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Abstract—With the growing development in demand response,
load serving entities (LSEs) may participate in electricity market
as strategic bidders by offering coupon-based demand response
(C-DR) programs to customers. However, due to customers' ver-
satile electricity consumption patterns under C-DR programs as
well as the increasing penetration of wind power generation, ob-
taining the deterministic bidding decision becomes unprecedented
complex for LSEs. To address this challenge, a new strategic bid-
ding model for an LSE is proposed in which the primary objective
is to maximize the LSE's profit by providing optimal C-DR con-
sidering high wind power penetration. The proposed strategic bid-
ding is a bi-level optimization problem with the LSE's net revenue
maximization as the upper level problem and the ISO's economic
dispatch (ED) for generation cost minimization as the lower level
problem. This bi-level model is converted to a stochastic mathe-
matic program with equilibrium constraints (MPEC) by recasting
the lower level problem as its Karush-Kuhn-Tucher (KKT) opti-
mality conditions. Then, the stochastic MPEC is transformed to a
mixed-integer linear programming (MILP) problem, which is solv-
able using available optimization software, based on strong duality
theory. In addition, the effectiveness of the proposed method has
been verified with simulation studies of two sample systems.
Index Terms—Coupon-based demand response (C-DR), elec-

tricity market, load serving entity (LSE), mathematic program
with equilibrium constraints (MPEC), mixed-integer linear pro-
gramming (MILP), strategic bidding, wind power.
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Number of lines.
Generation bidding price at bus ($/MWh).
Generation dispatch at bus (MWh).
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Maximum and minimum generation output at
bus .
Demand at bus (MWh).
Generation shift factor to line from bus .
Transmission limit of line .
Locational marginal price at bus .
Electricity retail price for customer at bus
($/MWh).
Coupon price offered to customer at bus
($/MWh).
Energy consumption of customer at bus .
Energy consumption baseline of customer at
bus .
Bus set of the LSE strategic bidder.
Customer set at bus belong to the LSE
strategic bidder.
Dual variable associated with the power
balance equation in economic dispatch.
Dual variables associated with the lower and
upper limits of transmission line .
Dual variables associated with the lower and
upper limits of the generator at bus .
Lagrangian function of ISO's ED problem.
Index of wind power scenario (in superscript).
Probability of wind power scenario .
Power output of wind farm at bus in wind
power scenario .
Probability of the th demand reduction block
under the th coupon price.

I. INTRODUCTION

T HE increasing demand-side participation in electricity
market has presented new challenges and opportunities

for the market participants [1], [2]. For power system operators,
various demand response (DR) programs have been deployed
as potential resources to balance supply and demand, reduce
peak-hour loads, and enhance the generation efficiency [3].
For end customers, the electricity consumption is expected to
be responsive to the fluctuant pricing signals to reduce their
electricity payments [4]–[11]. In a fully competitive electricity
market, load serving entities (LSEs) play a critical role to fill the
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gaps between end customers and wholesale market operators
to connect them into an optimal operation framework [12].
As a profit-seeking organization, the objective for LSEs is to

maximize the expected payoff considering the uncertainty from
both wholesale market and end customers. The majority of cus-
tomers pay electricity bills with flat rates [13], while LSEs pur-
chase electricity with time-varying rates fromwholesalemarket.
Naturally, LSEs will have the motivation to induce the end cus-
tomers' inherent elasticity by offering DR programs [14], [15],
especially when the system is under stress or close to the next
binding constraint, which is termed as a critical load level (CLL)
in [16] and [17]. Further, this can be even more interesting with
the consideration of the uncertainty due to high wind power pen-
etration.
Coupon based demand response (C-DR) attempts to in-

duce the demand flexibility in retail customers (such as
small/medium size commercial, industrial, and residential
customers) on a voluntary basis [15]. In practice, LSEs have
been adopting various methods, such as peak time rebate (PTR)
and critical peak pricing (CPP), to realize the demand side
management. However, C-DR holds its unique features. In
PTR, the rebate rates during critical periods are pre-determined
and fixed whereas the coupon price in C-DR is an optimization
variable. In CPP, mandatory high prices are utilized to motivate
customers to adjust their electricity consumption whereas the
customers are voluntary to participate in C-DR.
Fig. 1 demonstrates the impact of C-DR and wind power un-

