
 

Accepted Manuscript

FIoT: An Agent-Based Framework for Self-Adaptive and
Self-Organizing Applications based on the Internet of Things

Nathalia Moraes do Nascimento, Carlos José Pereira de Lucena

PII: S0020-0255(16)31366-4
DOI: 10.1016/j.ins.2016.10.031
Reference: INS 12590

To appear in: Information Sciences

Received date: 6 November 2015
Revised date: 23 September 2016
Accepted date: 19 October 2016

Please cite this article as: Nathalia Moraes do Nascimento, Carlos José Pereira de Lucena, FIoT: An
Agent-Based Framework for Self-Adaptive and Self-Organizing Applications based on the Internet of
Things, Information Sciences (2016), doi: 10.1016/j.ins.2016.10.031

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.ins.2016.10.031
http://dx.doi.org/10.1016/j.ins.2016.10.031


ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

FIoT: An Agent-Based Framework for Self-Adaptive
and Self-Organizing Applications based on the Internet

of Things

Nathalia Moraes do Nascimentoa, Carlos José Pereira de Lucenaa

[nnascimento, lucena]@inf.puc-rio.br

aLaboratório de Engenharia de Software (LES), Departamento de Informática, Pontif́ıcia
Universidade Catolica do Rio de Janeiro (PUC-Rio), RJ - 22453-900, Brazil

Abstract

Billions of resources, such as cars, clothes, household appliances and even food

are being connected to the Internet forming the Internet of Things (IoT). Sub-

sets of these resources can work together to create new self-regulating IoT ap-

plications such as smart health, smart communities and smart homes. However,

several challenging issues need to be addressed before this vision of applications

based on IoT concepts becomes a reality. Because many IoT applications will

be distributed over a large number of interacting devices, centralized control

will not be possible and so open problems will need to be solved that relate

to building locally operating self-organizing and self-adaptive systems. As an

initial step in creating IoT applications with these features, this paper presents

a Framework for IoT (FIoT). The approach is based on Multi-Agent Systems

(MAS) and Machine Learning Techniques, such as neural networks and evo-

lutionary algorithms. To illustrate the use of FIoT, the paper contains two

different IoT applications: (i) Quantified Things and (ii) Smart traffic control.

We show how flexible points of our framework are instantiated to generate these

IoT application.

Keywords: Internet of Things (IoT), Multi-Agent System, Machine Learning,

Self-Organizing, Self-Adaptive, Quantified Things

Preprint submitted to Journal of Information Sciences October 20, 2016



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1. Introduction

The Internet of Things (IoT) refers to a global infrastructure of physical

things interconnected through the Internet [51]. The central notion is that, in

the near future, billions of resources, such as cars, household appliances, food

and machinery will be connected to the Internet and interact by sharing in-5

formation about themselves and their environments. IoT will make it possible

to develop a large number of applications [1] based on smart homes and cities,

e-health, and environmental monitoring to name some examples. Smart traffic

management is an example of a smart city application, which aims to provide

intelligent transportation through real-time traffic information and path opti-10

mization [20]. IoT is a new, exciting and emerging approach that we anticipate

will soon be available [20].

According to Atzori et al. [1], most IoT applications are not yet developed

because they need to be able to scale to incorporate millions of devices. Cen-

tralized solutions do not scale well and systems with a fixed configuration are15

inadequate as the environment may be continuously evolving [18]. For exam-

ple, an autonomous application for traffic management depends on the traffic

light controllers adapting to traffic situations [50] changing over time. Thus,

several challenging issues related to autonomy and local control still need to be

addressed before the IoT vision becomes a reality [1, 32].20

The current focus of IoT research is not applications but operational technol-

ogy solving problems related to limited Internet traffic capacity, communication

protocols, and network architecture [27]. For example, Gubbia et al. [20] discuss

the open challenges and future directions in IoT and mention global addressing

schemes, cloud storage, and wireless power as the key elements of current IoT25

research. In their opinion, a self-adaptive system of systems is an example of

the key application outcomes expected only in the next decade.

In [18], one of the few papers that discuss the interaction of things using

the Internet, the authors address some open issues which are needed to build

elements operating autonomously and capable of coping with a changing envi-30

2



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

ronment. In an effort to highlight these issues, a new terminology associated

with IoT is emerging: Smart Objects or Smart Things (SOs). They repre-

sent loosely coupled and decentralized systems of cooperating things. Fortino

and Trunfio [18] discuss SOs and define them as autonomous, physical digital

objects augmented with sensing/actuating, processing, interpretation, storage,35

and networking capabilities.

Part of the approach to develop and deploy IoT-based SOs is to define new

frameworks/middleware [3, 56] to support rapid prototyping of Iot applications.

Frameworks are general software systems that consist of abstract and concrete

classes, which can be adapted or extended to create more specific applications.40

According to Ian Sommerville [56], “the sub-system is implemented by adding

components to complete parts of the design and instantiating the abstract classes

in the framework.”

A few framework/middleware approaches have been proposed to support the

creation of an SO-based IoT infrastructure [16, 8, 48]. Fortino et al. [16] analyze45

these approaches and discuss their limitations. One restriction is that none of

these methods appears to have been used in the design of a complex application

scenario such as one supporting traffic flow using a large number of SOs. For

example, the authors in [15, 14] developed a middleware system for SOs and

state that support of distributed computing entities is the key and novel feature50

of their approach. However, to illustrate the use of their architecture, they

present a simple case study, which refers to a smart office environment consisting

of only two cooperating SOs. The paper does not show complex scenarios, where

SOs must cope with a changing environment and where a complex organization

is required.55

Fortino et al. [16] state that novel software engineering methodologies need

to be defined for development of dynamic SO-based IoT systems such as man-

ufacturing control and traffic management [10], where self-organization is a ne-

cessity. Thus, we focus on smart systems within the IoT domain, providing a

framework that supports systems with more autonomy through self-adaptive60

and self-organizing properties. Our middleware approach is called the “Frame-

3



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

work for Internet of Things” (FIoT) and is based on Multi-Agent Systems (MAS)

and adaptive techniques that have been commonly used in robotics to develop

autonomous embodied agents [29, 13].

The objective of FIoT is the creation of diverse applications, such as con-65

trollers for car traffic, machinery, public lighting, smart appliances and smart

homes. Hence, the framework allows the creation of autonomous controllers for

groups of homogeneous SOs. To illustrate the use of FIoT, we will present ex-

amples from two IoT application domains: (i) Quantified Things and (ii) Smart

Cities.70

Multi-agent Systems (MAS) are used to model real-world and social sys-

tems [62] and provide a useful paradigm for managing large and distributed

information systems [9]. In addition, an agent can have characteristics, such as

autonomy and social ability, which make MAS suitable for structures requiring

self-organization.75

MAS can be simple, but can become more robust over time if they are

developed according to self-organizing principles. However, the models used in

Self-Organizing MAS tend to be very complex [9], although the use of learning

and evolution strategies in a Self-Organizing MAS can reduce this complexity

[7, 62, 61].80

Robotic researchers have studied autonomous self-organizing physical sys-

tems and their problems [47, 59] with a view to developing methods that allow

robots to learn to perform complex tasks automatically. A primary focus of con-

temporary autonomous robotic research is to develop machine learning methods.

