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Abstract

Smart grids introduce many outstanding security and privacy issues, especially
when smart meters are connected to public networks, creating an Internet of
things in which customer usage data is frequently exchanged and processed in
large volumes. In this research, we propose a cloud-based data storage and
processing model with the ability to preserve user privacy and confidentiality
of smart meter data in a smart grid. This goal is achieved by encrypting smart
meter data before storage on the cloud using a homomorphic asymmetric key
cryptosystem. By applying the homomorphic feature of the cryptographic tech-
nique, we propose methods to allow most of the computing works of calculating
customer invoices based on total electricity consumption to be done directly on
encrypted data by the cloud. One of the outstanding features in our model
is the aggregation of encrypted smart meter readings using fixed-point number
arithmetic. To test the feasibility of our model, we conducted many experiments
to estimate the number of homomorphic additions to be performed by the cloud
and the computation time in different billing periods using data from the Smart
project, in which smart grid readings were continuously collected from different
households in every second within two months and electricity usage data col-
lected every minute from 400 anonymous houses in one day. We also propose
a parallel version of our billing algorithm to utilise the processing capability of
multi-core processors in cloud servers so that computation time is reduced sig-
nificantly compared to using our sequential algorithm. Our research works and
experiments demonstrate clearly how cloud services can strengthen the security,
privacy and efficiency of privacy-sensitive data frequently exchanged and pro-
cessed in an Internet of things where smart meters communicate directly with
public networks.
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1. Introduction

Smart grid technologies have brought many great benefits to both providers
and consumers of electricity. Governments and energy suppliers are now able
to balance electricity generation with consumption through a system of billing
in which customers are charged by how much energy they have consumed at
different times of day using dynamic and flexible tariffs. Smart meters provide
more accurate, up-to-date and fine-grained meter readings, helping energy sup-
pliers to adjust electricity generation and prices according to demands, thereby
reducing blackouts and improving the reliability of the electricity grid. Various
types of energy monitor devices connected directly to smart meters via wireless
links help consumers to view their usage history, the amount of electricity they
are using, and the current tariff. Customers now have the choice about how
and when to reduce their energy consumption and take control of their electric-
ity costs. Furthermore, smart grids also make it more efficient to manage the
distributed power generation such as local solar and wind generators.

Figure 1: The vision of our research, a smart grid as an Internet of things containing a large
number of smart meters, access points, users and a grid operator connected to a public network
with the strong support of various cloud storage and processing services working directly on
homomorphically encrypted data.
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Despite the benefits to both the providers and consumers of electricity, a
smart grid may also introduce many outstanding security and privacy issues,
especially when smart meters are connected to public networks in which not only
personally identifiable information but also energy consumption data relating
to behaviours and movements of users is frequently exchanged and processed in
large volumes. Figure 1 shows the vision of our research, in which we view a
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Figure 2: Tracking usage pattern using electricity consumption data [6]
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smart grid as an Internet of things containing a large number of smart meters,
access points, users, a grid operator and the cloud connected to a public net-
work. The figure also shows how this Internet of things can benefit from various
cloud storage and processing services as long as security measures such as data
encryption is implemented.

Furthermore, as the time interval of data collected by smart meters decreases
to fifteen or thirty minutes, various load monitoring techniques[2, 3] can be em-
ployed to process unencrypted smart meter data to identify what electrical ap-
pliances, for example heaters, washing machines, refrigerators, air conditioners
etc., are being used based on the electrical signature of those appliances[4, 5].
Figure 2 shows a power consumption trace of a customer [6]. Many statisti-
cal tools and data mining techniques can be used to extract patterns from the
fine-grained electricity consumption data to build user profiles and monitor user
activities such as whether someone is at home, the habits of each family member,
or what they do at particular moments, etc.[7, 8].

The security and privacy issues outlined above have prevented the cloud
from reaching its full potential in supporting a smart grid, especially when
many components of the grid are connected as an Internet of things via the
public network. Smart meters are constrained devices having limited capacity
and incapable of performing complex computing tasks on energy usage data.
Therefore, a smart grid needs a cloud computing system with its unlimited
storage and processing capabilities to support complex computing tasks such
as billings and analysing data. However, this goal cannot be accomplished
fully without a suitable secure data storage and processing model providing the
capability to compute on encrypted data. Therefore, we conducted the research
described in this paper to find out how the smart grid, as an Internet of things
can enjoy all the benefits of cloud computing while providing data owners with
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a strong guarantee of their privacy, the confidentiality of smart meter data and
the reliability of the grid’s information infrastructure.

Our Contributions. In this research, we propose a cloud-based data stor-
age and processing model applicable for a smart grid with many components
connected as an Internet of things via the public network. Our model utilise
the full strength of cloud computing and preserves user privacy and the confi-
dentiality of data exchanged on the grid. This goal is achieved by encrypting
smart meter data before sending to the cloud for processing and storage using
a homomorphic asymmetric key cryptosystem. Each smart meter is equipped
with a set of private and public keys. The grid operator is given accessed to
all the private keys while each household owner can only access the decryption
key corresponding to their own smart meter. Using the homomorphic feature
of the cryptographic technique, we create methods to enable most of the com-
puting works to be done directly on encrypted data by the cloud, especially,
we focus on the aggregation of encrypted smart meter readings directly on the
cloud. During the homomorphic computation process, the cloud is allowed to
access all public keys which are required by many homomorphic computing op-
erations. However, the cloud does not have access to the private keys, hence,
no decryption would be performed and no information would be leaked during
the homomorphic computation process. The prominent features of our model
are summarised as follows:

• User privacy and data confidentiality are protected by means of cryptog-
raphy, especially when our model can store and process data mostly on
the cloud. Only parties possessing the private keys can decrypt the data.
An example of such parties are the grid operator because it needs to access
the fine-grained meter readings to monitor the performance of the grid. A
household owner can also decrypt their smart meter readings when they
want to know their total data usage and other statistics such as daily or
hourly consumption. The electricity retailers, however, only need to know
the total usage in a month or a quarter. Therefore, they are only given
access to the data aggregation results and not the decryption keys.