certainty to both electricity supply curve and elastic demand
curve. As shown in Fig. 1, is the intersection between
expected supply curve and original demand curve, and
denotes the intersection between expected supply curve and the
new demand curve with coupons. Considering the wind power
output, LMP is greater than flat rate price at system demand
level . If the wind power output is lower than forecasted, the
LMP goes higher at ; meanwhile, if the wind generates more
power than forecasted, the LMP becomes lower at . Under
demand level , the expected net revenue for the LSE consid-
ering wind uncertainty , is negative. When a coupon
is provided, the elastic demand curve changes from to

. With the new demand curve, the corresponding LMP
will be which is lower than flat rate . Consequently, as long
as the net revenue is greater than

, the LSE will have incentive to offer coupon price to
customers in C-DR. Therefore, the C-DR program with proper
coupon prices can help LSEs increase their profits by mitigating
the price volatility due to wind uncertainty in wholesale market.
In competitive wholesale markets, there are two ways to

implement C-DR: 1) C-DR is administered by LSEs to max-
imize their own profit; or 2) C-DR is administered by ISOs
to maximize social welfare. Here, this paper discusses the
former one. In other words, the customers' demand can be
dispatched through C-DR by LSEs for the sake of LSEs' profit
maximization.
To study the operation of an LSE under this new perspective,

a strategic bidding approach considering C-DR and the wind
power uncertainty is proposed in this paper. In the proposed
method, the LSE offers C-DR program to customers. Then,
the range of corresponding demand reduction under certain

Fig. 1. Impact of C-DR and wind power on supply and demand curves.

coupon is modeled. Next, the LSE aggregates all customers'
demand reduction information and mimics ISO's electricity
market-clearing procedure considering wind power uncertainty.
Hence, the LSE can obtain the optimal bidding strategy with
the maximal possible expected net revenue. The final decision
variables of LSEs are the coupon prices and the corresponding
optimal load dispatches.
The rest of this paper is organized as follows:

Section II presents the overall bi-level model of strategic
bidding for LSEs considering C-DR. Section III discusses the
baseline load and the probabilistic demand reduction models.
Section IV proposes the solution to solve the stochastic
bi-level model including the procedure of transforming it into
MPEC problem, and the conversion from MPEC to MILP.
Section V demonstrates the simulation results and numerical
analyses of PJM 5-bus system and IEEE 118-bus system to
verify the proposed method. Section VI presents the summary
and conclusion.

II. STRATEGIC BIDDING MODEL FOR LSES

A. Procedure of LSEs' Strategic Bidding
The three-layer electricity market structure is shown in

Fig. 2. The generation companies provide electricity offers
including available generation quantities and prices to the
corresponding independent system operator (ISO), then LSEs
provide demand bids to the ISO, and finally the ISO clears the
market to maximize the social welfare. The illustration of LSEs'
strategic bidding under this market structure will be discussed
in the following Sections II-B, II-C, and II-D. Most ISOs in
the U.S. implement the two-settlement system [18]: day-ahead
(DA) market and real-time (RT) market. The energy cleared in
real-time markets is around 2%–8% [19], which represents a
considerable with respect to the possible DR amount. With the
expectation that DA price reflects the expected RT price, the
DA market can be viewed as part of RT. Therefore, only the
RT market is modeled for LSEs' strategic bidding for simplicity
such that this work can focus on the discussion about C-DR.
Fig. 3 is the flowchart of the proposed strategic bidding for

LSEs. First, LSE obtains LMPs information from ISO's DA
market. Then, the LSE broadcasts the coupon price for the hours
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Fig. 2. Structure of the electricity market.