Recently, a new machine learning method called Evolutionary Robotics (ER)85

[13, 29, 40] has appeared and gained both academic and industrial attention.

The primary goal of ER is to develop methods for automatically synthesizing

intelligent autonomic robotic systems. ER has the potential to lead to the de-

velopment of robots that can adapt to unknown environments.

This paper is organized as follows. Section 2 provides a literature survey90

of related work. Section 3 describes the FIoT model and framework. Section

4 discusses how the proposed framework can be used to create IoT instances

4



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

by presenting some experiments. The paper ends with concluding remarks and

suggestions for future work.

2. Related Work95

This section provides a review of the literature on frameworks and MAS that

combines artificial intelligence and IoT. The section also contains a description

of a framework for physical agents that is not focused on IoT, but which provides

physical systems with self-organizing and self-adaptive properties.

Fortino et al. [16] describe how middleware can support the development100

of SO-based IoT systems. Some middleware layers in the Fortino paper are

described and compared, based on a set of requirements for smart environments

and SOs. Other authors in [16] list four different frameworks, which provide for

the efficient development and deployment of SOs namely: ACOSO (Agent-based

Cooperating Smart Objects) [15, 14], FedNet [24], Ubicomp [19] and Smart105

Products [37]. These frameworks use different architectural models: ACOSO is

agent-oriented and event-driven, FedNet is service-oriented, while Ubicomp and

Smart Products are component-based.

Fortino et al. [16] also discuss the limitations of these frameworks or mid-

dleware layers in the management of a very large number of cooperating SOs.110

According to the authors, the scale and dynamic nature of SO-based IoT sys-

tems require novel software engineering methodologies. In another publication

[17] the same authors state that specific abstractions for system/component

evolution are required as progressive change is a typical property of SO-based

systems. The authors further argue that agent-oriented methodologies could be115

used to formalize a development method for SO-based IoT systems as agent-

based systems can cope with the main requirements for IoT systems namely:

interoperability, abstraction, collective intelligence and experience-based learn-

ing.

A framework for IoT systems based on a MAS paradigm is also proposed120

in [27]. The authors list some requirements for developing IoT applications,

5



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

which include the domain analysis of the proposed framework. According to

the authors, requirements are the acquisition of measurements and related data

from devices, processing and translation of the data into useful information, and

actuation of devices within the environment. Moreover, the approach shows that125

agents have characteristics that meet those requirements, such as perception,

autonomy and social ability. Although the paper provides motivation for our

approach, this publication only offers a brief description of possible framework

components. The authors do mention that there is still the need to detail every

component and provide each one with intelligent characteristics. Our approach130

provides intelligent components to develop IoT applications through adaptation

and organizational algorithms.

The Framework for Autonomous Robotics Simulation and Analysis (FARSA)

[31] developed by the Italian Institute of Cognitive Science and Technologies [45]

has properties that make it useful for supporting FIoT. This framework was cre-135

ated to support research in the areas of embodied cognition, adaptive behavior,

language, and action. A set of studies of Evolutionary Robotics [29, 42, 30] was

developed using FARSA and related software. Most of these experiments use a

group of embedded agents each of which evolves to solve a collective problem.

Other research related to our approach is the Framework for Evolutionary140

Design (FREVO) [55]. Sobe et al. present FREVO as a multi-agent tool for

evolving and evaluating self-organizing simulated systems. The authors state

that FREVO allows a framework user to select a target problem evaluation,

controller representation and an optimization method. However, FREVO con-

centrates on evolutionary methods for agent controllers. As a result, this tool145

can only provide off-line adaptation and evolve simulated environments.

Unfortunately, we are not able to reuse these platforms to control SOs since

the platforms are for the simulation of robotic agents and lack some communi-

cation structures since they do not support heterogeneous platforms required by

current networks, such as desktop, web, mobile and micro-controller boards.150

6



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3. FIoT: Framework for Internet of Things

In this Section, we survey IoT application requirements using both the cur-

rent literature and personal experience. We then describe our proposed agent-

based model to create IoT systems and show how this model meets these re-

quirements. Our proposed model consists of three layers: (i) physical, (ii) com-155

munication, and (iii) application. To facilitate the development process of the

communication and application layers of an IoT system, we developed a Frame-

work for IoT (FIoT), which is presented in this Section.

During framework development, three stages must be considered: (i) domain

analysis, (ii) framework design, and (iii) framework instantiation [28]. Domain160

analysis surveys the requirements of an application area. In the framework

design stage, Unified Modeling Language (UML) diagrams [3] are used to specify

FIoT structure, behavior, and architecture. UML use case [60] and UML activity

diagrams [12] are also used to describe the main ideas behind FIoT. In addition,

an analysis of the kernel (“frozen-spots”) and flexible points (“hot-spots”) of165

the FIoT framework is presented. “Frozen-spots” are immutable and must be

part of each framework instance. “Hot-spots” represent the flexible points of a

system, which are customized to generate a specific application [28].

According to [28], choice of hot spots in a framework design is critical, as

bad choices will inevitably lead to unnecessary complexity. The instantiation170

stage is presented in Section 4, where new application instances are generated

through implementation of the FIoT’s hot spots.

3.1. Domain Analysis

As was emphasized in Sections 1 and 2, we used the material in [18] and

[27] as basis for the domain analysis. We also consider the requirements for the175

development of self-organizing and self-adaptive applications proposed by the

authors in [54].

From a software engineering perspective, IoT systems are distributed systems

consisting of components (things) that may be static or mobile, collect data

7



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

about themselves and their environments autonomously and take actions [25].180

A smart IoT system can make decisions based on collected data and use dynamic

reconfiguration to improve its performance.

All IoT applications share common features, such as connecting to the en-

vironment and collecting data; but they also have features that vary according

to specific applications. To assist in the development of self-organizing and self-185

adaptive IoT applications, we developed a list of requirements (R) for domain

discovery. The steps shown in Table 1 show the major steps in domain discovery.

Each major step labelled R1 through R5 may be followed by labelled sub-steps

which provide explanatory details.

In the next subsections, we show how our proposed model and framework190

meet these requirements.

3.2. Agent-Based Model

We developed an agent-based model as a foundation for generating different

kinds of applications for IoT. Our approach is completely based on MAS and

artificial intelligence paradigms such as neural networks and evolutionary algo-195

rithms. Our goal is to provide mechanisms that recognize and manage things

in the environment automatically. As depicted in Figure 1, our model consists

of three layers: physical (L1), communication (L2), and application (L3). Each

thing in the environment (physical layer) is recognized and controlled by agents

in the application layer.200

The physical layer consists of simulated or real devices (also named smart

things/objects) and environments. In order to model the physical layer, the

project designer has to define the features of smart things as well as the fea-

tures of their surrounding environment. The designer must decide on the envi-

ronmental conditions that need to be monitored such as temperature, relative205

humidity or traffic. Once these conditions are chosen the designer can specify

performance criteria for the smart things that collect data or make changes to

the environment.

8



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 1: Requirement domain discovery.