• Our model allows the cloud to securely compute the aggregated energy
consumption of a customer in a given period of time by performing homo-
morphic addition operation directly on an arbitrary number of encrypted
fine-grained readings sent from the smart meter of that customer. The
cloud does not need to perform any decryption during this computation
process. Therefore, the privacy of the user and the confidentiality of the
data are protected.

• Retailers are able to offer flexible pricing policies to consumers based on
the time-varying costs of electricity procurement at the wholesale level.
This feature is made possible because our model is designed so that the
retailers can request the aggregated energy consumption of their customers
during different time periods. The grid operator receives such requests
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from retailers, performs most of the data aggregation tasks directly on
the cloud, then decrypts the results and sends them back to retailers.

• We propose a parallel version of our billing algorithm to utilise the process-
ing capability of multi-core processors in cloud servers so that the compu-
tation time can be reduced significantly compared to using our sequential
homomorphic addition algorithm. Using Amdahl’s law and a metric called
speedup, we measure how many times faster our parallel algorithm can
actually run on some common processors with different number of cores
and threads. We also demonstrate by many examples how an increase of
speedup is determined by the size of the homomorphic expression as well
as the number of threads used for the parallel computation process.

2. Related Works

There have been many research works focusing on the storage and pro-
cessing of smart meter data while preserving user privacy and protecting data
confidentiality. However, not many of those works provide detailed solutions
and practical implementation about how the data is stored and processed in an
encrypted form on the cloud.

Rial et al.[10] propose a set of privacy-preserving protocols involving three
parties: an electricity provider, a user agent and a simple tamper-evident me-
ter. The data is encrypted by the smart meter using its symmetric key and
stored in encrypted form in remote servers. To perform data aggregation and
billing, the user will need to download the encrypted data and decrypt using
a symmetric decryption key. A final bill will be sent to the provider with a
zero-knowledge proof that ensures the calculation to be correct and leaks no
additional information. However, this approach requires the user themselves
or a third party that the user fully trusts to perform the computation. Cloud
servers cannot compute on encrypted data. In a more realistic setting[9], the
electricity retailer would calculate the bills first and send to customers, given
only the total energy consumption in fixed period of times.

In their work, Acs et al. [8] describe a scheme allowing electricity providers
to collect smart meter data periodically and derive aggregated statistics without
learning anything about the activities of individual households. At each billing
period, a smart meter sends to its corresponding provider the readings that are
mixed with random noise and encrypted to protect the privacy of a user. The
provider can still compute the total electricity consumption of that household
despite the amount of noise being added to the original data. However, this
research work assumes that most of the computing tasks involved in finding
the total energy consumption are performed by a provider rather than using
the cloud, causing limitations in cases when the provider does not have enough
computing power to aggregate fine-grained readings coming from a large number
of meters or when to store and secure a huge amount of data over long periods
of time.
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Another research work has been proposed by Ruj et al. [11] in which a decen-
tralized security framework was designed for smart grids with the capabilities
to do both data aggregation and access control. The smart grid is divided into
a hierarchy comprising a home, building and neighbouring area networks. Elec-
tricity usage data is collected and sent to substations along a path from lower
to higher networks in the hierarchy under the monitor and control of remote
terminal units. Security and user privacy is achieved by encrypting the data
in the transmission process while aggregation tasks are performed on encrypted
data due to the use of homomorphic encryption. While details of the access
control component of the architecture are described very thoroughly, especially
about how users can access the data through remote terminal units, the au-
thors have not provided as many details about cloud-based data storage and
how aggregation tasks are performed on encrypted data.

There are other research works providing different approaches to the security
and privacy protection of smart meter data. In their work, Deng et al.[12] de-
scribe in detail how smart meters can register and authenticate their identities
before a secure communication session can be set up with the data collector.
These operations help to build a network of smart meters organised as an aggre-
gation tree in which the data collector is the root node with information relating
to the network structure and routing backbone. The author assume that smart
meters are connected to one another and readings from one meter have to travel
to other meters to reach the data collector. This feature is significantly different
from our model in which each meter are independent and connected directly to
the grid operator. In another research, Garcia et al.[13] design protocols for
basic communication with E-meters using elementary cryptographic techniques
such as symmetric key encryption and digital signature. Their main goal is to
learn the aggregated energy consumption of N consumers without revealing any
information about the individual consumption of the users, even when the data
collector is malicious. However, each meter Mi in their model must also know
about the N − 1 public keys of the other meters participating in the protocol.
This is a limitation because the smart meters in their model are programmed to
abort the protocol when they cannot get enough meters with public keys willing
to join a communication session.

In our research, we aim to complement existing literature by describing in
details how data is stored on the cloud in encrypted formats. We also present
a model showing how the homomorphic aggregation of encrypted smart meter
readings is performed directly on the cloud. Furthermore, we implement the
model and measure the computation time of our algorithm on real data sets.