Fig. 3. Flowchart of the proposed strategic bidding.

in which the LSEwants to performC-DR to stimulate customers
to reduce their demand (i.e., the hours when LMP exceeds or
likely to exceed the electricity flat rate). After gathering all the
information of potential demand reduction, the LSE mimics
ISO's economic dispatch (ED) process to identify the optimal
demand reduction. Finally, the LSE performs bidding with the
revised demand.
In the above procedure, the LSE can broadcast, and then

update the coupon price several times through communicating
with customers to obtain the optimal coupon price iteratively.
While in practice, the information exchange between LSEs and
customers cannot be performed many times due to the huge
data processing burden from numerous customers. Therefore,
before broadcasting the coupon price, LSEs should find a
method to estimate a rough range of the optimal coupon price
[20] such that the iterations between LSEs and customers can
be reduced and the actual updating process of coupon price
can be implemented in a shorter term. To determine this initial
optimal coupon price, LSE can model customers' probabilistic
electricity consuming pattern under different coupon prices,
then perform the strategic bidding for each coupon price,
and finally obtain the optimal coupon price. The probabilistic
demand reduction model will be presented in Section III.

B. Net Revenue of LSEs

The LSE receives a gross revenue from each customer
at bus , as shown in to of LSE

in Fig. 4. This revenue is calculated as the product of the re-
tail price and the electricity consumption . Then, the
payment (i.e., the product of spot price and the electricity
consumption ) is subtracted, since the LSE purchases elec-
tricity from ISOs in wholesale market at volatile nodal prices.
Finally, the financial incentives that the LSE pays to customers

Fig. 4. Illustrative figure of an LSE and its customers.

should be subtracted as well, which is the product of coupon
price and the deviation between actual electricity demand
and baseline electricity consumption. Therefore, the LSE's net
revenue, represented by , should be expressed as (1):

(1)
The LMP in (1) is obtained from ISO's ED [16], [17], and

the LMP formulation will be discussed in Section II-C.

C. ISO's Economic Dispatch

ED is carried out by ISOs to clear the market as well as de-
termining LMPs and generation dispatches. As C-DR program
is between LSEs and customers, the demands in the ISOs' ED
model holds no elasticity.
Here, a fixed transmission network is assumed with a lin-

earized, lossless DC model, and generations are considered
fully competitive and rational in bidding at their marginal costs
[21], [22]. This is aligned with various DC optimal power flow
(DCOPF) models utilized by many ISOs [21]. Also, wind and
DR are considered in terms of modeling the uncertainty, while
other sources of uncertainty can be added if needed [22].
Hence, the DCOPF approach is employed to model the elec-

tricity market and estimate LMPs. While the actual models in
practice are more complex, due to the need of computation ro-
bustness and efficiency, the ED based on DCOPF is utilized to
illustrate the main point of the proposed work. The DCOPF is
essentially a linear programming (LP) problem given by

(2a)

(2b)

(2c)

(2d)
(2e)
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After obtaining the optimal solution of the above ED, the
LMP can be calculated with the Lagrangian function. This
function and LMP can be written as

(2f)

(2g)

D. Bi-Level Model of Strategic Bidding

In the bidding process, the decision variables are the coupon
prices and the corresponding demand dispatches .
Since the LMPs depend on ISO's ED in (2a)–(2e), the strategic
bidding problem is formulated as a bi-level problem. The upper
level is to maximize the LSE's profit in (1), and the lower level is
to minimize the generation cost to model ISO's market-clearing
process [23]–[25]. The bi-level strategic bidding model is given
by

(3a)
(3b)

where

(3c)

where and are the minimum and maximum de-
mand values, respectively, of demand at bus . is the set
of customers on bus which have the C-DR with this LSE. The
LMP from the ED depends on the demand, , as well as
the bid prices/quantities of generators.
Note that both coupon price and LSE's demand are deci-

sion variables in the bidding process, and the objective func-
tion is nonlinear. To solve the strategic model in (3a) to (3c),
it is necessary to discuss the demand model first. Therefore,
Section III covers the baseline model and a probabilistic de-
mand reduction model that gives the probability distribution of
demand reduction under a specific coupon price. Since

is linear with a specific (given) coupon price,
in (3a)–(3c) can be solved for a specific using the mathe-
matic algorithm presented in Sections IV-A to IV-C, with dif-
ferent wind scenarios considered. Then, Section IV-D discusses
the overall process to choose the optimal coupon price.