Requirements Domain discovery step

R1 Design-time description (problem domain)

R1.1 To analyze environmental conditions that are associated

with the problem goal such as temperature or constituent

gases

R1.2 To define how to collect environmental conditions such as

a micro-controller board and sensors

R2 Decentralization and Inter-operability

R3 Autonomous things

R3.1 Things should be capable of autonomously sensing/moni-

toring themselves and their environments

R3.2 Actuation over the environment

R4 Self-adapting capability

R4.1 Each individual component or the whole system should be

capable of identifying any new condition, failure, or problem

within the component’s environment

R4.2 Run-time capability of reasoning and of acting/adapting

R5 To design software to allow the system

R5.1 To recognize things in the environment

R5.2 To acquire the data from things that are collecting environ-

mental data

R5.3 To interface with device sensors

R5.4 To process and translate the data into useful contextual

information

The communication layer specifies the communication among agents in the

application layer. Each smart thing has one address, so an agent can access this210

address to obtain and set the necessary information to control the thing. We

suggest the Java Agent Development Framework (JADE) [2] and its variants

(JADEX, LEAP) to implement the communication layer among agents and

smart things in order to address heterogeneous devices such as PCs, PDAs,

9



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

resource constrained-devices or Smartphones.215

Figure 1: An agent-based model to generate IoT applications.

The application layer uses a MAS to provide services, such as collecting,

analyzing and transmitting data from several sensors to the Internet and back

again. Our intention is to produce MAS-based applications with decentralized,

autonomous, self-organizing features. In addition, we provide the ability to

create physical agents capable of interacting dynamically with complex environ-220

ments using approaches from robotics. We recommend developing controllers at

the application layer to allow autonomous management of things in the physical

layer.

3.3. Central Idea for the Framework Design

A FIoT application requires three types of agents: (i) God Agents [49]; (ii)225

Adaptive Agents; and (iii) Observer Agents [36]. The primary role of the God

Agent is to detect new things that are trying to connect to the system and make

that connection. For this connection to occur a thing sends a message to the God

Agent’s IP address and the God Agent creates an Adaptive Agent to control

10



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

each connected thing. An Adaptive Agent is an agent embodied in a Smart230

Thing, according to the description provided in [63]. While a device represents

the adaptive agent’s body, a JADE software agent contains the adaptive agent’s

controller. The God Agent sets the controller or the “brain” of an Adaptive

Agent based on its type where type is often determined by the the number

of connected sensors and actuators. Therefore, controller creation is a flexible235

point in FIoT system implementation.

Neto et al. [39] developed a framework to implement self-adaptive software

agents based on the autonomic computing principles proposed by IBM [23].

These adaptive agents have a control loop composed of four activities: collect,

analyze, plan and execute, which are briefly described next.240

• Collect: collect application data;

• Analyze: analyze the collected data by trying to detect problems;

• Plan: decide on an action in the case of problems; and

• Execute: change the application because of executed actions.

We customized the control loop from the IBM proposal [23] to define the245

behaviors of the FIoT’s Adaptive Agents. Instead of executing the analyze

and plan activities, the FIoT’s Adaptive Agents make decisions based on a

controller, which could be a finite state machine (FSM) or an artificial neural

network (ANN), as shown in Figure 2.

Figure 2: Control loop provided by the FIoT framework.

11



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Our Adaptive Agent must execute three key activities in sequence namely:250

(i) collect data from the thing; (ii) make decisions; and (iii) take actions. The

task of data collection focuses on processing information coming from devices,

such as reading data from input sensors. The collected data are used to set the

inputs of the agent’s controller. Then, the controller processes a decision to be

taken by the agent.255

Adaptive Agents act based on the controller output. An action (effector ac-

tivity) can be to interact with other agents, to send messages, or to set actuator

devices, thus making changes to the environment.

The Observer Agent examines the environment to determine if the system is

meeting its global goals. If the goals are not being met then the Observer Agent260

provides instructions to the the Adaptive Agents to change their behavior. In

this way the Adaptive Agents become self-organizing and behavior may emerge

that was not defined at design-time.

Some researchers [13, 11, 59, 47, 43, 40] have investigated the emergence of

cooperative or competitive self-organizing MAS. One way to generate a cooper-265

ative self-organizing MAS is to perform the adaptive process based on collective

evaluations. Self-organizing systems have global goals. Thus, we investigate dur-

ing the adaptation process if a collection of agents is working together to achieve

a global goal. If the system needs to adapt, the adaptation is performed for the

whole MAS. If we conduct the adaptive process based on individual evaluations,270

the agents may compete with each other. This possibility of competition is the

main reason for providing an Observer Agent to evaluate the global behavior

of the collection of Adaptive Agents and to conduct the adaptation process for

the whole system. Therefore, an Observer Agent’s main goal is to verify if the

Adaptive Agents need to adapt. When the actions of agents are far from what275

an Observer Agent expects, it executes a supervised or unsupervised learning

method, such as back-propagation or a genetic algorithm.

The process of adaptation consists of generating new configurations for all

the Adaptive Agents’ controllers and testing how agents will behave in this

environment. The Observer Agent sets the Adaptive Agents’ controllers with280

12



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the configuration that conforms to the Adaptive Agents’ desired global action.

While the Observer Agent looks for new controller configurations, Adaptive

Agents continue normal execution.

The Observer Agent is tightly coupled to the application being developed.

The evaluation process has to be implemented according to the expected global285

solution. For example, if an application for automobile traffic control has the

goal of reducing urban traffic congestion, the evaluation may be performed based

on the number of vehicles that had finished their routes in a specific period.

Another variable activity is the generation of new configurations for controllers,

which depend on the applied adaptation technique.290

As agents execute specific activities to communicate with smart things at

the physical layer, these smart things must execute the following sequential

activities:

• Connect to the Internet

• Send a message to the GodAgent, reporting the smart things controller295

type. The GodAgent has some controllers already registered. Thus, the

type of controller indicates the characteristics of a device, such as the list

of sensors and actuators

• Wait for a message from the GodAgent containing the address of the smart

thing’s Adaptive Agent. This smart thing will then use this address to300

send and receive the next messages in a cycle. The smart thing will

– Send a message with data from sensors

– Wait for a message with data to set the smart thing’s actuators

Table 2 summarizes the model and framework description in this Section,

and presents how they meet the requirements listed in Section 3.1, based on the305

layers. FIoT meets the requirements associated with the communication layer

(L2) and application layer (L3).

13



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 2: How the model and FIoT meet the IoT requirements.

Req. Layer Description

R1 L1 The physical layer design defines the problem domain.

R2 L2 and L3

The application layer uses a Multi-Agent System (MAS)

to provide services. The interoperability can be supported

by the JADE Framework.

R3 L3

Adaptive agents autonomously manage devices,

without the need of a human administrator.

R4.1 L3

The Observer Agent can evaluate the whole system,

groups of Adaptive Agents or an individual agent.

R4.2 L3

The adaptive process can be acquired through the

execution of a supervised or an unsupervised learning

algorithm at run-time. If the Adaptive Agents are not

performing a desired behavior, the Observer Agent can

execute a learning algorithm at run-time to adjust the

parameters of the Adaptive Agents’ controllers.