3. Cloud-based Smart Meter Data Storage And Processing

3.1. Architecture
In our model, each smart meter is allocated an asymmetric key pair gener-

ated by a homomorphic cryptosystem. Every fifteen minutes, a meter reading is
encrypted by the smart meter using the public key and sent to the grid operator
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Figure 3: The architecture of our model.
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for monitoring purposes and to the cloud for storage and homomorphic compu-
tation. The grid operator can access the private keys of all smart meters in the
grid and decrypt fine-grained readings to monitor the grid performance. The
cloud is responsible for performing most of the homomorphic computation over
encrypted smart meter data by using the public keys of those meters. Retailers
are responsible for issuing bills to their customers using the total amount of
energy consumed in a month or a quarter. They are not allowed to access the
private keys to decrypt fine-grained readings stored on the cloud. Instead, re-
tailers send requests for data aggregation to the grid operator, which will use the
cloud to perform the homomorphic aggregation tasks, decrypt the results and
send them to retailers. Customers receive bills containing the electricity cost
and other statistical results from their retailers. Our model allows customers
to have access to the private keys of their smart meters. Therefore, customers
can check their bills and perform other statistics on their usage data by asking
the cloud to perform various homomorphic operations on their encrypted fine-
grained readings and decrypting the results using their private keys. Figure 3
shows the details of our model.

The electricity consumption of each household is measured by a smart meter.
Every fifteen minutes, the smart meter sends out a data package containing
three types of data: a smart meter identification number, a timestamp and
an encrypted reading. Each smart meter has an identification number granted
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Figure 4: Content of a data package sent by a smart meter every fifteen minutes
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by the grid operator when the smart meter is installed. This number is used
to uniquely refer to the smart meter. Therefore, it must be included in each
data package so that the grid operator can differentiate between data packages
sent from different sources. The cloud also needs the identification number to
identify smart meter data when processing queries. The timestamp indicates
the moment when a reading is recorded. This value is used by the grid operator
for performance monitoring purposes and for the cloud to know whether the
reading was taken in the peak or off peak period. The identification number
and timestamp are not encrypted. However, the smart meter reading taken
every fifteen minutes is encrypted using the public key of the corresponding
smart meter. Only the grid operator and the household owner of that smart
meter have the private key to decrypt the readings. Encryption is required to
secure the storage and processing of smart meter readings on the cloud. Figure
4 outlines the content of a data package sent out by a smart meter.

Supporting multiple pricing policies. Our model allows a retailer to set
flexible pricing policies based on different times of the day such as peak and off-
peak period as shown in Figure 5, allowing customers to save more money and
increasing the efficiency of electricity usage. A typical pricing policy P contains
a smart meter reading x which shows the number of kWhs consumed during a
fixed period of time (for example 15 minutes) and the time t where the reading
was recorded. The time information t allows a retailer to decide a rate at which
a customer will be charged for their usage x. Therefore, a pricing policy P can
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Figure 5: (a) A linear policy specifies the rate per unit consumption that is applied to deter-
mine the price to be paid for each measurement. (b) A cumulative policy specifies a rate per
unit that is determined as a function of the consumption allowing non linear functions to be
applied for pricing.
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be regarded as a function P : (x, t)→ p that takes a reading x and a recording
time t and outputs a price p. After each billing period, a total fee is computed
by adding the prices corresponding to the total electricity consumption in that
period, according to the formula: fee =

∑n
i=1 pi, in which n is the total number

of readings in a billing period and pi is the price calculated for each reading.
Our model is very similar to the practical smart grid architecture described
in[9] in that a retailer is not granted direct access to fine-grained smart meter
readings of its customers. This design feature is reasonable because a retailer
only requires the total energy consumption during a period for billing purposes
while fine-grained readings are often required by the grid operator to monitor the
grid performance. Furthermore, customers are far more likely to change their
retailers rather than changing their grid operator because retailers constantly
compete with each other to offer the best prices to customers while there are
only a few grid operators which do not often deal with customers directly.

When a retailer wants to calculate a customer bill in a consumption period,
it needs the total electricity figure of the customer during that period to multi-
ply with the rates it offers. This total amount can be for a month or a quarter
and can be divided into smaller sums corresponding to peak or off-peak periods
as determined by various pricing policies set by the retailer. These total figures
are calculated from fine-grained readings obtained from the customer’s smart
meter. Because the retailer cannot access those readings directly, it will send
requests to the grid operator, which will instruct the cloud to perform most of
the calculation tasks. This is where our model brings many benefits to cus-
tomers, the grid operator and retailers in terms of data security, user privacy
and efficiency. We find out a method to calculate the total figures directly on
encrypted data, thereby allowing the cloud not only to store data securely but
also to compute on encrypted data. Finally, the cloud outputs the total figures
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Figure 6: Cloud-based calculation of total energy consumption on encrypted data for a cus-
tomer
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in encrypted forms and sends to the grid operator, which will decrypt and send
to the retailer to complete the request.

Calculating total energy consumption on the cloud using encrypted
data. After each billing period, retailers will need to calculate bills for each of
their customers. They need the total energy consumption of each of the cus-
tomer. However, retailers cannot access smart meter readings directly because
they are encrypted and store on the cloud. According to our model, only the
grid operator can access encrypted readings because it stores the private keys
of all the smart meters. Therefore, retailers will send billing request to the grid
operator which in turn will ask the cloud to perform most of the computation
on encrypted data.