III. BASELINE DEMAND AND PROBABILISTIC
DEMAND REDUCTION

A. Baseline Demand Model

The C-DR programs are critically dependent on customers'
demand baseline [26] from which the demand reduction in DR
can be calculated. Due to the strong cyclic pattern of customers'
electricity consumption over time [27], demand baseline can be
obtained from historical data. For instance, Southern California
Edison (SCE) employs an approach called “10-Day Average
Baseline” [28]. More details concerning the baseline calcula-
tion have been introduced in [29], though it is out of the research
scope of this paper to discuss the pros and cons of various con-
sumer demand baseline methods.

B. Probabilistic Residential Demand Reduction Model

As previously discussed, the uncertainty of customers' de-
mand reduction is typically modeled as follows in C-DR based
strategic bidding: 1) LSE offers a coupon price to its customers;
2) the customers provide the range of corresponding demand re-
duction to the LSE; 3) the LSE calculates its expected net rev-
enue through bidding this revised demand in ISO's electricity
market; and 4) by repeating steps 1)–3) with different coupon
prices, the optimal coupon price, which brings the LSE the max-
imum net revenue, can be found.
However, there are two potential challenges for this process:

1) it is rarely feasible to keep frequently updating customers'
demand reduction data; and 2) interaction with numerous cus-
tomers makes it too time-consuming to serve as an online im-
plementation. Therefore, a practical probabilistic model of de-
mand reduction under different coupon prices is established in
this paper. The schematic information flow is shown in Fig. 5,
where the inputs of the model are coupon price, C-DR's loca-
tion and time length. The figure also shows that the output is
the corresponding probability distribution of demand reduction.
The procedure to generate this model can be summarized as fol-
lows:
Step 1) Based on the given location to be studied, the

residents will be categorized into several groups
based on their demographic

information. For each group of residents, step 2) to
5) will be performed.

Step 2) For group , the types and ratings of their appli-
ances can be obtain by analyzing Residential Energy
Consumption Survey [30] (RECS) by the U.S. En-
ergy Information Administration (EIA).

Step 3) For group , the American Time Use Survey [31]
(ATUS) by the U.S. Department of Labor can pro-
vide what are the current activities of residents.

Step 4) In order to study customers' reactions to financial
incentives, the Center for Ultra-wide-area Resilient
Electric Energy Transmission Networks (CURENT)
[32] has collected self-reported data from 711 U.S.
residents across 48 states in 2013. This study esti-
mated the adopting rates of major DR behaviors as a
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Fig. 5. Schematic figure of information flow for residential demand reduction
model.

Fig. 6. Probability distribution of RPR under different coupon prices.

function of the demanded financial rewards.1 There-
fore, based on the results of this survey, the attitude
of group towards DR with given coupon price
can be estimated.

Step 5) With the integration of the appliances information
and the activities that those residents are performing,
the potential demand reduction can be obtained.

Step 6) Given the residents' attitude towards different
coupons, their possible demand reduction activity
can be modeled. As long as the residents' attitude
distribution and the potential reducible demand of
all the groups are known, it is easy to obtain the
probability distribution of the demand reduction.

In summary, the model proposed above evaluates the charac-
teristics of residential demand reduction under C-DR programs
based on the residents' portfolios and provides the probability
distribution of demand reduction for given times, locations, and
coupon prices.
Here, several simulation results of a typical scenario have

been tested to demonstrate the model features. Fig. 6 shows the
probability distribution of reduced power ratio (RPR) with var-
ious coupon prices. The characteristics of residential loads at a
given coupon price for 24 hours are illustrated in Fig. 7. Fur-
thermore, the residential load model varies with different resi-
dent portfolios. For example, the probability distribution of RPR
for 24 hours is significantly different for Northeast, Midwest,
South, andWest regions, as shown in Fig. 8. According to Fig. 9,

Fig. 7. Probability distribution of 24-hour RPR.

Fig. 8. Probability distribution of 24-hour RPR in different areas.

Fig. 9. Probability distribution of RPR under different coupon prices in dif-
ferent areas.

the customers' responses towards different coupon prices vary
as well.
The aforementioned results of the preliminary study re-

garding residential demand modeling are reasonable, and they
can verify the effectiveness of the proposed model. Therefore,
this model has been implemented to simulate the uncertainty of

1This survey study was conducted through Amazon's Mechanical Turk
(MTurk). MTurk is a crowdsourcing Internet market place that enables re-
searchers to collect data. MTurk has received great popularity among social
scientists as a useful research tool to collect data [45].
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customers' behaviors to further formulate the strategic bidding
model.