R5.1 L2 and L3

The God Agent automatically identifies things that are

trying to connect to the system.

R5.2 L2 and L3

Adaptive Agents collect data from the things at the

physical layer.

R5.3 L1 and L3

Adaptive Agents have access to a set of sensors and

actuators previously registered. The things at the

physical layer provide their type. Then, the Adaptive

Agents know how to process the data sent by the

things.

R5.4 L3

Adaptive Agents are intelligent agents that make use

of a controller to process the data coming from

the devices.

14



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3.4. Details of FIoT

As presented in the Section 3.2, our model proposes the use of JADE to

support the communication among agents and smart things. FIoT extends310

JADE, a Java framework to implement MAS through the development of JADE

agents, the behavior of agents, the controller to be used by Adaptive Agents,

and the adaptive process to be executed by the Observer Agent. In addition,

the system gives support to different interface communication message systems,

such as sockets and ACL. We present the key FIoT classes [56] of the main315

packages.

The class diagram depicted in Figure 3 illustrates the FIoT classes associated

with the creation of agents and their execution loops. As described before,

the FIoT agent classes are the GodAgent, ObserverAgent and AdaptiveAgent

classes, which extend the FIoTAgent class. Then, FIoT agents can access and320

make changes to the list of controllers (ControllerList class). This list stores all

controllers already created by the GodAgent for each type of smart thing such

as a chair with one temperature sensor, lamp with one presence sensor and one

alarm actuator.

 pkg 

+ AdaptiveAgent(d : Device) : void
+ getControllerFromList() : Controller

- attribute0 : int
- nameController : String

<<kernel>>
AdaptiveAgent

<<hotspot>>
ObserverAgent

+ setup() : void

<<JADE>>
Agent

<<JADE>>
OneShotBehavior

+ action() : void

<<abstract>>
Behavior

- ip : String

<<kernel>>
GodAgent

- controllerList : ControllerList
- world : AgentList

<<kernel>>
FIoTAgent

<<JADE>>
SequentialBehavior

+ startExecution(behaviors : List<Behavior>) : void

<<abstract>>
ExecutionLoop

+ startExecution(d : Detec, c : ControllerProvision, a : CreateAgent) : void

<<kernel>>
GodLoop

+ startExecution(e : Evaluate, newController : ChangeControllers) : void

<<hotspot>>
ObserverLoop_

+ startExecution(c : Collect, d : Decision, e : Effector) : void

<<kernel>>
AdaptiveLoop

Figure 3: Class diagram of FIoT - Agents.

15



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

All agents execute sequential behaviors, named as ExecutionLoop: God-325

Loop, AdaptiveLoop and ObserverLoop classes. The sequential behavior is a

JADE behavior that supports the composition of activities [2]. Thus, the Exe-

cutionLoop is a sequence of smaller actions. For example, for Adaptive Agents,

these execution loops are composed of collect, decide and effect activities.

The class diagram depicted in Figure 4 illustrates the collection of behaviors330

already developed. Activities such as evaluation and controller adaptation are

examples of hot spots. Thus, new strategies for evaluation and adaptation can

be developed to be used by agents. The God Agent’s execution loop performs

three behaviors: “Detect,” “CreateAgent,” and “ControllerProvision.”
 pkg 

<<hotspot>>
<<alternative>>

Evolutionary

+ action() : void
+ sendMessage(msg : Msg) : void
+ setDeviceOutput(output : Msg) : void

<<kernel>>
Effector

<<JADE>>
OneShotBehavior

+ action() : void

<<abstract>>
Behavior

- device : Device

<<kernel>>
Detec

+ create(device : Device) : AdaptiveAgent

<<kernel>>
CreateAgent

+ create(device : Device) : Controller

<<kernel>>
ControllerProvision

- controllerID : String
- ip : String

<<kernel>>
Device

List of Controllers: Each 
id indicates the type of 
sensors and actuators 
that device has

GodAgent 
Behaviors

AdaptiveAgent 
Behaviors

+ action() : void
+ readMessage() : Msg
+ readDeviceInput() : Msg

<<kernel>>
Collect

- list : ControllerList

<<hotspot>>
ChangeControllers

<<hotspot>>
Evaluate

ObserverAgent 
Behaviors

+ getNewController() : Controller

<<interface>>
<<hotspot>>

Adaptation

<<hotspot>>
<<alternative>>

Backpropagation

+ action() : void
+ getControlOutput(input : float[]) : float[]

<<kernel>>
Decision

Figure 4: Class diagram of FIoT - Behaviors.

While ObserverAgents access the ControllerList to adapt controller configu-335

16



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

rations through ChangeControllers behavior, an AdaptiveAgent uses the Con-

trollerList to get its controller, set data input, and obtain the calculated output.

The class diagram depicted in Figure 5 illustrates the controller classes.

Agents as virtual homogeneous things can use the same controller to make

decisions. For example, where similar smart lamps have to be managed, the340

same ANN controller can be used by Adaptive Agents. The GodAgent stores

the smart lamp controller in ControllerList as “lampNeuralNetwork.” If there

is another group of devices, the GodAgent has to use a different controller.

 pkg 

+ change(configuration[] : float[]) : void
+ createController(controlConfiguration : File) : void
+ getOutput(input[] : float[]) : float[]

<<hotspot>>
<<interface>>

Controller

+ setWeight(weight[] : float[]) : void

<<hotspot>>
<<alternative>>

NeuralNetwork
<<hotspot>>

<<alternative>>

StateMachine

+ getController(typeAgent : String) : void
+ editController(typeAgent : String, configuration : File) : void
+ addController(typeAgent : String, configuration : File) : void
+ getInstance() : void

<<kernel>>
ControllerList

0..*

- controllerList : ControllerList
- world : AgentList

<<kernel>>
FIoTAgent

Figure 5: Class diagram of FIoT - Controllers.

4. Evaluation: Illustrative Examples

We evaluate FIoT by implementing its hot spots or flexible points to gen-345

erate two different applications. As discussed in Section 3, the framework

instantiation is the last stage in the development of a framework [28].

We consider the following IoT applications or instances in the FIoT evalu-

ation process: (i) Quantified Things and (ii) traffic flow in a Smart City. This

Section presents a brief description of each example by completing the hot spots350

17



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

and illustrating how the generated applications adhere to the proposed frame-

work.

4.1. FIoT’s Instances

The frozen spots are part of the FIoT kernel and each of the proposed ap-

plications will have the following modules in common:355

• Detection of devices by the GodAgent

• The assignment of a controller to a particular Adaptive Agent by the

GodAgent

• Creation of Agents

• Data Collection execution by Adaptive Agents360

• Making decisions by Adaptive Agents

• Execution of effective activity by Adaptive Agents

• The communication structure among agents and devices

Some features are variable and may be selected/developed according to the

application type, as follows:365

• Controller creation

• Evaluation by the Observer Agent

• Controller adaptation by the Observer Agent

Thus, to create an FIoT instance, a developer has to implement/choose:

(i) a control module such as a neural network or finite state machine; (2) an370

adaptive technique to train the controller; and (iii) an evaluation process such

as a genetic algorithm that performs evaluation via a fitness function. As shown

in this Section, we only evaluate applications using a neural network. However,

we implemented FIoT to support the use of finite state machines (fsm), since

we provided an abstract controller class. For example, a framework user can375

18



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

implement a Mealy machine (a special case of an fsm) and use an evolutionary

algorithm to evolve its structure and transition probabilities [55]. Thus, it is

possible to generate applications using different configurations. A framework

user should select a configuration that works better toward solving a given

problem.380

4.2. Quantified Things

A new trend in IoT is “Quantified Self” [52], or continuous self-tracking. For

example, a person equipped with sensors could allow personal health parameters

to be available on the Internet and evaluate his/her health status. Since this

health information is available, the community started to ask about the types385

of inferences that are possible if selected groups of people share their tracked

data, thus producing the “Quantified Us” movement [26].

