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Exact Joint Sparse Frequency Recovery via
Optimization Methods
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Abstract—Frequency recovery/estimation from discrete sam-
ples of superimposed sinusoidal signals is a classic yet important
problem in statistical signal processing. Its research has recently
been advanced by atomic norm techniques which exploit signal
sparsity, work directly on continuous frequencies, and completely
resolve the grid mismatch problem of previous compressed
sensing methods. In this work we investigate the frequency re-
covery problem in the presence of multiple measurement vectors
(MMVs) which share the same frequency components, termed
as joint sparse frequency recovery and arising naturally from
array processing applications. To study the advantage of MMVs,
we first propose an `2,0 norm like approach by exploiting joint
sparsity and show that the number of recoverable frequencies
can be increased except in a trivial case. While the resulting
optimization problem is shown to be rank minimization that
cannot be practically solved, we then propose an MMV atomic
norm approach that is a convex relaxation and can be viewed as
a continuous counterpart of the `2,1 norm method. We show that
this MMV atomic norm approach can be solved by semidefinite
programming. We also provide theoretical results showing that
the frequencies can be exactly recovered under appropriate
conditions. The above results either extend the MMV compressed
sensing results from the discrete to the continuous setting or
extend the recent super-resolution and continuous compressed
sensing framework from the single to the multiple measurement
vectors case. Extensive simulation results are provided to validate
our theoretical findings and they also imply that the proposed
MMV atomic norm approach can improve the performance
in terms of reduced number of required measurements and/or
relaxed frequency separation condition.

Index Terms—Atomic norm, compressed sensing, direction
of arrival (DOA) estimation, joint sparse frequency recovery,
multiple measurement vectors (MMVs).

I. INTRODUCTION

Suppose that we observe uniform samples (with the Nyquist
sampling rate) of a number of L sinusoidal signals:

yojt =

K∑
k=1

skte
i2πjfk , (j, t) ∈ J × [L] , (1)

which form an N×L matrix Y o =
[
yojt
]
, on the index set Ω×

[L], where Ω ⊂ J := {0, 1, . . . , N − 1}, [L] := {1, 2, . . . , L},
and N is the number of uniform samples per sinusoidal signal.
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This means that each sinusoidal signal corresponds to one
measurement vector. Here (j, t) indexes the entries of Y o,
i =

√
−1, fk ∈ T := [0, 1] denotes the kth normalized

frequency (note that the starting point 0 and the ending point
1 of the unit circle T are identical), skt ∈ C is the (complex)
amplitude of the kth frequency component composing the tth
sinusoidal signal, and K is the number of the components
which is small but unknown. Moreover, let M = |Ω| ≤ N
be the sample size of each measurement vector. The observed
M × L data matrix Y o

Ω :=
{
yojt
}

(j,t)∈Ω×[L]
are referred to

as full data, if M = N (i.e., Ω = J and Y o
Ω = Y o), and

otherwise, compressive data. Let T = {f1, . . . , fK} denote
the set of the frequencies. The problem concerned in this
paper is to recover T given Y o

Ω, which is referred to as
joint sparse frequency recovery (JSFR) in the sense that the
multiple measurement vectors (MMVs) (i.e., the L columns of
Y o

Ω) share the same K frequencies. Once T is obtained, the
amplitudes {skt} and the full data Y o can be easily obtained
by a simple least-squares method.

An application of the JSFR problem is direction of arrival
(DOA) estimation in array processing [2], [3]. In particular,
suppose that K farfield, narrowband sources impinge on a
linear array of sensors and one wants to know their directions.
The output of the sensor array can be modeled by (1) under
appropriate conditions, where each frequency corresponds to
one source’s direction. The sampling index set Ω therein
represents the geometry of the sensor array. To be specific,
Ω = J in the full data case corresponds to an N -element
uniform linear array (ULA) with adjacent sensors spaced by
half a wavelength, while Ω ( J corresponds to a sparse linear
array (SLA) that can be obtained by retaining only the sensors
of the above ULA indexed by Ω. Each measurement vector
consists of the outputs of the sensor array at one snapshot.
The L MMVs are obtained by taking L snapshots under the
assumption of static sources (during a time window). Note
that, since the array size can be limited in practice due to
physical constraints and/or cost considerations, it is crucial in
DOA estimation to exploit the temporal redundancy (a.k.a.,
the joint sparsity that we refer to) contained in the MMVs.

In conventional methods for JSFR one usually assumes that
the source signals (or the rows of [skt]) have zero mean and
are spatially uncorrelated. It follows that the covariance matrix
of the full data snapshot (or the columns of Y o) is posi-
tive semidefinite (PSD), Toeplitz and low rank (of rank K).
Exploiting these structures for frequency recovery was firstly
proposed by Pisarenko who rediscovered the classical Vander-
monde decomposition lemma that states that the frequencies
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can be exactly retrieved from the data covariance matrix [4],
[5]. A prominent class of methods was then proposed and
designated as subspace methods such as MUSIC and ESPRIT
[6], [7]. While these methods estimate the data covariance
using the sample covariance, the Toeplitz structure cannot
be exploited in general, a sufficient number of snapshots
is required, and their performance can be degraded in the
presence of source correlations.

With the development of sparse signal representation and
later the compressed sensing (CS) concept [8], [9], sparse
(for L = 1) and joint sparse (for L > 1) methods for
frequency recovery have been popular in the past decade. In
these methods, however, the frequencies of interest are usually
assumed to lie on a fixed grid on T because the development of
CS so far has been focused on signals that can be sparsely rep-
resented under a finite discrete dictionary. Under the on-grid
assumption, the observation model in (1) can be written into an
underdetermined system of linear equations and CS methods
are applied to solve an involved sparse signal whose support is
finally identified as the frequency set T . Typical sparse meth-
ods include combinatorial optimization or `0 (pseudo-)norm
minimization, its convex relaxation or `1 norm minimization,
and greedy methods such as orthogonal matching pursuit
(OMP) as well as their joint sparse counterparts [10]–[15].
While the `0 minimization can exploit sparsity to the greatest
extent possible, it is NP-hard and cannot be practically solved.
The maximal K allowed in `1 minimization and OMP for
guaranteed exact recovery is inversely proportional to a metric
called coherence which, however, increases dramatically as the
grid gets fine. Moveover, grid mismatches become a major
problem of CS-based methods though several modifications
have been proposed to alleviate this drawback (see, e.g., [16]–
[19]).