IV. MATHEMATICAL SOLUTION OF THE PROPOSED MODEL

As introduced in Section II, the strategic bidding problem
in (3a) to (3c) is a bi-level optimization problem. Because of
the existence of dependent variables in each level, these two
optimization problems are coupled. For instance, the LMP in
the upper level problem is decided by the lower level problem of
ISO's market clearing, while the demands at load buses of LSE
bidders in the lower level market clearing problem depends on
the upper level. In this paper, DCOPF is implemented to clear
the ISO's market. Due to the linearity of DCOPF [21], [33],
its optimal solution should be unique and satisfies the Karush-
Kuhn-Tucher (KKT) optimality conditions. Consequently, the
bi-level optimization problem is formulated as a mathematical
program with equilibrium constraints (MPEC) by integrating
the lower level problem into the upper level problem using its
KKT conditions as the extra complimentary constraints [22],
[34], [35]. According to the strong duality theory [35]–[37], this
MPEC model can be converted to a MILP that is solvable by
available software.

A. Formulation as a MPEC

Given that the lower level ED is a LP problem, the bi-level
strategic bidding model can be transformed to a MPEC by re-
casting the lower level problem as its KKT optimality condition,
then adding them into the upper level problem as a set of addi-
tional complimentary constraints:

(4a)
(4b)

(4c)

(4d)

(4e)

(4f)
(4g)

B. Mixed-Integer Linear Programming (MILP)

TheMPECmodel in (4a)–(4g) is nonlinear due to the product
term in the objective function and the complementarity
constraints (4d)–(4g). The linearization for them is presented
below.
According to the strong duality theory, the objective of the

primal problem is equal to the objective of the corresponding
dual problem. For the ED problem, the relationship between the
objectives of the dual and primal problems can be expressed as
follows:

(5)

From the LMP expression in (2f), the product term in
(3a) can be transformed as (6):

(6)
Note that (6) describes which is about the demand

at the bus within the LSE bidder, while (5) is about all buses in
the system. Taking (6) into (5), we have

(7)

where is the demand on the bus which does not
belong to the LSE bidder and it is assumed that the demands on
these buses are constant for simplicity. Also, a strategic bidder
can include a set of probabilistic scenarios to represent the other
LSEs' demand uncertainty.
Therefore, based on (7), we can replace the

item in the objective function (3a) to form (8a), which is shown
below. Thus, the MPEC problem is converted to a MILP
problem given by
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(8a)

(8b)
(8c)

(8d)
(8e)

(8f)
(8g)
(8h)
(8i)
(8j)

where , , , and are large enough con-
stants, and , , , and are the auxiliary binary
variables [38].

C. Model Extensions to Integrate Wind Power
In this subsection, the extensions of the above model, in-

cluding the uncertainty of wind power, is discussed. The fore-
casted wind power production is expressed as a set of proba-
bilistic scenarios with a probability set of .
The model below in (9a)–(9f) is an example of an ED model
that includes wind power for one scenario:

(9a)

(9b)

(9c)

(9d)
(9e)

where is the generation dispatch at bus (MWh) under the
th wind scenario.
The LMP is given by

(9f)

Therefore, the LSE's net revenue can be formulated as (10a)
and then transformed to (10b). The constraints are modeled in
(10c) to (10l):

(10a)

(10b)
(10c)

(10d)
(10e)

(10f)

(10g)

(10h)

(10i)

(10j)

(10k)
(10l)

D. Demand Uncertainty Under Different Coupon Prices

The optimization models (4a)–(4g), (8a)–(8j), and
(10a)–(10l) above give the LSE's net revenue and optimal
demand dispatch under specific coupon price and demand
reduction level . However, the LSE still need
to obtain the optimal coupon price. Based on the probabilistic
model of demand reduction presented in Section III, the cus-
tomers will have different behavior patterns responding to
different coupon prices in C-DR program. Here, the expected
net revenue (ENR) is defined as an indicator for the LSE bidder
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to determine the most profitable coupon price. The ENR under
the th coupon price is