What happens if instead of asking “What can people learn when pooling

data?” [21], we start to ask, “What can things ‘learn’ when pooling data?”

These things could be machines, where one machine could predict a fault based390

on collective data sharing or things could also be plantations, where the owner

of one plantation can predict the crop yield based on the history of crops from

other plantations. Thus, “Quantified Things” is proposed as an extension of the

quantify movement and a design for this type of data sharing is presented using

FIoT, as depicted in Figure 6.395

Devices scattered across different environments are managed by adaptive

agents. In turn, these agents populate a cloud database with sensor data from

devices and their inferences. If new devices connect to the system, they can

access this database and make predictions based on this historical data.

IoT applications, such as environmental monitoring could incorporate an400

architecture to capture Big Data [6] from sensors and add value to that data

[46]. Quantified Things are an example of an IoT approach that could benefit

from a Big Data approach. More detail on Quantified Things, Big Data and

MAS are provided in [38].

19



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 6: An instance of FIoT to create “Quantified Things.”

Quantified Bananas405

To illustrate a “Quantified Things” experiment using FIoT, we address the

distribution and storage of fresh fruit, where the objective is to minimize the

loss of fruit too mature to be consumed. Recently, Ruan and Shi [53] proposed

a conceptual framework based on IoT technologies for monitoring in-transit

fruit freshness in e-commerce deliveries. They studied the process of fresh fruit410

transportation and mapped 1024 simulated scenarios to investigate freshness

assessment scenarios for different types of fruit by using case and deduction-

based learning. However, they do not verify the effectiveness of their proposed

framework with actual scenarios.

In our work, we focus on “Quantified Bananas” where data about bananas415

are shared. The data is used to predict the number of days that pass before

the bananas spoil under specific environmental conditions. The data from each

banana storehouse are the temperature, humidity, luminosity and concentration

of gases such as methane and hydrogen. The physical layer of this scenario

showing the sensors is in Figure 7.420

Adaptive agents use a three-layer feed-forward neural network to predict the

number of days before bananas spoil. The data from a number of sensors is used

as the input to this three-layer network.

20



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 7: Physical layer for ”Quantified Bananas” instance.

The ObserverAgent monitors executions, checking if predictions have been

correct or not. To compare results, a user system needs to be informed about425

how long the monitored bananas lasted. If results are not similar, the Observer-

Agent executes the adaptation process to adjust the network parameters. The

technique used is supervised learning (back-propagation), since it has historic

data to compare results and predict new ones.

Table 3 shows how the “Quantified Banana” application adheres to the pro-430

posed framework by extending the FIoT flexible points. The hot spot “making

evaluation” is developed for this application as an individual evaluation. The

Observer Agent maintains a data set containing input from Adaptive Agents

and neural predictions. Based on this historical data, for each adaptive agent

execution, the Observer Agent evaluates if an individual result requires a col-435

lective adaptation.

Table 3: Case I: Flexible Points

Framework Application

Controller Three Layer Neural Network

Making Evaluation

Individual Evaluation: for each agent evaluation,

the Observer Agent concludes if all Adaptive

Agents need to adapt or not

Controller Adaptation Supervised Learning (Backpropagation)

21



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4.2.1. Experimental Description

We carefully selected the individual bananas and categorized them by ap-

pearance. Each experiment was conducted under different conditions. The

experiments were created combining four parameters, as shown in Table 4: (i)440

dark but in a closed or open box; (ii) refrigerated or at room temperature; (iii)

stored with rotten fruit or not; and (iv) stored with ripe fruit or not.

Table 4: Experimental Description

Experiment Dark Fridge Rotten Fruit Ripe Fruit

1

2 X

3 X

4 X X

5 X

6 X X

7 X X X

8 X X

9 X X X

10 X X

For example, in the first experiment, we placed a banana in an open box (not

dark), at room temperature, and by itself. The ninth experiment was conducted

in a dark place, in the refrigerator, and stored with rotten fruit.445

4.2.2. Training Results

We verified the training process by comparing the predictions with values for

actual fruit shelf life for each experiment. This comparison is shown in Table 5,

where the column “Expected Results” shows the “actual” shelf life, the column

“Actual Results” shows the predictions provided by the neural network, and the450

column “Error” the difference between the actual and predicted shelf life, based

on normalized values.

22



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 5: Results of backpropagation execution

Experiment Expected Results Actual Results Error

1 1.0 0.999 ≈ 0

2 0.857 0.866 -0.0095

3 0.35 0.340 0.01

4 0.357 0.382 -0.025

5 0.714 0.719 -0.005

6 0.642 0.614 0.028

7 0.214 0.207 0.006

8 0.214 0.225 -0.010

9 0.285 0.285 ≈ 0

10 0.428 0.428 ≈ 0

As shown in Table 5, differences between expected and actual results are

fairly close. The largest errors were present in experiments four and six, cor-

responding to an error of approximately one day. Both tests were executed455

at room temperature and with ripe fruit inside the box. A possible solution

to reduce this error is to provide new experiments with similar settings, since

the back-propagation algorithm needs an extensive data set to train a neural

network.

4.3. Smart City460

The Smart Cities concept is frequently associated with IoT [4, 33, 20]. A

Smart City often has many sensors scattered throughout the city collecting

information on activities such as water and energy consumption [44], and vehicle

and human traffic flow. For instance, cars, traffic lights and pedestrians could

all be connected via the Internet, collecting and sharing data, such as GPS465

data from cars and smartphones, traffic light intervals, and camera images [58].

Based on this data, traffic lights could operate at different intervals, and GPS

consoles and smartphones could offer drivers alternate routes. The reduction

of urban traffic congestion is the main goal of this smart approach to traffic

23



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

management. In order to demonstrate the application of FIoT to smart city470

services, we apply IoT principles to create a self-managing car traffic control

application [35, 58], where vehicle traffic is monitored through sensors and the

data is used to control the operation of traffic lights.

According to Standford-Clark, an IBM engineer, the problem is not to change

the traffic lights, but to anticipate the “interconnection of unintended conse-475

quences.” Thus, most traffic light sequences are set via longer term algorithms,

taking the whole of the road network into account [58]. Unfortunately, deter-

mining such sequences is a non-trivial and time-consuming task, as one must

account for a wide range of factors such as traffic density, pedestrian flows, and

road complexity. In contrast, FIoT creates dynamic controllers for homoge-480

neous things situated in a distributed environment by using a decentralized and

adaptive process.