Breakthroughs came out recently. In the single measurement
vector (SMV) case when L = 1, Candès and Fernandez-
Granda [20] dealt directly with continuous frequencies and
completely resolved the grid mismatch problem. In particular,
they considered the full data case and showed that the frequen-
cies can be exactly recovered by exploiting signal sparsity
if all the frequencies are mutually separated by at least 4

N .
This means that up to K = N

4 frequencies can be recovered.
Their method is based on the total variation norm or the
atomic norm that extends the `1 norm from the discrete to
the continuous frequency case and can be computed using
semidefinite programming (SDP) [21], [22]. Following from
[20], Tang et al. [23] studied the same problem in the case
of compressive data using atomic norm minimization (ANM).
Under the same frequency separation condition, they showed
that a number of M ≥ O (K logK logN) randomly selected
samples is sufficient to guarantee exact recovery with high
probability. Several subsequent papers on this topic include
[24]–[29]. However, similar gridless sparse methods are rare
for JSFR in the MMV case concerned in this paper. A gridless
method designated as the sparse and parametric approach
(SPA) was proposed in our previous work [30] based on
weighted covariance fitting by exploiting the structures of the
data covariance matrix. In the main context of this paper we
will show that this method is closely related to the MMV

atomic norm method that we will introduce in the present
paper. Another related work is [31]; however, in this paper
the MMV problem was reformulated as an SMV one, with
the joint sparsity missing, and solved within the framework in
[20]. Therefore, the frequency recovery performance can be
degraded. As an example, in the noiseless case the frequencies
cannot be exactly recovered using the method in [31] due to
some new ‘noise’ term introduced.

In this paper, we first study the advantage of exploiting
joint sparsity in the MMVs and then propose a practical
approach to utilize this information. In particular, following
from the literature on CS we propose an `0 norm like sparse
metric that is referred to as the MMV atomic `0 norm and
is a continuous counterpart of the `2,0 norm used for joint
sparse recovery [13]. We theoretically show that the MMVs
can help improve the frequency recovery performance in
terms of the number of recoverable frequencies except in a
trivial case. But unfortunately (in fact, not surprisingly), this
atomic `0 norm approach is proven to be a rank minimization
problem that cannot be practically solved. We then propose a
convex relaxation approach in which the MMV atomic norm is
adopted that is a continuous counterpart of the `2,1 norm. We
show that this atomic norm approach can be efficiently solved
via semidefinite programming. Theoretical results are also
provided to show that the frequencies can be exactly recovered
under similar conditions as in [20], [23]. Extensive simulation
results are provided to validate our theoretical results and they
also imply that the proposed MMV atomic norm approach can
result in improved frequency recovery performance in terms
of reduced number of required measurements and/or relaxed
frequency separation condition.

It is interesting to note that the proposed MMV atomic
`0 norm and atomic norm approaches somehow exploit the
structures of the “data covariance matrix” and are related to
the aforementioned subspace methods. In particular, a PSD
Toeplitz matrix is involved in both the proposed methods
that can be interpreted as the data covariance matrix (as if
certain statistical assumptions were satisfied) from the Van-
dermonde decomposition of which the true frequencies are
finally obtained, while the low rank structure is exploited by
matrix rank minimization in the atomic `0 norm method and
by matrix trace norm (or nuclear norm) minimization in the
atomic norm method. As compared to the subspace methods,
the proposed methods exploit the matrix structures to a greater
extent. Moreover, the proposed methods do not require the
assumption of uncorrelated sources and can be applied to the
case of limited measurement vectors.

The results of this work were published online in the tech-
nical report [32] and were presented in part in the conference
paper [1]. When preparing this paper we found that the same
MMV atomic norm approach was also independently proposed
in [33], [34]. This paper is different form [33], [34] in the
following aspects. First, in this paper, the advantage of MMVs
is theoretically proven in terms of the number of recoverable
frequencies based on the proposed MMV atomic `0 norm
approach, while no such theoretical results are provided in
[33], [34]. Second, in this paper, the SDP formulation of the
MMV atomic norm is proven inspired by our previous work
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[30], while the proof in [33], [34] is given following [23] on
the SMV case. Finally, as pointed out in [34], the theoretical
guarantee of the MMV atomic norm approach provided in [34,
Theorem 2] is weaker than ours (see Theorem 5; note that the
technical report [32] appeared online earlier than [34]).

Notations used in this paper are as follows. R and C denote
the sets of real and complex numbers respectively. T denotes
the unit circle [0, 1] by identifying the starting and ending
points. Boldface letters are reserved for vectors and matrices.
For an integer L, [L] := {1, · · · , L}. |·| denotes the amplitude
of a scalar or the cardinality of a set. ‖·‖1, ‖·‖2 and ‖·‖F
denote the `1, `2 and Frobenius norms respectively. AT and
AH are the matrix transpose and conjugate transpose of A
respectively. xj is the jth entry of a vector x, and Aj denotes
the jth row of a matrix A. Unless otherwise stated, xΩ and
AΩ are subvector and submatrix of x and A respectively by
retaining the entries of x and the rows of A indexed by the
set Ω. For a vector x, diag (x) is a diagonal matrix with x
on the diagonal. x � 0 means xj ≥ 0 for all j. rank (A)
denotes the rank of a matrix A and tr (A) the trace. For
positive semidefinite matrices A and B, A ≥ B means that
A −B is positive semidefinite. E [·] denotes the expectation
and P (·) the probability of an event.

The rest of the paper is organized as follows. Section II
presents the main results of this paper. Section III discusses
connections between the proposed methods and prior art.
Section IV presents proofs of the main results in Section
II. Section V provides numerical simulations and Section VI
concludes this paper.

II. MAIN RESULTS

This section presents the main results of this paper whose
proofs will be given in Section IV.

A. Preliminary: Vandermonde Decomposition

The Vandermonde decomposition of Toeplitz matrices can
date back to 1910s and has been important in the signal
processing society since its rediscovery and use for frequency
estimation in 1970s [4], [5] (see also [3]). In particular, it states
that any PSD, rank-K ≤ N , Toeplitz matrix T (u) ∈ CN×N ,
which is parameterized by u ∈ CN and given by

T (u) =


u1 u2 · · · uN
uH2 u1 · · · uN−1

...
...

. . .
...

uHN uHN−1 · · · u1

 , (2)

can be decomposed as

T (u) =

K∑
k=1

pka (fk)aH (fk) = A (f)PAH (f) , (3)

where A (f) = [a (f1) , . . . ,a (fK)] ∈ CN×K with a (f) =[
1, ei2πf , . . . , ei2π(N−1)f

]T ∈ CN , P = diag (p1, . . . , pK)
with pk > 0, k = 1, . . . ,K and {fk} are distinct points in
T. Moreover, the decomposition in (3) is unique if K < N .
Note that the name ‘Vandermonde’ comes from the fact that
A (f) is a Vandermonde matrix.

It is well known that under the assumption of uncorrelated
sources the data covariance matrix (i.e., the covariance matrix
of each column of Y o) is a rank-K, PSD, Toeplitz matrix.
Therefore, the Vandermonde decomposition actually says that
the frequencies can be uniquely obtained from the data covari-
ance matrix given K < N [5]. Note that a subspace method
such as ESPRIT can be used to compute the decomposition
in (3).