(11)

where is the LSE's net revenue in the th demand reduc-
tion block under the th coupon price which can be obtained
through the model (10b)–(10l) presented in previous sections.
When all ENR under different coupon prices are obtained, the
LSE can choose the optimal coupon price with the maximum
ENR and the corresponding demand dispatch. It should be noted
that although the demand uncertainty under a specific coupon
price can be model in the optimization model (10b)–(10l) using
the similar approach to wind uncertainty, however, the model es-
tablished in that way will be dimensionally more complex. For
instance, if wind scenarios and demand reduction blocks
under a coupon price are considered, the whole model contains

sets of variables and constraints for the lower level ISO's
ED problem. Therefore, the discretized decomposition using
(11) and the optimization algorithm in (10b)–(10l) is straight-
forward and easy to solve.

E. Overall Procedure

To better illustrate the proposed strategic bidding model
for LSE, the flowchart of the overall procedure is shown in
Fig. 10 and described next. According to the probabilistic
demand reduction model proposed in Section III, the demand
reduction is subject to a probability distribution with different
coupon prices as shown in Figs. 6 and 9. For any given coupon
price, the proposed model generates a set of discretized range
of demand reduction and the corresponding probability. Then,
the optimization model in (10b)–(10l) can provide the amount
of profit under a specific demand reduction range with multiple
probabilistic wind scenarios considered. Hence, the LSE's ex-
pected profit can be obtained by summing up the profits under
different demand reduction ranges multiplied by corresponding
probability weights, as shown in (11). Finally, the optimal
coupon price can be found with a comparison of the LSE's
ENR profits at different coupon prices to find the best ENR.
It should be noted that if more than one LSE behave strate-

gically in the market according to the model proposed in this
paper, the resulting model will become an equilibrium problem
with equilibrium constraints (EPEC) [39]. Another concern as-
sociated with multiple LSEs performing DR is that the LSEs
may implement different types of DR programs such that it may
not be realistic to perform this C-DR based strategic bidding for
all LSEs in the electricity market. However, these still could be
the future research topics on C-DR.

V. CASE STUDIES

In this section, the proposed strategic bidding approach is
performed on the modified PJM 5-bus system [40], which is
chosen for the easiness to illustrate the concept and to verify
by the audience. Another case study is performed on the IEEE
118-bus system to further verify the proposed method. The
MILP problem is solved by CPLEX 12.6 [41] under GAMS

Fig. 10. Flowchart of the proposed strategic bidding model.

Fig. 11. PJM 5-bus system with two wind farms.

[42] on a DELL laptop with dual Core-i5 processors clocking
at 2.6 GHz and 4 GB of RAM.

A. PJM 5-Bus Test System

The test system is modified from the PJM 5-bus system. The
system parameters are from [21]. Two wind power plants (WF1
and WF2) with the same generation capacity are added into the
system at buses A and C, while one of two original generators at
bus A is removed. The total load is equally distributed between
buses B, C, and D. The modified system is depicted in Fig. 11.
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Fig. 12. ENR versus coupon price on five typical operating points.

In the case study, the LSE bidder is located at bus D. The flat
electricity rate offered to the customers at bus D by the LSE
is set as $20/MWh. This study also assumes that the highest
coupon price is no more than 50% of the flat electricity rate.
Hence, the coupon price varies between $0/MWh to $10/MWh
with $1/MWh as the incremental step. Hence, there are 11 dif-
ferent levels which are aligned with the 11 probabilistic levels
of demand reduction in the survey data obtained in [30]–[32].