Car Traffic Application

In this subsection, we describe a simulated car traffic scenario, where Figure 8

depicts the elements that are part of the application namely: vehicles, traffic485

lights, road segments, dividers and intersections.

Figure 8: Traffic elements.

All roads are one-way; a segment is a portion of a road; intersections connect

24



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

two or more segments; and a road divider subdivides one segment into two

segments. We modeled our scenario as a graph, in which the edges represent

segments and nodes represent road dividers and intersections.490

4.3.1. Smart Road Segment

Each road segment in the simulation has a micro-controller that is used

to calculate the number of vehicles per time period, interact with the closest

segment, and change the segment’s traffic light. The GodAgent creates an

Adaptive Agent for each road segment in the scenario. Independent of the495

application, an Adaptive Agent has to execute three tasks: data collection,

decision-making and action enforcement. For this experiment, the first task

for the micro-controller in each segment consists of receiving data related to

its vehicle flow, data from its neighboring segment and its current traffic light

color. To make decisions, Adaptive Agents use a “three-layer feedforward” with500

a feedback loop [22]. Feedback occurs because the output of a segment’s traffic

light color influences its next network input, as shown in Figure 9.

vehicleRate

wirelessReceiver

previousLightColor

Input layer Hidden layer Output layer

trafficLightColor [0,1]

wirelessTransmitter[0,1]

RoadNeuralNetwork

Figure 9: Adaptive Agent’s Neural Controller.

By using a recurrent neural network with an input layer of three neurons,

we are providing a memory for these agents, where the goal is to remember the

duration of a specific color traffic-light. The middle layer of the neural network505

has two neurons connecting the input and output layers. These neurons pro-

25



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

vide an association between sensors and actuators, which represent the system

policies that can change based on the neural network configuration.

4.3.2. ObserverAgent: Adaptive process

Evolutionary algorithms are used to support the design of system features510

automatically. By using a genetic algorithm, we expect that a policy for con-

trolling the traffic lights, with a simple communication system among road seg-

ments, will emerge from this experiment. Therefore, no system feature such as

the effect of road segment on vehicle rate was specified at design-time. The eval-

uation and adaptation process performed by the Observer Agents is depicted in515

Figure 10.

Figure 10: Performing an adaptive process to adjust the Traffic Neural Controller weights.

Figure adapted from [41]. P.7.

The weights in the neural network used by the Adaptive Agents vary during

the adaptation process, as the ObserverAgent applies a genetic algorithm to find

a better solution. The ObserverAgent contains a pool of candidates to represent

the network parameters. The ObserverAgent evaluates each candidate based on520

26



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the number of cars that finished their routes after the simulation ends. Table 6

summarizes how the “Car Traffic Control” application adheres to the proposed

framework, while extending the FIoT flexible points.

Table 6: Case II: Flexible Points

Framework Application

Controller Three Layer Neural Network

Making Evaluation

Collective Fitness Evaluation: Test a pool of

candidates to represent the network parameters.

For each candidate, it evaluates the collection

of Adaptive Agents, comparing fitness

among candidates

Controller Adaptation
Evolutionary Algorithm: Generate a pool of

candidates to represent the network parameters

4.3.3. Experiment

The first simulation scenario is shown in Figure 11. The urban road network525

is based on a small section of a real city, Feira de Santana, Bahia, Brazil.

Figure 11: Simulation Urban Road Network. Adapted from Waze (2014) [34].

27



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The graph representing the road network consists of 31 nodes and 48 seg-

ments. Each segment is one-way and links two nodes. For simulation purposes,

we chose 15 nodes as departure points (yellow nodes) and two as destinations

(red nodes). Each segment has a traffic light. In the graph, the green and red530

triangles represent the traffic light colors.

We started with 1000 vehicles in this experiment, where the capacity of each

road segment is 75 vehicles. The role of the vehicles is to complete their routes.

4.3.4. Evolutionary Algorithm: Simulation Parameters

Since we are proposing a simple experiment, the process of testing, selecting535

and reproducing candidates is iterated only 20 times. During the test stage, each

team of 48 Adaptive Agents representing the road segments in the scenario is

allowed to “live” for 30 cycles by using a candidate, as shown in Figure 10. As

each car departure and target is randomly selected and can affect the test result,

more than one test is performed for each candidate.540

The fitness of each candidate consists of the number of vehicles that finished

their route at the end of the simulation. The individuals with the highest fitness

are selected to generate the new generation by using crossover and mutation.

4.3.5. Evaluation of the Best Candidate

After executing the evolutionary algorithm, Adaptive Agents acquire the545

ability to produce a satisfactory set of traffic light decisions in order to improve

urban traffic flow. We selected the best candidate solution from the evolutionary

process to provide comparisons between our approach and “conventional” traffic

light policies. Conventional policies use fixed-time control, where the sequence

of phases (red or green) and their durations [64] are constant. We simulated550

two fixed-time approaches.

The first conventional approach changes all traffic lights colors in every cycle.

The second changes all the traffic-light colors at the intersections every two

cycles, and sets the others green for 5 cycles and then red for only one cycle.

We executed the simulation three times, using the best solution presented and555

28



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

each one of the two “conventional” solutions. Figure 12 presents the number of

vehicles that finished their routes.

№ vehicles

Figure 12: Comparison of the FIoT approach and conventional systems in the first scenario.

By using the evolved agents approach, the number of vehicles that finished

their routes is higher than using the other conventional approaches.

5. Conclusion560

IoT is an emerging approach using information technology, which has the

potential for significant impact [57]. IoT applications must easily scale to cope

with what are likely to be large numbers of interacting and evolving devices.

Based on our experience with the examples presented in this paper, we be-

lieve that self-organizing and self-adapting IoT multi-agent applications are an565

appropriate way to cope with the growth and evolution of IoT systems.

There appear to be few research results in the literature about agent-based

architectures for IoT [14, 27] and none appears to present the design of a signifi-

cant case study involving a large number of cooperating smart things. Thus, the

results from the literature do not demonstrate scalability, where many things570

are interacting and coping with a dynamic environment. Further, important

features mentioned in this paper regarding self-organization and self-adaptation

are also not covered in the published literature. However, we found several

29



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

experiments in the Robotics literature about complex autonomous physical sys-

tems such as a swarm of robots that may be applicable. We used assumptions575

made in those studies about self-adaptive and self-organizing properties for the

physical agents’ domain.

We provided two examples of our proposed IoT agent-based framework: (i)

quantified bananas; and (ii) traffic light control. These examples illustrate that

our agent-based general software system satisfies its main goals namely:580

• Autonomous things:

– Things that are able to cooperate and execute complex behavior with-

out the need for centralized control to manage their interaction.

– Things that are able to have behavior assigned at design-time and/or

at run-time.585

• Feasible modelling characteristics:

– It is possible to use our framework model to deal with complex prob-

lems in reasonable time.