After being asked to calculate a total energy consumption for a customer
in a period of time by a retailer, the grid operator will send a request to the
cloud containing information to help the cloud to identify and calculate the
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data of that customer. The request will contain the identification details of the
customer and the usage period during which the total energy consumption is
calculated. Upon receiving the request, the cloud will use the customer identi-
fication number to locate the data related to that customer. Each smart meter
reading is stored in encrypted form on the cloud and associated with a times-
tamp in plaintext. Based on the request usage period, the cloud decides which
encrypted reading is relevant to the calculation. In the encrypted domain, the
cloud will subtract two consecutive readings to get a result, for example, the
total usage in 15 minutes, then all such results will be added to get the final
usage in encrypted form. The cloud will send this encrypted result back to the
grid operator which in turn will decrypt the result using the appropriate key
and send the final unencrypted result to the retailer to apply appropriate rate
to the total energy consumption. Figure 6 illustrates this process.

3.2. Homomorphic Key Generation, Encryption and Decryption
Homomorphic cryptography has long been the focus of many researchers

because this technique allows specific types of computations to be carried out
on ciphertext and generate an encrypted result which, when decrypted, matches
the result of operations performed on the plaintext. This feature has a great
potential for cloud-based applications because not only users can encrypt and
store their data on the cloud, but the encrypted data can also be processed
directly on the cloud without compromising data privacy.

An encryption scheme is considered to be partially homomorphic if its ci-
phertexts can be either added or multiplied an unlimited number of times but
not both operations at the same time. There are two types of partially homo-
morphic cryptosystems: additively and multiplicative homomorphic. Given two
plaintext integers m1 and m2, an additively homomorphic encryption scheme
has a binary operation ⊕ that guarantees the following condition is true for an
addition of m1 and m2:

Decrypt(Encrypt(m1)⊕Encrypt(m2)) = Decrypt(Encrypt(m1 +m2))
= m1 +m2

Similarly, a multiplicative homomorphic cryptosystem is defined as a binary
operation ⊗ that can be applied on the ciphertexts of the two plaintext m1 and
m2 as shown in the following equation:

Decrypt(Encrypt(m1)⊗Encrypt(m2)) = Decrypt(Encrypt(m1 ×m2))
= m1 ×m2

In this research, we use a somewhat homomorphic cryptosystem proposed by
Smart and Vercauteren (SV) [14] because their scheme has small ciphertext and
key size as well as allows both addition and multiplication on ciphertexts. At a
high level, the SV scheme requires a security parameter N specified by the user.
The public key consists of a prime p and an integer α mod p. The private key
consists of an integer polynomial Z(x) of degree N−1 to encrypt general binary
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polynomials of degree N − 1. In our model, only binary digits are encrypted
and hence, the private key consists of only an integer z of our choice. Generally,
a message is encrypted by first encoding it as a binary polynomial and then a
randomisation process occur by adding on two times a small random polynomial.
Decryption is achieved when the resulting polynomial is evaluated at α mod p.
Therefore, the ciphertexts are integers modulo p regardless of whether bits or
binary polynomials of degree N − 1 have been encrypted. In our model, the
plaintext message is a single bit. Therefore, decryption will require multiplying
a ciphertext it by z and dividing the result by p. This rational number is then
rounded to the nearest integer value, and subtract the result from the ciphertext.
The plaintext is obtained by reducing this intermediate result modulo 2.

The SV scheme consists of five algorithm: KeyGen, Encrypt, Decrypt,
Add and Multiply. This technique requires a set of input parameters (N, η,
µ) in which η = 2

√
N and µ =

√
N and N is the security parameter specified

by the user. Before each of the five algorithms can be described in details,
two mathematical objects, i.e. a polynomial ball and a polynomial half-ball, are
defined as follows:

B2,N (r) =

{
N−1∑

i=0

aix
i :

N−1∑

i=0

a2
i ≤ r2

}

B∞,N (r) =

{
N−1∑

i=0

aix
i :− r ≤ ai ≤ r

}

B+
∞,N (r) =

{
N−1∑

i=0

aix
i :0 ≤ ai ≤ r

}

In the equations above, r is a postive integer, B2,N (r) and B∞,N (r) are poly-
nomial balls while B+

∞,N (r) is a polynomial half-ball. It can be seen that
B2,N (r) ⊂ B∞,N (r) and B∞,N (r) ⊂ B2,N (

√
N · r). In the following algorithms,

the notation a ←− b means assigning the value of b to a, while given a set A,
writing a←−R A means select a from the set A using a uniform distribution.

The KeyGen algorithm generates the public key PK and the secret key
SK:

1. Set the plaintext space to be P = {0, 1}
2. Choose a monic irreducible polynomial F (x) ∈ Z[x] of degree N
3. Repeat

. S(x)←−R B∞,N (η/2)

. G(x)←− 1 + 2 · S(x)

. p←− resultant(G(x), F (x))
4. Until p is prime
5. D(x)←− gcd(G(x), F (x)) over Fp[x]
6. Let α ∈ Fp denote the unique root of D(x)
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7. Apply the XGCD-algorithm over Q[x] to obtain Z(x) =
∑N−1

i=0 zix
i ∈ Z[x]

such that
Z(x) ·G(x) = p mod F (x)

8. B ←− z0 (mod 2p)
9. The public key is PK = (p, α), the private key is SK = (p,B)

The Encrypt algorithm takes a plaintext message M and the public key PK
as inputs to produce the ciphertext c:

1. Parse PK as (p, α)
2. If M /∈ 0, 1 then abort
3. R(x)←−R B∞,N (η/2)
4. C(x)←−M + 2 ·R(x)
5. c←− C(α) mod p
6. Output c

The Decrypt algorithm decrypts the ciphertext c using the PK and returns
the plaintext message M:

1. Parse SK as (p,B)
2. M ←− (c− bc ·B/pe) mod 2
3. Output M

The homomorphic Add operation can be performed given two ciphertext c1,
c2 and the public key PK as follows:

