) and up to the first
fifty terms (n = 50) in the numerical integral calculation of
equation (40) are taken into account. The same calculation of
the self-inductance is plotted for the twist pitch parameter k in
figure 9. It is shown that the agreement between the analytical
and numerical calculations is quite good on both plots. The
lower and upper dashed curves in figure 9 are calculated results
for L(1) and L(2) of equation (51), respectively. Then, it is
shown that the mean of L(1) and L(2) is much better than L(1)

or L(2) as well as an annular ring.

9
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Figure 9. Pitch parameter dependence of self-inductance per unit
length, L/l , versus k, for the same conductor as for figure 8.

Figure 10. Schematic view of a twisted bifilar lead of a round
conductor.

5.2. A helical bifilar lead

For a twisted bifilar lead, as shown in figures 10 and 11, with
diameters of 0.49 mm, and distances of 0.84 mm, the self-
inductance, Lb, of a twisted bifilar lead can be calculated
as Lb = 2(L − M) from the self-inductance, L, of each
helical conductor and the mutual inductance, M , of the two
helical conductors [1, 14]. The twist pitch dependences of
the self-inductance, Lb, of a twisted bifilar lead and the self-
and mutual inductances of helical conductors are shown in
figure 12, with good agreement between the analytical and
numerical calculations. The lower and upper dashed curves
for the self-inductance are also calculated results, for L(1) and
L(2), respectively. In addition, the mutual inductance is simply
calculated using equation (24) instead of equation (40).

5.3. A twisted superconducting ‘6 around 1’ strand cable

For a twisted superconducting 6 around 1 strand cable, the
twist pitch dependence of the self- and mutual inductances

Figure 11. Cross-section at z = 0 perpendicular to the z axis for a
helical bifilar lead of a round conductor, with k = 0, 2, and
3.14 rad mm−1.

Figure 12. Twist dependence of the self- and mutual inductance L ,
M of each helical conductor, and the self-inductance
Lb = 2(L − M) of a twisted bifilar lead.

of the strands of the twisted 6 around 1 strand cable have
been calculated [1]. On the condition that the cross-sectional
shape perpendicular to the helical central axis of the peripheral
conductor is not circular except for k = 0, the agreement
between the results, analytically calculated using equation (51)
and numerically calculated using equation (40) was poor. The
numerical calculation has been made taking account of the k
dependence of the cross-sectional shape. Then, it is implied
that equation (51) is not valid for a non-round conductor.

6. Conclusion

The full analytical expression for the mutual inductance of
two coaxial long helical thin conductors for the whole range
from 0 to ∞ of the pitch length was obtained from a modified
form of Neumann’s formula. It is shown that the expression
obtained is equal to the intrinsic principal term of the mutual
inductance previously obtained from the vector potential due
to an infinitely long helical conductor, except for the common
term. Then, the analytical expression for the self-inductance
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for a long helical round conductor was studied on the basis
of the summation of the external and internal inductances.
In addition, the external inductance of a helical conductor
was calculated as the mean of the mutual inductances of the
filament at the inner or outer edges of conductor and the central
filament. It was confirmed that the results obtained by the
approximate calculation show a good agreement with those
obtained by the numerically calculation for a single helical
round conductor.
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