B. Frequency Recovery Using Joint Sparsity

To exploit the joint sparsity in the MMVs, we let sk =
[sk1, · · · , skL] ∈ C1×L. It follows that (1) can be written as

Y o =

K∑
k=1

a (fk) sk =

K∑
k=1

cka (fk)φk, (4)

where a (f) is as defined in (3), ck = ‖sk‖2 > 0
and φk = c−1

k sk with ‖φk‖2 = 1. Let S2L−1 ={
φ ∈ C1×L : ‖φ‖2 = 1

}
denote the unit complex (L− 1)-

sphere (or real (2L− 1)-sphere). Define the set of atoms

A :=
{
a (f,φ) = a (f)φ : f ∈ T,φ ∈ S2L−1

}
. (5)

It follows from (4) that Y o is a linear combination of K atoms
in A. In particular, we say that a decomposition of Y o as in
(4) is an atomic decomposition of order K if ck > 0 and the
frequencies fk are distinct.

Following from the literature on CS, we first propose an
(MMV) atomic `0 norm approach to signal and frequency
recovery that exploits sparsity to the greatest extent possible.
In particular, the atomic `0 norm of Y ∈ CN×L is defined as
the smallest number of atoms in A that can express Y :

‖Y ‖A,0 = inf

{
K : Y =

K∑
k=1

ckak,ak ∈ A, ck > 0

}
. (6)

The following optimization method is proposed for signal
recovery that generalizes a method in [23] from the SMV to
the MMV case:

min
Y
‖Y ‖A,0 , subject to Y Ω = Y o

Ω. (7)

The frequencies composing the solution of Y are the fre-
quency estimates.

To show the advantage of MMVs, we define the continuous
dictionary

A1
Ω := {aΩ (f) : f ∈ T} (8)

and then define the spark of A1
Ω, denoted by spark

(
A1

Ω

)
,

as the smallest number of atoms in A1
Ω that are linearly

dependent. Note that this definition of spark generalizes that
in [35] from the discrete to the continuous dictionary case. We
have the following theoretical guarantee for (7).

Theorem 1. Y o =
∑K
j=1 cja

(
fj ,φj

)
is the unique optimizer

to (7) if

K <
spark

(
A1

Ω

)
− 1 + rank (Y o

Ω)

2
. (9)

Moreover, the atomic decomposition above is the unique one
satisfying that K = ‖Y o‖A,0.
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By Theorem 1 the frequencies can be exactly recovered
using the atomic `0 norm approach if the sparsity K is
sufficiently small with respect to the sampling index set Ω and
the observed data Y o

Ω. Note that the number of recoverable
frequencies can be increased, as compared to the SMV case, if
rank (Y o

Ω) > 1, which happens except in a trivial case when
the MMVs in Y o

Ω are identical up to scaling factors.
But unfortunately, the following result shows that ‖Y ‖A,0

is substantially a rank minimization problem that cannot be
practically solved.

Theorem 2. ‖Y ‖A,0 defined in (6) equals the optimal value
of the following rank minimization problem:

min
W ,u

rank (T (u)) , subject to
[
W Y H

Y T (u)

]
≥ 0. (10)

It immediately follows from (10) that (7) can be cast as the
following rank minimization problem:

min
Y ,W ,u

rank (T (u)) ,

subject to
[
W Y H

Y T (u)

]
≥ 0 and Y Ω = Y o

Ω.
(11)

Suppose that (11) can be globally solved and let u∗ and Y ∗

denote the solutions of u and Y , respectively. If the condition
of Theorem 1 is satisfied, then Y o = Y ∗ and the frequencies
as well as the atomic decomposition of Y o in Theorem 1 can
be computed accordingly. In particular, it is guaranteed that
rank (T (u∗)) = K < N (see the proof in Section IV-A).
It follows that the true frequencies can be uniquely obtained
from the Vandermonde decomposition of T (u∗). After that,
the atomic decomposition of Y o can be obtained by the fact
that Y ∗ lies in the range space of T (u∗). Moreover, it is worth
noting that, although (7) has a trivial solution in the full data
case, the problem in (11) still makes sense and the frequency
retrieval process also applies.

C. Frequency Recovery via Convex Relaxation

While the rank minimization problem in (11) is nonconvex
and cannot be globally solved with a practical algorithm,
it motivates the (MMV) atomic norm method—a convex
relaxation. In particular, the atomic norm of Y ∈ CN×L is
defined as the gauge function of conv (A), the convex hull of
A [22]:

‖Y ‖A := inf {t > 0 : Y ∈ tconv (A)}

= inf

{∑
k

ck : Y =
∑
k

ckak, ck > 0,ak ∈ A

}
,

(12)

in which the joint sparsity is exploited in a different manner.
Indeed, ‖·‖A is a norm by the property of the gauge function
and thus it is convex. Corresponding to (7), we propose the
following convex optimization problem:

min
Y
‖Y ‖A , subject to Y Ω = Y o

Ω. (13)

Though we know that (13) is convex, (13) still cannot be
practically solved since by (12) it is a semi-infinite program

with an infinite number of variables. To practically solve (13),
an SDP formulation of ‖Y ‖A is provided in the following
theorem.

Theorem 3. ‖Y ‖A defined in (12) equals the optimal value
of the following SDP:

min
W ,u

1

2
√
N

[tr (W ) + tr (T (u))] ,

subject to
[
W Y H

Y T (u)

]
≥ 0.

(14)

By Theorem 3, (13) can be cast as the following SDP which
can be solved using an off-the-shelf SDP solver:

min
Y ,W ,u

tr (W ) + tr (T (u)) ,

subject to
[
W Y H

Y T (u)

]
≥ 0 and Y Ω = Y o

Ω.
(15)

Given the optimal solution u∗ to (15), the frequencies and the
atomic decomposition of Y o can be computed as previously
based on the Vandermonde decomposition of T (u∗).

Finally, we analyze the theoretical performance of the
atomic norm approach. To do so, we define the minimum
separation of a finite subset T ⊂ T as the closest wrap-around
distance between any two elements,

∆T = inf
a,b∈T :a6=b

min {|a− b| , 1− |a− b|} .

We first study the full data case that, as we will see, forms
the basis of the compressive data case. Note that (15) can
be solved for frequency recovery though (13) admits a trivial
solution. We have the following theoretical guarantee.

Theorem 4. Y o =
∑K
j=1 cja

(
fj ,φj

)
is the unique atomic

decomposition satisfying that ‖Y o‖A =
∑K
j=1 cj if ∆T ≥

1
b(N−1)/4c and N ≥ 257.1

In the compressive data case, the following result holds.

Theorem 5. Suppose we observe Y o =
∑K
j=1 cja

(
fj ,φj

)
on the index set Ω × [L], where Ω ⊂ J is of size M and
selected uniformly at random. Assume that

{
φj
}K
j=1
⊂ S2L−1

are independent random variables with Eφj = 0. If ∆T ≥
1

b(N−1)/4c , then there exists a numerical constant C such that

M ≥ C max

{
log2

√
LN

δ
,K log

K

δ
log

√
LN

δ

}
(16)

is sufficient to guarantee that, with probability at least
1 − δ, Y o is the unique optimizer to (13) and Y o =∑K
j=1 cja

(
fj ,φj

)
is the unique atomic decomposition sat-

isfying that ‖Y o‖A =
∑K
j=1 cj .