1. Parse PK as (p, α)
2. c3 ←− (c1 + c2) mod p
3. Output c3

Finally, the homomorphic multiplication operation is achieved by the performing
the Mult algorithm that takes two ciphertext c1, c2 and the public key PK as
inputs:

1. Parse PK as (p, α)
2. c3 ←− (c1 · c2) mod p
3. Output c3

3.3. Encoding Smart Meter Readings
In our model, smart meter readings are encrypted using the public key of

the smart meter before being sent to the cloud. We use the SV homomorphic
scheme which can only encrypt binary digits. The encoding method that we
use to convert the readings into binary numbers are described in this section.
We assume that each reading is a decimal number with a fixed resolution ε,
for example, ε = 10−2, 10−3 . . . Therefore, each reading can be represented by
a fixed-point binary number having three components: the integer part, the
fractional part and a virtual binary point acting as a divider between the two
parts. The position of the binary point is implicitly defined in our model and will
be referred to whenever readings are converted to binary and back to decimals.
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Every fifteen minutes, a smart meter reading R is converted to a fixed-point
binary number Q having the format Q[QI].[QF] in which QI and QF are the
number of integer and fractional bits, respectively. Let WL be the total number
of bits used to represent the binary number. Hence, WL is the sum of QI and
QF and is a constant set in our model. Therefore, it is very important to select
an appropriate length WL when our model is used so that no overflow occurs.
This can be achieved by using the formula proposed by Oberstar et al.[15], which
describe how QI and QF are calculated. According to the authors, all integers
αi in a range having a minimum value αmin and maximum value αmax can be
represented by a fixed number of bits, QI, calculated by the following equation:

QI = floor(log2(max(abs[αmax, αmin])) + 2

The resolution ε of a smart meter reading is determined by the number of bits
QF used to represent the fractional part of the corresponding fixed-point binary
number. QF is calculated by the following equation:

QF = ceiling
(

log2

(
1
ε

))

3.4. Homomorphic Addition Over Encrypted Fixed-Point Binary Numbers
After the encoding, each smart meter reading is represented by an array of

binary digits, ready for our bitwise fully homomorphic encryption step, which
is based on the approach proposed by Kaosar et al[16]. Specifically, an n-bit
binary number X = (xn, xn−1, ..., x1) where xi ∈ {0, 1}, can be encrypted as
shown in the following equation, using the somewhat homomorphic cryptosys-
tem proposed by Smart and Vercauteren (SV) [14] with an encryption function
E and the fully homomorphic public key pk:

α = (αn, αn−1, ..., α1) = Epk(X) = [Epk(xn), Epk(xn−1), ..., Epk(x1)]

Each ciphertext αi generated by the SV encryption algorithm is a large integer
representing an encrypted version of a binary digit. The binary number X is
retrieved by using the decryption function D and the secret key sk to decrypt
each ciphertext αi to get a binary digit xi as follows:

X = (xn, xn−1, ..., x1) = Dsk(α) = [Dsk(αn), Dsk(αn−1), ..., [Dsk(α1)]

At the core of our model, when two binary digit b0 = 0 and b1 = 1 are
homomorphically encrypted as c0 = Epk(b0) and c1 = Epk(b1), the addition and
multiplications of c0 and c1 can be performed an arbitrary number of times.
The results of such computation, when decrypted, will be the same as perform-
ing similar computation on the plaintext b0 and b1. Some examples of such
homomorphic computation are shown in Table 1.

The homomorphic addition and multiplication operations that can be ap-
plied on encrypted binary digits allow us to construct AND and XOR circuits
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Fully Homomorphic Expressions Corresponding Plaintext Results
with Ciphertexts Expressions
c0 + c0 + c0 + . . .+ c0︸ ︷︷ ︸

n times

b0 + b0 + b0 + . . .+ b0︸ ︷︷ ︸
n times

0

c1 × c1 × c1 × . . .× c1︸ ︷︷ ︸
n times

b1 × b1 × b1 × . . .× b1︸ ︷︷ ︸
n times

1

c1 × c0 + c1 × c1 × c1 b1 × b0 + b1 × b1 × b1 1

Table 1: Examples of homomorphic addition and multiplication operations, and the corre-
sponding plaintext expressions

Input Output
A B A XOR B
0 0 0
0 1 1
1 0 1
1 1 0

Table 2: XOR Truth Table

Input Output
A B A AND B
0 0 0
0 1 0
1 0 0
1 1 1

Table 3: AND Truth Table

with encrypted bits as inputs and outputs. From the truth tables of the XOR
operation (Table 2), it can easily be seen that the addition of two binary digits
without carry produces a result which is identical to the output obtained by
applying these two bits as inputs to the XOR circuit. Similarly, the truth table
of the AND operation (Table 3) shows that passing two bits as inputs to the
AND circuit will produce an output which is the same as multiplying these two
bits together. With homomorphic encryption, we can add or multiply encrypted
bits, making it possible to securely perform not only the XOR and AND oper-
ations, but also other circuits as long as they are based on the XOR and AND
circuits.

We can understand homomorphic addition of two encrypted fixed-point bi-
nary numbers by studying how they are added in plaintext, when the bits from
each operands are added from the least significant to the most significant bit. A
typical way to perform this binary addition is using a full adder circuit, which
adds binary digits and accounts for values carried in and carried out. A diagram
of a one-bit full adder circuit is shown in Figure 7, it’s truth table is shown in
Table 4, in which A and B are the operands and Cin is a bit carried in from the
previous binary addition. The circuit produces a two-bit output, comprising of
a carry out Cout and a sum S.