– In particular, it is possible during the design phase to model a general

IoT application.590

6. Future Work

We believe that as FIoT concepts mature, variants of the basic FIot will

be able to support the development of more complex and realistic IoT appli-

cations, especially in distributed environments. As future work, we want to

investigate the possible generalizations of our proposed framework and assess595

the framework’s limits [5]. As such, we need to evaluate FIoT by considering:

• the different prediction and control application types that can be created

using FIoT;

• the different learning algorithms to discover which types of adaptive tech-

niques are applicable;600

30



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

• the control types that can be used to meet the requirements imposed by

the FIoT’s controller abstract class and the types of adaptive techniques

that are suitable with each proposed control; and

• the types of IoT applications that require adaptation and the types of

(self)adaptations that are useful.605

As a result of this future research we expect new FIoT requirements and

hot spots to appear. For example, an expanded application may require the

management of heterogeneous environments and devices. Thus, to enable the

production of new instances, we will probably need to increase the FIoT domain

coverage and create new hot spots.610

Vitae

Nathalia Moraes do Nascimento is pursuing a PhD Degree in

Computing at Pontifical Catholic University of Rio de Janeiro

(PUC-Rio). Researcher at Software Engineer Laboratory (LES

PUC-Rio). She received a MSc degree from PUC-Rio in 2015

(August) and a BSc degree in Computer Engineering from the

State University of Feira de Santana (UEFS) in 2013.

Carlos J. P. de Lucena received a BSc degree from the Pontifi-

cal Catholic University of Rio de Janeiro (PUC-Rio), Brazil, in

1965, an MMath degree in computer science from the University

of Waterloo, Canada, in 1969, and a PhD degree in computer

science from the University of California at Los Angeles in 1974.

He has been a full professor in the Departamento de Informtica

at PUC-Rio since 1982.

31



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Acknowledgements

This work has been supported by the Laboratory of Software Engineering

(LES) at PUC-Rio. Our thanks to CNPq, CAPES, FAPERJ and PUC-Rio for

their support through scholarships and fellowships.615

This research did not receive any specific grant from funding agencies in the

public, commercial, or not-for-profit sectors.

References

[1] L. Atzori, A. Iera, G. Morabito, The internet of things: A survey, Computer

networks 54 (15) (2010) 2787–2805.620

[2] F. Bellifemine, G. Caire, T. Trucco, G. Rimassa, R. Munge-

nast, Jade Administrator’s Guide, JADE, Available in

jade.tilab.com/doc/administratorsguide.pdf (April 2007).

[3] S. Beydeda, M. Book, V. Gruhn, Model-Driven Software Development,

Springer-Verlag Berlin Heidelberg, 2005.625

[4] J. Bohli, P. Langendorfer, A. F. Skarmeta, Security and privacy challenge in

data aggregation for the iot in smart cities, Internet of Things: Converging

Technologies for Smart Environments and Integrated Ecosystems (2013)

225–244.

[5] J.-P. Briot, N. M. Nascimento, C. J. P. de Lucena, A multi-agent ar-630

chitecture for quantified fruits: Design and experience, in: 28th Inter-

national Conference on Software Engineering & Knowledge Engineering

(SEKE’2016), SEKE/Knowledge Systems Institute, PA, USA, 2016, pp.

369–374.

[6] C. Cecchinel, M. Jimenez, S. Mosser, M. Riveill, An architecture to support635

the collection of big data in the internet of things, in: Services (SERVICES),

2014 IEEE World Congress on, IEEE, 2014, pp. 442–449.

32



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[7] K. Cetnarowicz, K. Kisiel-Dorohinicki, E. Nawarecki, The application of

evolution process in multi-agent world to the prediction system, in: Second

International Conference on Multiagent Systems, 1996, pp. 26–32.640

[8] H. Derhamy, J. Eliasson, J. Delsing, P. Priller, A survey of commercial

frameworks for the internet of things, in: 2015 IEEE 20th Conference on

Emerging Technologies & Factory Automation (ETFA), IEEE, 2015, pp.

1–8.

[9] G. Di Marzo, A. Karageorgos, O. Rana, F. Zambonelli, Engineering Self-645

Organising Systems, Springer, Berlin, 2004.

[10] G. Di Marzo Serugendo, M.-P. Gleizes, A. Karageorgos, Self-organization

in multi-agent systems, The Knowledge Engineering Review 20 (02) (2005)

165–189.

[11] M. Dorigo, V. Trianni, E. Şahin, R. Groß, T. H. Labella, G. Baldassarre,650

S. Nolfi, J.-L. Deneubourg, F. Mondada, D. Floreano, et al., Evolving self-

organizing behaviors for a swarm-bot, Autonomous Robots 17 (2-3) (2004)

223–245.

[12] M. Dumas, A. ter Hofstede, Uml activity diagrams as a workflow specifica-

tion language, in: UML 2001 The Unified Modeling Language. Modeling655

Languages, Concepts, and Tools, Springer Berlin Heidelberg, 2001, pp. 76–

90.

[13] D. Floreano, C. Mattiussi, Bio-Inspired Artificial Intelligence. Theories,

Methods, and Technologies, Cambridge: MIT Press, 2008.

[14] G. Fortino, A. Guerrieri, M. Lacopo, M. Lucia, W. Russo, An agent-based660

middleware for cooperating smart objects, in: Highlights on Practical Ap-

plications of Agents and Multi-Agent Systems, Springer Berlin Heidelberg,

2013, pp. 387–398.

33



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[15] G. Fortino, A. Guerrieri, W. Russo, Agent-oriented smart objects develop-

ment, in: IEEE International Conference on Computer Supported Cooper-665

ative Work in Design (CSCWD), 2012, pp. 907–912.

[16] G. Fortino, A. Guerrieri, W. Russo, C. Savaglio, Middlewares for smart

objects and smart environments: Overview and comparison, in: Internet

of Things Based on Smart Objects: Technology, Middleware and Applica-

tions, Springer, 2014, pp. 1–29.670

[17] G. Fortino, A. Guerrieri, W. Russo, C. Savaglio, Towards a development

methodology for smart object-oriented iot systems: A metamodel ap-

proach, in: Systems, Man, and Cybernetics (SMC), 2015 IEEE Interna-

tional Conference on, IEEE, 2015, pp. 1297–1302.

[18] G. Fortino, P. Trunfio, Internet of Things Based on Smart Objects: Tech-675

nology, Middleware and Applications, Springer, 2014.

[19] C. Goumopoulos, A. Kameas, Smart objects as components of ubicomp

applications, International Journal of Multimedia and Ubiquitous Engi-

neering.

[20] J. Gubbia, R. Buyyab, S. Marusic, M. Palaniswami, Internet of things (iot):680

A vision, architectural elements, and future directions, Future Generation

Computer Systems 29 (2013) 1645–1660.

[21] J. Havens, Hacking Happiness: Why Your Personal Data Counts and How

Tracking it Can Change the World, Penguin Publishing Group, 2014.

[22] S. Haykin, Neural Networks: A Comprehensive Foundation, Macmillan,685

1994.

[23] P. Horn, Autonomic computing: Ibm\’s perspective on the state of infor-

mation technology, Tech. rep., IBM (2001).

[24] F. Kawsar, T. Nakajima, J. Hyuk Park, S. Yeo, Design and implementation

of a framework for building distributed smart object systems, Supercom-690

puting.