1The condition N ≥ 257 is more like a technical requirement but not an
obstacle in practice (see numerical simulations in Section V).
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D. Discussions

We have proposed two optimization approaches to JSFR by
exploiting the joint sparsity in the MMVs. Based on the atomic
`0 norm approach, we theoretically show that the MMVs
help improve the frequency recovery performance in terms
of the number of recoverable frequencies. But unfortunately,
the resulting optimization problem is NP-hard to solve. We
therefore turn to the atomic norm approach and show that this
convex relaxation approach can be cast as SDP and solved in a
polynomial time. We also provide theoretical results showing
that the atomic norm approach can successfully recover the
frequencies under similar technical conditions as in [20], [23].

At a first glance, both the methods can be viewed as
covariance-based by exploiting the structures of the data
covariance matrix (obtained as if certain statistical assumptions
for the source signals were satisfied). In particular, in both
(11) and (15), the PSD Toeplitz matrix T (u), which can be
written as in (3), can be viewed as the covariance matrix of
the full data candidate Y that is consistent with the observed
data Y o

Ω (see more details in the proofs of Theorems 2 and
3 in Section IV). The Toeplitz structure is explicitly given,
the PSD is imposed by the first constraint, and the low rank
is exploited in the objective function. The essential difference
between the two methods lies in the way to exploit the low
rank. To be specific, the atomic `0 norm method utilizes this
structure to the greatest extent possible by directly minimizing
the rank, leading to a nonconvex optimization problem. In
contrast, the atomic norm method uses convex relaxation and
minimizes the nuclear norm or the trace norm of the matrix
(note that the additional term tr (W ) in (15) helps control the
magnitude of u and avoids a trivial solution). As a result, the
theoretical guarantees that we provide actually state that the
full data covariance matrix can be exactly recovered using the
proposed methods given full or compressive data under certain
conditions. Finally, note that source correlations in [skt], if
present, will be removed in the covariance estimate T (u) in
both (11) and (15), whereas they will be retained in the sample
covariance used in conventional subspace methods.

The theoretical results presented above extend several ex-
isting results from the SMV to the MMV case or from the
discrete to the continuous setting. To be specific, Theorem
1 is a continuous counterpart of [13, Theorem 2.4] which
deals with the conventional discrete setting. Theorem 1 shows
that the number of recoverable frequencies can be increased
in general as we take MMVs. This is practically relevant in
array processing applications. But in a trivial case where all
the sources are coherent, i.e., all the rows of [skt] (and thus
all the columns of Y o

Ω) are identical up to scaling factors, it
holds that rank (Y o

Ω) = 1 as in the SMV case and hence, as
expected, MMVs do not help improve the performance. Note
also that it is generally difficult to compute spark

(
A1

Ω

)
, except

in the full data case where we have spark
(
A1

Ω

)
= N + 1 by

the fact that any N atoms in A1
Ω are linear independent. An

interesting topic in future studies will be the selection of Ω,
which in array processing corresponds to geometry design of
the sensor array, such that spark

(
A1

Ω

)
is maximized.

Theorem 4 generalizes [20, Theorem 1.2] from the SMV

to the MMV case. Since Theorem 4 applies to all kinds of
source signals, including the aforementioned trivial case, one
cannot expect that the theoretical guarantee improves in the
MMV case.

Theorem 5 generalizes [23, Theorem I.1] from the SMV to
the MMV case. Note that in (16) the dependence of M on
L is for controlling the probability of successful recovery. To
make it clear, we consider the case when we seek to recover
the columns of Y o independently via the SMV method in [23].
When M satisfies (16) with L = 1, each column of Y o can
be recovered with probability 1− δ. It follows that Y o can be
exactly recovered with probability at least 1−Lδ. In contrast,
if we recover Y o via a single convex optimization problem
that we propose, then with the same number of measurements
the success probability is improved to 1 −

√
Lδ (to see this,

replace δ in (16) by
√
Lδ).

We note that in Theorem 5 the assumption on the phases
φj is relaxed as compared to that in [23, Theorem I.1] (note
that φj’s are assumed in the latter drawn i.i.d. from a uniform
distribution). This relaxation is significant in array processing
since each φj corresponds to one source and therefore they do
not necessarily obey an identical distribution. Note also that
this assumption is weak in the sense that the sources can be
coherent, resulting in the aforementioned trivial case. To see
this, suppose that the rows of [skt] are i.i.d. Gaussian with
zero mean and covariance of rank one. Then the sources are
certain to be independent and coherent. This explains why the
theoretical guarantee given in Theorem 5 does not improve in
the presence of MMVs. In this sense, therefore, the results of
Theorems 4 and 5 are referred to as worst case analysis.

Our contribution by Theorems 4 and 5 is showing that
in the presence of MMVs we can confidently recover the
frequencies via a single convex optimization problem by
exploiting the joint sparsity therein. Although the worst case
analysis we provide cannot shed light on the advantage of
MMVs, numerical simulations provided in Section V indeed
imply that the proposed atomic norm approach significantly
improves the recovery performance when the source signals
are at general positions. We pose such average case analysis
as a future work.

III. CONNECTIONS TO PRIOR ART

A. Grid-based Joint Sparse Recovery

The JSFR problem concerned in this paper has been widely
studied within the CS framework, typically under the topic
of DOA estimation. It has been popular in the past decade
to assume that the true frequencies lie on a fixed grid since,
according to conventional wisdom on CS, the signal needs to
be sparsely represented under a finite discrete dictionary. Now
recall the atomic `p norm in (6) and (12) with p = 0 and 1,
respectively, that can be written collectively as:

‖Y ‖A,p = inf

{∑
k

‖sk‖p2 : Y =
∑
k

a (fk) sk, fk ∈ T

}
,

(17)
where sk ∈ C1×L. Consequently, the atomic `0 norm and the
atomic norm can be viewed, respectively, as the continuous
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counterparts of the `2,0 norm and the `2,1 norm in grid-based
joint sparse recovery methods (see, e.g., [12], [14]). It is worth
noting that for the existing grid-based methods one cannot
expect exact frequency recovery since in practice the true
frequencies typically do not lie on the grid. Moreover, even if
this on-grid assumption is satisfied, the existing coherence or
RIP-based analysis in the discrete setting is very conservative,
as compared to the results in this paper, due to high coherence
in the case of a dense grid. Readers are referred to [20] for
detailed discussions on the SMV case.

B. Gridless Joint Sparse Recovery

To the best of our knowledge, the only discretization-
free/gridless technique for JSFR was introduced in [30] prior
to this work, termed as the sparse and parametric approach
(SPA). Different from the atomic norm technique proposed in
this paper, SPA is from a statistical perspective and based on
a weighted covariance fitting criterion [36]. But we show next
that the two methods are strongly connected. Consider the full
data case as an example. In the limiting noiseless case, SPA
solves the following problem:

min
u∈CN ,T (u)≥0

tr
(
R̂ [T (u)]

−1
R̂
)

+ tr (T (u)) , (18)

where R̂ = 1
LY

oY oH denotes the sample covariance matrix.