From the truth table of the full adder circuit, the sum Si and the carry out
bit Ci of an addition of two binary digits Ai and Bi can be described as follows
(with ⊕,× and + denote XOR, AND and OR respectively):

Si = Ai ⊗Bi ⊗ Cin

Cout = (Cin × (Ai ⊗Bi)) + (Ai ×Bi) = (Cin × (Ai ⊗Bi))⊗ (Ai ×Bi)

These equations above show that the addition of two binary digits with a carry
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Inputs Outputs
A B Cin Cout S
0 0 0 0 0
1 0 0 0 1
0 1 0 0 1
1 1 0 1 0
0 0 1 0 1
1 0 1 1 0
0 1 1 1 0
1 1 1 1 1

Table 4: Truth table of the full adder circuit

Figure 7: The full adder circuit.

AND

XOR

XOR

AND

XOR

Cin

A
B

S

Cout

out can be performed with only XOR and AND circuit. We have also shown
that the XOR and AND circuit can be evaluated securely with homomorphic
encryption. Therefore, the full adder circuit can also take encrypted input bits
and an encrypted carry in and produce an encrypted sum and carry out bit.

Adding two encrypted fixed-point binary numbers is equivalent to adding
two arrays of encrypted binary digits with all carry bits taken into account.
This can be achieved by using a ripple-carry adder [17], which can combine
multiple full adders to add n-bit numbers. Because a full adder inputs a carry
in bit, which can be a carry out bit of a previous binary addition, many full
adder can be chained together, so that the carry out bit from one full adder is
the carry in bit of the next full adder, as shown in Figure 8. A ripple carry
adder circuit can work with encrypted inputs and produce an encrypted result
because its building blocks are full adders, which can be securely evaluated.
Furthermore, the fully homomorphic nature of the underlying cryptographic
scheme allows the encrypted carry out bit to be passed to other full adders an
arbitrary number of times without affecting the accuracy of the final result.
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Figure 8: A 4-bit ripple carry adder.

XOR

C0 A0B0

S0 C1

XOR

A1B1

S1 C2

XOR

A2B2

S2 C3

XOR

A3B3

S3 C4

4. Experiments and Analysis

In our experiments, we used data from the Smart* project [21] in which
smart grid data were continuously collected from three households in every
second within two months. The authors also collected electricity usage data
every minute from 400 anonymous houses for one day. This data together with
some more data generated by us allowed various application scenarios to be
simulated in which a smart meter in each house hold will send a total energy
consumption in 15 minutes, allowing us to calculate the number of homomorphic
addition operations and measure the time required by the cloud to calculate the
total energy consumption in a given time period.

4.1. Data Structure and Key Generation

Before conducting experiments, we assumed that each smart meter reading is
represented by a decimal number with two decimal places. Hence, we wanted all
computing operations to be accurate to two decimal places. This was achieved
by setting the resolution ε = 0.001. Hence, the number of bits QF used to
represent the fractional part was calculated as:

QF = ceiling
(

log2

(
1
ε

))
= ceiling

(
log2

(
1

0.001

))
= 10

Using another 10 bits to present the integral part, we could compute with all
decimal numbers from -512 to 511 up to two decimal places. We assumed that
overflow would not occur by selecting numbers and calculating results within
this range. This experimental setting allowed us to encode each smart meter
reading as a 20-bit binary number, which was subsequently encrypted bit-by-bit
using the Smart and Vercauteren [14] homomorphic encryption scheme.
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Smart Meter ID Timestamp Encrypted Readings
SM001 03:00am 16/04/2014 dikY3kdkzos322354
SM566 19:15pm 17/05/2014 ieosILC23Kslskeisld
SM019 21:30am 19/10/2013 802edisEIWDkdisle
SM005 07:45pm 20/06/2014 987122kdiesk8392
SM302 12:15am 19/12/2013 powodie87349874d

Table 5: Encrypted Smart Meter Data stored on The Cloud

Operation Time
Key Generation (client) From 5 to 25 (seconds)

Encryption (20 bits, client) 244.8 (milliseconds)
Decryption (20 bits, client) 314.4 (milliseconds)

Homomorphic Addition (20 bits, cloud) 65.6 (milliseconds)

Table 6: Time measured for key generation, encryption, decryption and homomorphic addition
operations

To test the feasibility of our model, we wrote two software modules using
the C programming language to represent a client and the cloud. The client
module was responsible for encryption and decryption tasks while homomorphic
computing operations were performed by the cloud module. The cloud would
use public keys to perform fully homomorphic operations and return encrypted
results to clients. Each smart meter was identified on the cloud using a smart
meter identification number. The readings were encrypted using homomorphic
encryption while the ID and timestamp were stored in plaintext on the cloud.
Table 5 shows how our experiment data was stored on the cloud.

The key generation, encryption and decryption algorithms were implemented
using the Scarab homomorphic cryptography library [18]. This C library is the
implementation of the Smart and Vercauteren [14] homomorphic encryption
scheme. Other C libraries were also used to store and process large integers such
as the GNU Multiple Precision Arithmetic Library [19] and the Fast Library
for Number Theory [20]. Our model and these libraries were run on a machine
having 4 Gigabytes of memory and 2.4 Gigahertz quad core processor with
Ubuntu Linux as the operating system.