34



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[25] M. Kuniavsky, Smart Things: Ubiquitous Computing User Experience De-

sign Book, Morgan Kaufmann, 2010.

[26] V. Lee, Learning Technologies and the Body: Integration and Implementa-

tion In Formal and Informal Learning Environments, Routledge Research695

in Education, Taylor & Francis, 2014.

[27] P. Lopez, G. Prez, Collaborative agents framework for the internet of

things, in: Ambient Intelligence and Smart Environments, 2012, pp. 191–

199.

[28] M. E. Markiewicz, C. J. P. de Lucena, Object oriented framework develop-700

ment, Crossroads 7 (4) (2001) 3–9.

[29] D. Marocco, S. Nolfi, Emergence of communication in embodied agents

evolved for the ability to solve a collective navigation problem, Connection

Science.

[30] G. Massera, T. Ferrauto, O. Gigliotta, S. Nolfi, Designing adaptive hu-705

manoid robots through the farsa open-source framework, Tech. rep., Insti-

tute of Cognitive Sciences and Technologies (CNR-ISTC) (2013).

[31] G. Massera, T. Ferrauto, O. Gigliotta, S. Nolfi, farsa: An open software

tool for embodied cognitive science, in: Advances in Artificial Life, ECAL,

vol. 12, 2013, pp. 538–545.710

[32] J. Mineraud, O. Mazhelis, X. Su, S. Tarkoma, A gap analysis of internet-

of-things platforms, Computer Communications.

[33] S. Mitchell, N. Villa, M. Stewart-Weeks, A. Lange, The internet of every-

thing for cities: Connecting people, process, data, and things to improve

the livability of cities and communities (2013).715

[34] W. MOBILE, Waze. available in: https://www. waze. com/, November.

[35] D. P. Möller, Introduction to Transportation Analysis, Modeling and Sim-

ulation, Springer, 2014.

35



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[36] C. Müller-Schloer, Organic computing: on the feasibility of controlled emer-

gence, in: Proceedings of the 2nd IEEE/ACM/IFIP international confer-720

ence on Hardware/software codesign and system synthesis, ACM, 2004, pp.

2–5.

[37] M. Mhlhuser, Smart products: An introduction, Communications in Com-

puter and Information Science.

[38] N. M. Nascimento, C. Jos, P. de Lucena, H. Fuks, Modeling quantified725

things using a multi-agent system, in: 2015 IEEE/WIC/ACM Interna-

tional Conference on Web Intelligence and Intelligent Agent Technology

(WI-IAT), vol. 1, IEEE, 2015, pp. 26–32.

[39] B. Neto, A. Costa, M. Netto, V. Silva, C. Lucena, Jaaf: A framework to

implement self-adaptive agents, in: International Conference on Software730

Engineering and Knowledge Engineering, 2009, pp. 212 – 217.

[40] S. Nolfi, J. Bongard, P. Husbands, D. Floreano, Evolutionary Robotics,

chap. 76, Springer International Publishing, Cham, 2016, pp. 2035–2068.

[41] S. Nolfi, O. Gigliotta, Evorobot*, in: Evolution of communication and

language in embodied agents, Springer, 2010, pp. 297–301.735

[42] S. Nolfi, D. Parisi, Learning to adapt to changing environments in evolving

neural networks, in: Adaptive Behavior, 1997, pp. 75–98.

[43] L. Panait, S. Luke, Cooperative multi-agent learning: The state of the art,

Autonomous Agents and Multi-Agent Systems 11 (3) (2005) 387–434.

[44] J. F. D. Paz, J. Bajo, S. Rodrguez, G. Villarrubia, J. M. Corchado, Intel-740

ligent system for lighting control in smart cities, Information Sciences 372

(2016) 241 – 255.

[45] G. Pezzulo, G. Baldassarre, A. Cesta, S. Nolfi, Research on cognitive

robotics at the institute of cognitive sciences and technologies, national

research council of Italy, Cognitive processing 12 (4) (2011) 367–374.745

36



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[46] I. Portugal, P. Alencar, D. Cowan, A survey on domain-specific languages

for machine learning in big data, arXiv preprint:1602.07637.

[47] M. Quinn, L. Smith, G. Mayley, P. Husbands, P. H. Nds, Evolving con-

trollers for a homogeneous system of physical robots: Structured coopera-

tion with minimal sensors (2003).750

[48] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, S. Clarke, Middleware for

internet of things: a survey, IEEE Internet of Things Journal 3 (1) (2016)

70–95.

[49] A. J. Riel, Object-oriented design heuristics, vol. 335, Addison-Wesley

Reading, 1996.755

[50] F. Rochner, H. Prothmann, J. Branke, C. Müller-Schloer, H. Schmeck, An

organic architecture for traffic light controllers., in: GI Jahrestagung (1),

2006, pp. 120–127.

[51] P. Rodrigues, Y.-D. Bromberg, L. Rveillre, D. Ngru, Zigzag: A middleware

for service discovery in future internet, in: Distributed Applications and760

Interoperable Systems, Springer Berlin Heidelberg, 2012, pp. 208–221.

[52] D. Rose, Enchanted Objects: Design, Human Desire, and the Internet of

Things, Scribner, 2014.

[53] J. Ruan, Y. Shi, Monitoring and assessing fruit freshness in iot-based e-

commerce delivery using scenario analysis and interval number approaches,765

Information Sciences.

[54] G. D. M. Serugendo, J. Fitzgerald, A. Romanovsky, N. Guelfi, A generic

framework for the engineering of self-adaptive and self-organising systems,

University of Newcastle upon Tyne, Computing Science, 2007.

[55] A. Sobe, I. Fehrvri, W. Elmenreich, Frevo: A tool for evolving and eval-770

uating self-organizing systems, in: IEEE Self-adaptive and Self-organizing

Systems Workshop, 2012, pp. 105 – 110.

37



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[56] I. Sommerville, Software Engineering, International computer science se-

ries, Pearson/Addison-Wesley, 2004.

[57] C. Stamford, 2014 hype cycle for emerging technologies maps775

the journey to digital business, Tech. rep., Gartner, Available in

http://www.gartner.com/newsroom/id/2819918 (August 2014).

[58] TheGuardian, Can the internet of things save us from traffic jams?, Avail-

able in http://www.theguardian.com/technology/2015/apr/20/internet-of-

things-traffic (April 2015).780

[59] V. Trianni, S. Nolfi, Engineering the evolution of self-organizing behaviors

in swarm robotics: A case study, Artificial Life 17 (3) (2011) 183–202.

[60] T. von der Maßen, H. Lichter, Modeling variability by uml use case di-

agrams, in: Proceedings of the International Workshop on Requirements

Engineering for product lines, Citeseer, 2002, pp. 19–25.785

[61] H. Wang, X. Wang, X. Hu, X. Zhang, M. Gu, A multi-agent reinforcement

learning approach to dynamic service composition, Information Sciences

363 (2016) 96–119.

[62] G. Weiss, S. Sen, Adaptation and Learning in Multi-Agent Systems,,

Springer-Verlag, 1995.790

[63] M. Wooldridge, An introduction to multiagent systems, John Wiley & Sons,

2009.

38