Let V = 1
L

(
Y oHY o

) 1
2 ∈ CL×L. Then we have the

following equalities/equivalences:

(18) = min
u,T (u)≥0

tr
(

(Y oV )
H

[T (u)]
−1
Y oV

)
+ tr (T (u))

= min
W ,u

tr (W ) + tr (T (u)) ,

subject to
[
W (Y oV )

H

Y oV T (u)

]
≥ 0

= 2
√
N ‖Y oV ‖A ,

where the last equality follows from Theorem 3. This means
that SPA actually computes the atomic norm of

Y oV =
K∑
k=1

a (fk) (skV ) . (19)

Therefore, SPA can be interpreted as an atomic norm approach
with modification of the source signals. In the SMV case
where V is a positive scalar, the two techniques are exactly
equivalent, which has been shown in [29]. While details are
omitted, note that a similar result holds in the compressive
data case.

IV. PROOFS

The proofs of Theorems 1-5 are provided in this section.
While our proofs generalize several results in the literature
either from the SMV to the MMV case or from the discrete to
the continuous setting, note that they are not straightforward.
For example, the proof of Theorem 3 does not follow from
[23] in the SMV case but is motivated by [29], [30]. The main
challenge of the proofs of Theorems 4 and 5 lie in how to

construct and deal with vector-valued dual polynomials instead
of the scalar-valued ones in [20] and [23]. Moreover, the proof
of Theorem 4 forms the basis of the proof of Theorem 5. Some
inaccuracy in [23] is also pointed out and corrected.

A. Proof of Theorem 2

Let K = ‖Y ‖A,0 and K∗ = rank (T (u∗)), where u∗

denotes an optimal solution of u in (10). It suffices to show
that K = K∗. On one hand, using the Vandermonde de-
composition, we have that T (u∗) =

∑K∗

j=1 pja (fj)a
H (fj).

Moreover, the fact that Y lies in the range space of T (u∗)
implies that there exist sj ∈ C1×L, j ∈ [K∗] such that
Y =

∑K∗

j=1 a (fj) sj . It follows from the definition of ‖Y ‖A,0
that K ≤ K∗.

On the other hand, let Y =
∑K
j=1 a (fj) sj be an atomic

decomposition of Y . Let T (u) =
∑K
j=1 pja (fj)a

H (fj) and
W =

∑K
j=1 p

−1
j s

H
j sj for arbitrary pj > 0, j ∈ [K]. Then,[

W Y H

Y T (u)

]
=

K∑
j=1

pj

[
p−1
j s

H
j

a (fj)

] [
p−1
j sj a (fj)

H
]
≥ 0.

This means that (W ,u) defines a feasible solution of (10).
Consequently, K∗ ≤ rank (T (u)) = K.

B. Proof of Theorem 3

We use the following identity whenever R ≥ 0:

yHR−1y = min t, subject to
[
t yH

y R

]
≥ 0. (20)

In fact, (20) is equivalent to defining yHR−1y :=
limσ→0+

yH (R+ σI)
−1
y when R loses rank. We also use

the following lemma.

Lemma 1 ( [29]). Given R = AAH ≥ 0, it holds that
yHR−1y = min ‖s‖22 , subject to As = y.

Now we prove Theorem 3. It follows from the constraint
in (14) that T (u) ≥ 0 and W ≥ Y H [T (u)]

−1
Y . So, it

suffices to show that

‖Y ‖A = min
u

√
N

2
u1 +

1

2
√
N

tr
(
Y H [T (u)]

−1
Y
)
,

subject to T (u) ≥ 0,

(21)

where u1 is the first entry of u. Let T (u) = APAH =[
AP

1
2

] [
AP

1
2

]H
be any feasible Vandermonde decompo-

sition, where A = A (f) = [. . . ,a (fj) , . . . ] and P =
diag (. . . , pj , . . . ) with pj > 0. It follows that u1 =

∑
pj .

For the tth column of Y , say y:t, it holds by Lemma 1 that

yH:t [T (u)]
−1
y:t = min

v
‖v‖22 , subject to AP

1
2v = y:t

= min
s

∥∥∥P− 1
2 s
∥∥∥2

2
, subject to As = y:t

= min
s
sHP−1s, subject to As = y:t.
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It follows that

tr
(
Y H [T (u)]

−1
Y
)

=

N∑
t=1

yH:t [T (u)]
−1
y:t

= min
S,A(f)S=Y

tr
(
SHP−1S

)
.

We complete the proof via the following equalities:

min
u

√
N

2
u1 +

1

2
√
N

tr
(
Y H [T (u)]

−1
Y
)

= min
f ,p�0,S
A(f)S=Y

√
N

2

∑
j

pj +
1

2
√
N

tr
(
SHP−1S

)

= min
f ,p�0,S
A(f)S=Y

√
N

2

∑
j

pj +
1

2
√
N

∑
j

‖Sj‖22 p
−1
j

= min
f ,S

∑
j

‖Sj‖2 , subject to Y = A (f)S

= ‖Y ‖A ,

(22)

where the optimal solution of pj equals 1√
N
‖Sj‖2 and the

last equality follows from (17).

C. Proof of Theorem 1

We use contradiction. Suppose that there exists Ỹ 6= Y o

satisfying that Ỹ Ω = Y o
Ω and K̃ :=

∥∥∥Ỹ ∥∥∥
A,0
≤ ‖Y o‖A,0 =

K. Let Ỹ =
∑K̃
k=1 a

(
f̃j

)
s̃j be an atomic decomposition.

Also let A1 = [a (f)]f∈T \{f̃j} (the matrix consisting of those

a (f), f ∈ T \
{
f̃j

}
), A12 = [a (f)]f∈T ∩{f̃j} and A2 =

[a (f)]f∈{f̃j}\T . In addition, let K12 =
∣∣∣T ∩ {f̃j}∣∣∣ and A =[

A1 A12 A2

]
. Then we have Y o =

[
A1 A12

] [S1

S12

]
and Ỹ =

[
A12 A2

] [S21

S2

]
, where S1, S12, S21 and S2 are

properly defined. It follows that Y o − Ỹ = AΥ 6= 0, where

Υ =

 S1

S12 − S21

−S2

 6= 0. On the other hand, it follows from

Ỹ Ω = Y o
Ω that AΩΥ = 0. Note that AΩ is composed of

atoms in A1
Ω and has a nontrivial null space since we have

shown that Υ 6= 0. Then,

rank (AΩ) ≥ spark
(
A1

Ω

)
− 1. (23)

Moreover, for the nullity (dimension of the null space) of AΩ

it holds that

nullity (AΩ) ≥ rank (Υ)

≥ rank
([
S1

S12

])
− rank

([
0
S21

])
≥ rank (Y o

Ω)−K12.