Homomorphic public and private keys were generated on the client side. We
measured the time required to generate the keys as well as the encryption and de-
cryption times on the client, while homomorphic addition operations happened
on the cloud. Table 6 shows these measurements. From this table, it can be seen
that key generation took more time to execute than other operations because
the key generation algorithm had to search for appropriate random numbers to
construct the keys. Encryption and decryption times required to compute over
20-bit numbers were within reasonable limits. Although a homomorphic addi-
tion over 20-bit numbers took more time than encryption and decryption, this
operation would be done on the cloud, which has far more computing resource
than the client side.
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Billing Period Number of Additions Time (second)
Fortnightly 1343 88.1

Monthly 2879 188.86
Quarterly 8639 566.72

Table 7: Time taken to perform homomorphic addition operations to calculate total electricity
usage for a smart meter in different billing periods, assuming that a smart meter sends four
readings to the cloud in an hour.

4.2. Homomorphic Billing Computation in Different Billing Periods

In this experiment, we measured the time required to calculate electricity
bills for a household in different billing periods such as in a fortnight, a month
and every three months. Assuming that the smart meter would send a reading to
the cloud every 15 minutes, we calculated the number of homomorphic additions
that would happen on the cloud corresponding to each period. Table 7 presents
the number of homomorphic additions corresponding to each period. The grid
operator would first send a billing request to the cloud, containing the smart
meter ID and the time period in which the bill must be calculated. The cloud
would use the smart meter ID to identify all the readings recorded by that meter
and use the timestamps to retrieve appropriate encrypted readings to perform
homomorphic addition operations. Finally, the cloud would send encrypted
results back to the grid operator. Table 7 also shows the time required by the
cloud to perform the number of homomorphic addition operations corresponding
to each billing period.

4.3. Homomorphic Billing Computation for Different Numbers of Smart
Meters in a Fixed Billing Period

In the second experiment, we measured the execution time of the homomor-
phic addition operations performed by the cloud to calculate the total electricity
usage for different numbers of smart meters in one week, assuming that a smart
meter sends four readings to the cloud in an hour. In this experiment, we used
a different number of smart meters, i.e. 10, 50 and 100 meters each time the
experiment is run. Table 8 shows the numbers of smart meters used and the cor-
responding number of homomorphic addition operations required to calculate
the bills for each group of meters in one week. For each group of smart meters,
the cloud would find all identification numbers of the meters in the group, read
the timestamps to retrieve appropriate encrypted readings and perform homo-
morphic addition operations on these encrypted data. Table 8 also shows the
time required by the cloud to perform the number of homomorphic addition
operations corresponding to each group of smart meters in one week. From
this table, it can be seen that the more meters involved in a computation, the
more time it will take. The cloud can speed up the homomorphic computation
by using caching. Specifically, it can store the encrypted result of a homomor-
phic computation of two readings and reuse that encrypted result later when
the same timestamps of those encrypted readings appear again in a computing
request.
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Number of Meters Number of Additions Time (second)
10 6710 440.18
50 33550 2200.88
100 67100 4401.76

Table 8: Time taken to perform homomorphic addition operations to calculate the total
electricity usage for different numbers of smart meters in one week, assuming that a smart
meter sends four readings in an hour.

5. Performance of Our Algorithm on Multi-core Cloud Servers

Our research work can be extended by creating a parallel version of our
algorithm so that the calculation of total energy usage on homomorphically
encrypted data can be performed more efficiently on multi-core cloud servers.
In the experiments described previously, the total energy usage was calculated
by adding a series of homomorphic additions sequentially on encrypted numbers.
This method is not efficient because only one addition can be performed at a
time. The computation time can be reduced by applying an algorithm that can
compute the homomorphic sum in parallel. In this research, we use a parallel
addition algorithm described by Blelloch et al. [22]. Suppose that the cloud
needs to calculate the sum of a sequence S of n homomorphically encrypted
numbers:

S[1] + S[2] + · · ·+ S[n]

The computation can be performed in parallel by pairing and adding each el-
ement of S having an even index with the next element of S having an odd
index, i.e. S[0] is paired with S[1], S[2] with S[3], and so on. The result is a new
sequence of dn/2e numbers that sum to the same value as the sum that we wish
to compute. The pairing and summing stage is repeated until, after dlog2ne
steps, producing a sequence consisting of a single value which is the final sum.
Hence, applying this algorithm allows the execution time to be reduced signifi-
cantly because many addition operations can be done in parallel. Furthermore,
we want to determine how much of the computing workload can be done in
parallel, especially when we increase the number of terms in a homomorphic
addition expression. We demonstrate our point with the following example in
which we want to add a homomorphic expression with eight terms:

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8

= x12 + x34 + x56 + x78

= x1234 + x5678

= X

Assume that one homomorphic expression takes a time t to complete, then the
above expression will take time 7t to complete when the computing operations
are done sequentially, i.e. one homomorphic addition at a time. However,
when applying the Blelloch parallel addition algorithm described above, many
homomorphic additions can be executed in parallel, for example, x12 = x1 +x2,
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Table 9: When the number of terms in a homomorphic expression increases, the fraction of
homomorphic addition workload that can be performed in parallel also increases significantly.
The symbol t represents the time required to complete one homomorphic addition operation.