(24)

Consequently, the equality

#columns of AΩ = rank (AΩ) + nullity (AΩ)

together with (23) and (24) yields that K + K̃ − K12 ≥
spark

(
A1

Ω

)
− 1 + rank (Y o

Ω)−K12. Therefore,

2K ≥ K + K̃ ≥ spark
(
A1

Ω

)
− 1 + rank (Y o

Ω) ,

which contradicts the condition in (9).
To show the uniqueness part, note that the condition in (9)

implies that K < spark
(
A1

Ω

)
− 1 since rank (Y o

Ω) ≤ K.
According to the definition of spark, any K atoms in A1

Ω

are linearly independent. Therefore, the atomic decomposi-
tion is unique given the set of frequencies T = {fj}Kj=1.
Now suppose there exists another decomposition Y o =∑K̃
j=1 a

(
f̃j

)
s̃j , where K̃ ≤ K and f̃j0 /∈ T for some

j0 ∈
[
K̃
]
. Note that we have used the same notations for

simplicity and we similarly define the other notations. Once
again we have that Υ 6= 0 since A2 is nonempty and S2 6= 0.
The rest of the proof follows from the same arguments as
above.

D. Proof of Theorem 4

The proof of Theorem 4 generalizes that in [20] (and re-
organized in [23]) from the SMV to the MMV case. The main
challenge is how to construct and deal with a vector-valued
dual polynomial induced by the MMV problem, instead of
the scalar-valued one in [20]. Since our proof follows similar
procedures as in [20] and because of the page limit, we only
highlight the key steps. Readers are referred to Section 5 of
the technical report [32] for the detailed proof.

Following from [23], we can consider an equivalent case
of symmetric data index set J = {−2n, . . . , 2n}, where n =⌊
N−1

4

⌋
, instead of the set specified in (1). As in [20], we link

Theorem 4 to a dual polynomial. In particular, Theorem 4
holds if there exists a vector-valued dual polynomial Q : T→
C1×L,

Q(f) = a(f)HV (25)

satisfying that

Q (fk) = φk, fk ∈ T , (26)
‖Q (f)‖2 < 1, f ∈ T\T , (27)

where the coefficient matrix V ∈ C|J|×L. The following proof
is devoted to construction of Q(f) under the assumptions of
Theorem 4.

Inspired by [20], we let

Q (f) =
∑
fj∈T

αjK (f − fj) +
∑
fj∈T

βjK′ (f − fj) , (28)

where K (f) is the squared Fejér kernel

K (f) =

[
sin(π(n+ 1)f)

(n+ 1) sin (πf)

]4

=

2n∑
j=−2n

gje
−i2πjf (29)

in which gj are constant, K′ denotes the first-order derivative
of K, and the coefficients αj ,βj ∈ C1×L are specified by
imposing (26) and

Q′ (fk) = 0, fk ∈ T . (30)
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The equations in (26) and (30) can be combined into the linear
system of equations:[

D0 c−1
0 D1

−c−1
0 D1 −c−2

0 D2

] [
α
c0β

]
=

[
Φ
0

]
, (31)

where the coefficient matrix D :=

[
D0 c−1

0 D1

−c−1
0 D1 −c−2

0 D2

]
only

depends on the frequency set T , c0 =
√
K′′(0) is a constant,

Φ =
[
φT1 , . . . ,φ

T
K

]T ∈ CK×L, α =
[
αT1 , . . . ,α

T
K

]T ∈
CK×L and β ∈ CK×L is similarly defined. Using the fact
that the coefficient matrix in (31) is close to identity [20], we

next prove that
[
α
c0β

]
is close to

[
Φ
0

]
. Different from the

SMV case in which αj and βj are scalars, the difficulty in
our proof is how to quantify this closeness. To do this, we
define the `2,∞ matrix norm and its induced operator norm as
follows.

Definition 1. We define the `2,∞ norm of X ∈ Cd1×d2 as

‖X‖2,∞ = max
j
‖Xj‖2

and its induced norm of a linear operator P : Cd1×d2 →
Cd3×d2 as

‖P‖2,∞ = sup
X 6=0

‖PX‖2,∞
‖X‖2,∞

= sup
‖X‖2,∞≤1

‖PX‖2,∞ ,

where Xj denotes the jth row of X , and d1, d2 and d3 are
positive integers.

By Definition 1, we have that ‖Φ‖2,∞ = 1 and expect to
bound ‖α‖2,∞ and ‖β‖2,∞ using the induced norm of the
operators Dj , j = 0, 1, 2. To do so, we calculate the induced
norm first. Interestingly, the induced `2,∞ norm is identical to
the `∞ norm, which is stated in the following result.

Lemma 2 ( [32]). ‖P‖2,∞ = ‖P‖∞ for any linear operator
P defined by a matrix P such that PX = PX for any X
of proper dimension.

By Lemma 2 the `2,∞ operator norm of Dj , j = 0, 1, 2
equals their `∞ norm that has been derived in [20]. Then,
under the assumptions of Theorem 4 and using the results in
[20], we can show that

‖α−Φ‖2,∞ ≤ 8.824× 10−3, (32)

‖β‖2,∞ ≤
1.647

n
× 10−2. (33)

Finally, we complete the proof by showing that the con-
structed polynomial Q (f) satisfies (27) using (32), (33) and
the bounds on K (f − fk) and its derivatives given in [20].
As in [20], we divide T into several intervals that are either
neighborhood of or far from some fk ∈ T . If f is far from
every fk ∈ T , then we can show that ‖Q (f)‖2 ≤ 0.99992.
Otherwise, we can show that on the neighborhood of fk ∈ T ,
the second derivative of ‖Q (f)‖22 is negative. This means
that ‖Q (f)‖22 is a strictly concave function and achieves its
maximum 1 at the only stationary point fk by (30). So we can
conclude (27) and complete the proof.

E. Proof of Theorem 5

The proof of Theorem 4 in the last subsection forms the ba-
sis of the proof of Theorem 5 that will be given following sim-
ilar steps as in [23]. As in the full data case, we only highlight
the key steps of our proof and interested readers are referred to
[32, Section 6] for the details. Similarly, we can also consider
the symmetric case of J = {−2n, . . . , 2n} and start with
the dual certificate. In particular, Y o =

∑K
k=1 cka (fk,φk)

is the unique optimizer to (13) and provides the unique
atomic decomposition satisfying that ‖Y o‖A =

∑K
k=1 ck if 1)

{aΩ (fk)}fk∈T ⊂ A
1
Ω are linearly independent and 2) there

exists a vector-valued dual polynomial Q(f) = aH(f)V ∈
C1×L as in (25) satisfying (26), (27) and the additional
constraint that

V j = 0, j /∈ Ω. (34)

Note that the condition of linear independence above is
necessary to prove the uniqueness part but is neglected in
[23]. We will show later that this condition is satisfied for
free when we construct the dual polynomial Q (f) under
the assumptions of Theorem 5. As in [23], we consider an
equivalent Bernoulli observation model in which the samples
indexed by J are observed independently with probability
p = M

4n . In mathematics, let {δj}j∈J be i.i.d. Bernoulli random
variables such that

P (δj = 1) = p, (35)

where δj = 1 or 0 indicates whether the jth entry in J is
observed or not. It follows that the sampling index set Ω =
{j : δj = 1}.