Number of
Terms in a
Homomorphic
Expression

Time
required
(serial
case)

Time
required
(parallel
case)

Fraction
of Computing
Performed
in Parallel
(%)

Fraction
of Computing
Performed
Sequentially
(%)

10 9t 4t 55.56 44.44
50 49t 6t 87.76 12.24
100 99t 7t 92.93 7.07
500 499t 9t 98.2 1.8
1000 999t 10t 99.00 1.00

x34 = x3 + x4 or x1234 = x12 + x34 . . .. Hence, the total time required to
calculate X is 3t, rather than 7t as in the sequential case. We write a program
to repeat the calculations above with an increasing number of terms in the
homomorphic expression. Table 9 shows our results. From this table, when
the number of terms in a homomorphic expression increases, i.e. 10, 50, 100,
500 and 1000, the fraction of computing operations that can be performed in
parallel also increases significantly, i.e. 55.56%, 87.76%, 92.93%, 98.2%, 99%.
When there are 1000 terms in a homomorphic addition expression, almost all of
the computing workload can be done in parallel according to the algorithm we
described previously. However, in reality, how much of the computing workload
can be executed in parallel also depends on the number of computing threads
which are allocated for that operations.

Next, we want to measure how the aforementioned parallel homomorphic
addition algorithm can improve the efficiency of the computation of the total
energy usage on encrypted smart meter data, especially when the algorithm is
run on a multi-core cloud server. To quantify the performance enhancement,
we use a metric called speedup, described in [23]. Speedup is defined by the
following formula:

S =
Told

Tnew

in which, S is the resultant speedup, Told is the old execution time before any
improvement is made to the algorithm, for example, when using the sequential
homomorphic addition algorithm, and Tnew is the new execution time after
improvements are made over an algorithm, for example, when the homomorphic
addition algorithm is parallelized.

Furthermore, according to Amdahl’s law [24], the speedup S of an algorithm
running on a multi-core server depends on the number of threads of execution,
and most importantly, on the sequential fraction of the algorithm. Specifically,
let n ∈ N be the number of threads of execution and B ∈ [0, 1] be the fraction of
the algorithm that is strictly serial, then the time T (n) the algorithm would take
to finish when running on n threads of execution is calculated by the following
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Table 10: The speedups achieved when the parallel fraction of the homomorphic addition algo-
rithm is executed by some common processors having different number of cores and threads.
These processors are usually found in desktop computers and cloud servers. These results
coming from parallel performance calculations with a varying number of terms in a homomor-
phic addition expression, i.e. 50, 100, 500, 1000 terms as shown in Table 9. The corresponding
maximum theoretical speedups are also shown for comparison purpose.

Processor Cores Threads

The computed speedup
when using different

numbers of terms
in a homomorphic

expression
50

(terms)
100

(terms)
500

(terms)
1000

(terms)
Intel Core

Solo
Processor

U1500

1 1 1 1 1 1

Intel Core
i3-4030U
Processor

2 4 2.93 3.30 3.80 3.88

Intel Xeon
Processor
E5-2630

6 12 5.11 6.75 10.02 10.81

Sun
Microsystems
UltraSPARC

T2

8 64 7.35 11.73 29.99 39.26

Maximum Theoretical
Speedup 8.17 14.14 55.56 100

formula:
T (n) = T (1)(B +

1
n

(1−B))

Hence, the speedup is calculated as:

S(n) =
T (1)
T (n)

=
T (1)

T (1)(B + 1
n (1−B))

=
1

B + 1
n (1−B)

Amdahl’s law also allows us to find the maximum speedup despite the maximum
number of threads available. The maximum theoretical speedup is calculated by
letting n, the number of threads of execution, go to infinity, as in the following
equation:

lim
n→∞

S(N) = lim
n→∞

1
B + 1

n (1−B)
=

1
B

However, the number of threads of execution n is dependent on the number
of cores of a server’s Central Processing Unit (CPU). Only one thread can be
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served by one core at a time and the CPU will switch between threads if the
number of threads generated by a program is larger than the number of cores
of the CPU. In the year 2002, Intel corporation introduced a technology called
Hyper-Threading in its Xeon server processors and Pentium 4 desktop CPUs,
allowing two threads to be run per core. Table 10 shows the speedup that
we calculated when the parallel computation is performed by many processors
having different number of cores and threads. This table demonstrates how an
increase of speedup is determined by the size of the homomorphic expression
as well as the number of threads used for parallel computation. Because of a
limited number of threads used for parallel computation task, the actual speedup
is always smaller than the maximum theoretical speedup. From the table, the
maximum theoretical speedup when parallelizing the homomorphic addition of
1000 terms in an expression is 100 times. However, if 64 threads are used for
such parallel homomorphic addition, then the actual speedup is 39.26 times.
This speedup will get closer to the maximum when a larger number of threads
is used.

6. Conclusion

In this research, we have designed and implemented a secure cloud-based
data storage and processing model which can preserve user privacy and the
confidentiality of smart meter data on a smart grid. Our research ensures that
any smart grid can fully benefit from various cloud storage and processing ser-
vices. This is made possible by our homomorphic computing model using a
homomorphic asymmetric key cryptosystem to encrypt data, allowing the cloud
to perform most of the computing works directly on encrypted data, specifically,
the calculation of customer bills based on the aggregation of encrypted smart
meter readings using fixed-point number arithmetics. With practical data from
the Smart project, we have done many experiments to estimate the number of
homomorphic additions to be performed on the cloud and measured the com-
putation time in various billing periods. Our experiments show several factors
that can influence the homomorphic computation time on the cloud such as the
length of a billing period, the number of meters involved, or directly by the num-
ber of homomorphic addition operations. We also propose a parallel version of
our billing algorithm to utilise the processing capacity of multi-core processors
in cloud servers, reducing the majority of computation time compared to our
sequential algorithm. We also demonstrate by many examples how an increase
of speedup is determined by the size of the homomorphic expression as well as
the number of threads used for parallel computation. In the future, we will work
on more efficient methods to allow the cloud to further reduce the homomor-
phic computation time as well as more efficient and scalable cloud computing
services to process encrypted data.
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