Inspired by [23], we let

Q (f) =
∑
fj∈T

αjK (f − fj) +
∑
fj∈T

βjK
′
(f − fj) , (36)

where K (f) is a random analog of K (f) as defined in (29):

K (f) =

2n∑
j=−2n

δjgn (j) e−i2πjf . (37)

It is clear that EK (f) = pK (f) and similar result holds for
its derivatives. Again, we impose for the coefficients αj , βj ∈
C1×L that

D

[
α
c0β

]
=

[
Φ
0

]
, (38)

where D is a random analog of D in (31) with ED = pD. It
is clear that Q(f) above already satisfies (26) and (34). The
remaining task is showing that it also satisfies (27) under the
assumptions of Theorem 5.

Let Q(f) be the dual polynomial in (25) that is the full data
case counterpart of Q(f). As in [23], we need to show that
Q(f) (and its derivatives) is tightly concentrated around Q(f)
(and its derivatives) when the sample size M satisfies (16). To
do this, define two events

E1 =

{∥∥p−1D −D
∥∥

2
≤ 1

4

}
, (39)

E2 =

{
sup
f∈Tgrid

c−l0

∥∥∥Q(l) −Q(l)
∥∥∥

2
≤ ε

3
, l = 0, 1, 2, 3

}
(40)
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where Tgrid ⊂ T and ε > 0 are a set of discrete points and a
small number, respectively, to specify. It has been shown in
[23] that D is invertible on E1 which happens with probability
at least 1− δ if

M ≥ C1K log
K

δ
(41)

and if the frequency separation condition is satisfied, where C1

is constant. Note that the aforementioned linear independence
of {aΩ (fk)}fk∈T ⊂ A

1
Ω can be shown based on this result

(see [32, Lemma 6.4]). We next focus on the case when E1
happens. It follows that[

α
c0β

]
= D

−1
[
Φ
0

]
= LΦ, (42)

where L ∈ C2K×K denotes the left part of D
−1

. Therefore,
as in [23], we have that

c−l0

[
Q

(l)
(f)−Q(l)(f)

]
= H1(f)Φ +H2(f)Φ, (43)

where H1(f), H2(f) ∈ C1×K are as defined and bounded in
[23]. The main difference from [23] lies in the fact that Φ is
a K × L matrix instead of a K × 1 vector. To show that
both ‖H1(f)Φ‖2 and ‖H2(f)Φ‖2 are concentrated around
0 with high probability, we need the following vector-form
Hoeffding’s inequality that can be proven based on [37,
Theorem 1.3].

Lemma 3 ( [32]). Let the rows of Φ ∈ CK×L be sampled
independently on the complex hyper-sphere S2L−1 with zero
mean. Then, for all w ∈ CK , w 6= 0, and t ≥ 0,

P
(∥∥wHΦ

∥∥
2
≥ t
)
≤ (L+ 1) e

− t2

8‖w‖22 .

Using Lemma 3 we can show that E2 happens with proba-
bility at least 1− δ if

M ≥ C2
1

ε2
max

{
log
|Tgrid|
δ

log
L |Tgrid|

δ
,

K log
K

δ
log

L |Tgrid|
δ

} (44)

among other assumptions in Theorem 5, where C2 is constant.
This result is then extended, as in [23], from Tgrid to the whole
unit circle T by choosing some Tgrid satisfying that

|Tgrid| <
3C3

√
Ln3

ε
, (45)

where C3 is also constant. This means that Q(f) (and its
derivatives) is concentrated around Q(f) (and its derivatives)
with high probability. Now we are ready to complete the proof
by showing that

∥∥Q(f)
∥∥

2
satisfies (27) using the properties of

Q(f) shown in the last subsection and by properly choosing
ε. In particular, letting ε = 10−5,

∥∥Q(f)
∥∥

2
can still be well

bounded by 1 from above when f is far from every fk ∈ T .
When f is in the neighborhood of some fk ∈ T , the second
derivative of

∥∥Q (f)
∥∥2

2
is concentrated around the second

derivative of ‖Q (f)‖22 and thus it is negative. It follows that∥∥Q (f)
∥∥2

2
is strictly concave and achieves the maximum 1 at

the only stationary point fk. Finally, to close the proof, note
that inserting (45) into (44) resulting in the bound in (16).
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(a) Equispaced frequencies
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(b) Random frequencies

Fig. 1. Frequency recovery results with respect to the number of measurement
vectors L in the case of full data and uncorrelated sources.

V. NUMERICAL SIMULATIONS

A. Full Data

We consider the full data case and test the frequency recov-
ery performance of the proposed atomic norm method with
respect to the frequency separation condition. In particular, we
consider two types of frequencies, equispaced and random, and
two types of source signals, uncorrelated and coherent. We fix
N = 128 and vary ∆min (a lower bound of the minimum
separation of frequencies) from 1.05N−1 (or 0.9N−1 for
random frequencies) to 2N−1 at a step of 0.05N−1. In the
case of equispaced frequencies, for each ∆min we generate
a set of frequencies T of the maximal cardinality b∆−1

minc
with frequency separation ∆T = 1

b∆−1
min c

≥ ∆min. In the
case of random frequencies, we generate the frequency set T ,
∆T ≥ ∆min, by repetitively adding new frequencies (generated
uniformly at random) till no more can be added. Therefore, any
two adjacent frequencies in T are separated by a value in the
interval [∆min, 2∆min). It follows that |T | ∈

(
1
2∆−1

min,∆
−1
min

]
.

We empirically find that E |T | ≈ 3
4∆−1

min which is the mid-
point of the interval above.

We first consider uncorrelated sources, where the source
signals S = [skt] ∈ CK×L in (1) are drawn i.i.d. from a stan-
dard complex Gaussian distribution. Moreover, we consider
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(a) Equispaced frequencies
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(b) Random frequencies

Fig. 2. Frequency recovery results with respect to the percentage of coherent
sources τ in the case of full data and coherent sources, with L = 5.

the number of measurement vectors L = 1, 3, and 5. For each
value of ∆min and each type of frequencies, we carry out 20
Monte Carlo runs and calculate the success rate of frequency
recovery. In each run, we generate T and S ∈ CK×5 and
obtain the full data Y o. For each value of L, we attempt
to recover the frequencies using the proposed atomic norm
method, implemented by SDPT3 [38] in Matlab, based on the
first L columns of Y o. The frequencies are considered to be
successfully recovered if the root mean squared error (RMSE)
is less than 10−8.

The simulation results are presented in Fig. 1, which verify
the conclusion of Theorem 4 that the frequencies can be
exactly recovered using the proposed atomic norm method
under a frequency separation condition. When more measure-
ment vectors are available, the recovery performance improves
and it seems that a weaker frequency separation condition is
sufficient to guarantee exact frequency recovery. By comparing
Fig. 1(a) and Fig. 1(b), it also can be seen that a stronger
frequency separation condition is required in the case of
equispaced frequencies where more frequencies are present
and they are located more closely.

We next consider coherent sources. In this simulation, we
fix L = 5 and consider different percentages, denoted by τ ,
of the K source signals which are coherent (identical up to a

scaling factor). It follows that τ = 0% refers to the case of
uncorrelated sources considered previously. τ = 100% means
that all the sources signals are coherent and the problem is
equivalent to the SMV case. For each type of frequencies,
we consider five values of τ ranging from 0% to 100% and
calculate each success rate over 20 Monte Carlo runs.

Our simulation results are presented in Fig. 2. It can be seen
that, as τ increases, the success rate decreases and a stronger
frequency separation condition is required for exact frequency
recovery. As τ equals the extreme value 100%, the curves of
success rate approximately match those for L = 1 in Fig. 1,
verifying that taking MMVs does not necessarily improve the
performance of frequency recovery.2

Finally, we report the computational speed of the proposed
atomic norm method. It takes about 11s to solve one SDP on
average on a PC and the CPU times differ slightly for the three
values of L. About 22 hours are used in total to produce the
data generating Fig. 1 and Fig. 2.

B. Compressive Data

In the compressive data case, we study the so-called phase
transition phenomenon in the (M,K) plane. In particular,
we fix N = 128, L = 5 and ∆min = 1.2N−1, and study
the performance of the proposed ANM method in signal
and frequency recovery with different settings of the source
signal. The frequency set T is randomly generated with
∆T ≥ ∆min and |T | = K (differently from that in the last
subsection, the process of adding frequencies is terminated as
|T | = K). In our simulation, we vary M = 8, 12, . . . , 128
and at each M , K = 2, 4, . . . ,min(M, 84) since it is
difficult to generate a set of frequencies with K > 84
under the aforementioned frequency separation condition. In
this simulation, we consider temporarily correlated sources.
In particular, suppose that each row of S has a Toeplitz

covariance matrix R (r) =


1 r . . . r4

r 1 . . . r3

...
...

. . .
...

r4 r3 . . . 1

 ∈ R5×5 (up to

a positive scaling factor). Therefore, r = 0 means that the
source signals at different snapshots are uncorrelated while
r = ±1 means completely correlated and corresponds to
the trivial case. We first generate S0 from an i.i.d. standard
complex Gaussian distribution and then let S (r) = S0R (r)

1
2 ,

where we consider r = 0, 0.5, 0.9, 1. For each combination
(M,K), we carry out 20 Monte Carlo runs and calculate the
rate of successful recovery with respect to r. The recovery is
considered successful if the relative RMSE of data recovery,
measured by ‖Y ∗ − Y o‖F / ‖Y

o‖F, is less than 10−8 and the
RMSE of frequency recovery is less than 10−6, where Y ∗

denotes the solution of Y .
The simulation results are presented in Fig. 3, where the

phase transition phenomenon from perfect recovery to com-
plete failure can be observed in each subfigure. It can be seen
that more frequencies can be recovered when more samples are

2The slight differences between the curves in Fig. 1 and Fig. 2 are partially
caused by the fact that, to simulate coherence sources, the two datasets are
generated slightly differently.
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(a) r = 0 (b) r = 0.5

(c) r = 0.9 (d) r = 1

Fig. 3. Phase transition results in the compressive data case with N = 128 and ∆min = 1.2N−1. White means complete success and black means complete
failure. The straight lines are K = 1

2
(M + L) in (a)-(c) and K = 1

2
(M + 1) in (d).

observed. When the correlation level of the MMVs, indicated
by r, increases, the phase of successful recovery decreases.
On the other hand, note that Fig. 3(d) actually corresponds
to the SMV case. By comparing Fig. 3(d) and the other
three subfigures, it can be seen that the frequency recovery
performance can be greatly improved by taking MMVs, even
in the presence of strong temporal correlations.

We also plot the line K = 1
2 (M + L) in Figs. 3(a)-3(c)

and the line K = 1
2 (M + 1) in Fig. 3(d) (straight gray

lines) which are upper bounds of the sufficient condition
in Theorem 1 for the atomic `0 norm minimization (note
that spark

(
A1

Ω

)
≤ M + 1). It can be seen that successful

recoveries can be obtained even above these lines, indicating
good performance of the proposed ANM method. It requires
about 13s on average to solve one problem and almost 200
hours in total to generate the whole data set used in Fig. 3.

C. The Noisy Case

While this paper has been focused on the noiseless case, we
provide a simple simulation to illustrate the performance of
the proposed method in the practical noisy case. We consider
N = 50, M = 20 with Ω randomly generated, K = 3
sources with frequencies of 0.1, 0.12 and 0.3 and powers
of 2, 3 and 1 respectively, and L = 5. The source signals
of each source are generated with constant amplitude and
random phases. Complex white Gaussian noise is added to
the measurements with noise variance σ2 = 0.1. We propose
to denoise the observed noisy signal Y o

Ω and recover the

frequency components by solving the following optimization
problem:

min
Y
‖Y ‖A , subject to ‖Y Ω − Y o

Ω‖
2
F ≤ η

2, (46)

where η2, set to
(
ML+ 2

√
ML

)
σ2 (mean + twice standard

deviation), bounds the noise energy from above with large
probability. The spectral MUSIC method is also considered
for comparison. Note that MUSIC estimates the frequencies
from the sample covariance, while the proposed ANM method
carries out covariance fitting by exploiting its structures. While
the proposed method requires the noise level, MUSIC needs
the source number K.

Typical simulation results of one Monte Carlo run are
presented in Fig. 4. The SMV case is studied in Fig. 4(a)
where only the first measurement vector is used for frequency
recovery. It is shown that the three frequency components
are correctly identified using the ANM method while MUSIC
fails. The MMV case is studied in Fig. 4(b) with uncorrelated
sources, where both ANM and MUSIC succeed to identify the
three frequency components. The case of coherent sources is
presented in Fig. 4(c), where source 3 in Fig. 4(b) is modified
such that it is coherent with source 1. MUSIC fails to detect the
two coherent sources as expected while the proposed method
still performs well. It is shown in all the three subfigures
that spurious frequency components can be present using the
ANM method. But their powers are low. To be specific, the
spurious components have about 0.4% of the total powers in
Fig. 4(a), and this number is on the order of 10−6 in the latter
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(a) L = 1
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(b) L = 5, uncorrelated sources
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(c) L = 5, sources 1 and 3 are coherent

Fig. 4. Frequency recovery/estimation results of ANM and MUSIC in the presence of noise, with (a) L = 1, (b) L = 5 and uncorrelated sources, and (c)
L = 5 and coherent sources.

two subfigures. While these numerical results imply that the
proposed method is robust to noise, a theoretical analysis will
be investigated in future studies. The proposed method needs
about 1.5s in each scenario.

VI. CONCLUSION

In this paper we studied the JSFR problem by exploiting
the joint sparsity in the MMVs. We proposed an atomic `0
norm approach and showed the advantage of MMVs. We also
proposed an atomic norm approach that can be efficiently
solved by semidefinite programming and studied its theoretical
guarantees for frequency recovery. These results extend the
existing ones either from the SMV to the MMV case or
from the discrete to the continuous frequency setting. We also
discussed the connections between the proposed approaches
and conventional subspace methods as well as the recent grid-
based and gridless sparse techniques. Though the worst case
analysis we provided for the atomic norm approach does
not indicate performance gains in the presence of MMVs,
simulation results indeed imply that when the source signals
are located at general positions the number of required mea-
surements can be reduced and/or the frequency separation
condition can be relaxed. This average case analysis should
be investigated in future studies under stronger assumptions.
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