B. Implication at Different Load Levels

In this subsection, five representative operating points (cases
1–5) at different system load levels (CLLs) are chosen to in-
vestigate the implication for DR at different load levels. The
wind power generation model in [43] is implemented in the case
study.
The five load levels are chosen based on the critical load level

concept which represents a binding constraint at a particular
system load level [21], [33]. As shown in Fig. 12, the left-center
diagram shows the five cases at different load levels with the
“X” symbols in the LMP versus load curve, which is obtained
with probabilistic wind power scenarios. The corresponding de-
mand dispatches under the optimal coupon price for each oper-
ating point are listed in Table I.
The curves of changed ENR (or ENR) with C-DR for the

five case studies are shown in Fig. 12. Again, the coupon range
is between $1/MWh and $10/MWh corresponding to the ten
probabilistic demand reduction levels.
It can be observed that the patterns of five case studies are

different. Case 1 demonstrates that when the current operating
point is not close to a CLL (i.e., the next binding constraint when

TABLE I
DR RESULTS UNDER DIFFERENT OPERATING POINTS

the load increases) and the corresponding LMP is lower than the
flat rate, the ENR is negative which implies that LSE has no
incentive to implement C-DR at this operating point.
In contrast, the ENR is positive for each of the other four

cases, which means an increased profit of LSE with C-DR.
Meanwhile, the pattern of ENR versus coupon price varies for
these four cases 2–5. In Cases 3 and 4, ENR versus coupon
price continuously increases in the range of [1], [10] $/MWh,
while ENR versus coupon price in Cases 2 and 5 increases
and then decreases. The pattern is analyzed as follows. First,
the ENR is related to the LSE's payment to ISO, which is the
product of price and demand (i.e., ). Therefore, when
the operating point is considerably greater than the previous
CLL as in Cases 2 and 5, any reduction of demand does not
give much reduction in the price, as also shown in Table I. In
contrast, in Cases 3 and 4, a reduction in demand will lead to
considerably reduction in price as well, so the total reduced
payment to ISO or ENR is somewhat quadratic to coupon
price and dominates the coupon paid to customers. So, the
ENR versus coupon price curve is monotonically increasing

in Cases 3 or 4; however, in Cases 2 and 5, the curves increase
when the coupon price is low, and then decrease when the
coupon price is high which implies the coupon is too costly if
compared with demand reduction because the price does not
change much.

C. Impact From Wind Power Capacity

Various scenarios have been simulated to investigate the im-
pacts of wind power from two aspects: 1) wind power capacity,
and 2) wind power forecast uncertainty. This subsection dis-
cusses the wind power capacity, and the next subsection dis-
cusses about the impact from wind power uncertainty.
As illustrated in Fig. 13, the simulation results with total

wind power capacity from 0 to 600 MW show that the stair-
case curve of LMP holds the same pattern while the CLLs vary.
Consequently, the typical operating points for each specific case
change in accordance with wind power capacities. The results
of ENR versus coupon price under three different wind capac-
ities (320, 360, and 400 MW) are graphed in Fig. 14.
It can be observed from Fig. 14 that in the same case, the

curves of ENR versus coupon price hold similar patterns to
the previous case study in Section V-B, despite the differences
in wind capacities. Therefore, the wind penetration does not
change the ENR versus coupon price pattern with respect to
a specific case. As a matter of fact, the operating point with re-
spect to CLLwill determine the pattern of ENR versus coupon
price.
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Fig. 13. LMP versus different load levels with various wind capacity integrated
into PJM 5-bus system.

Fig. 14. ENR versus coupon price with different wind power capacities.

D. Wind Power Forecast Uncertainty
Fig. 15 shows the impact of wind power forecast uncertainty

to the ENR by implementing C-DR program at five load levels
(LL1–LL5). Table II shows the simulation parameters. Fig. 16 is
the staircase LMP curves under various wind power forecast
uncertainty.
According to Fig. 15, at LL3 and LL4, C-DR helps the LSE

to gain a significant amount of ENR when is low; however,
ENR decreases when , the indicator of wind power forecast

uncertainty, increases. The reason is that the LMP sensitivity
at LL3 and LL4 decreases when uncertainty increase demon-
strated in Fig. 16 (i.e., the slope of LMP decreases when in-
creases). Consequently, a higher uncertainty leads to lower LMP
variations and smaller values of ENR.
In contrast, in LL2 and LL5, ENR has a moderate in-

creasing trend when increases. The reason is that the LMP

Fig. 15. Impact of wind power forecast uncertainty on ENR on five typical
operating points.

TABLE II
PARAMETERS IN WIND UNCERTAINTY TEST

Fig. 16. LMP against load level under various wind forecast uncertainty.

sensitivity in LL2 and LL5 rises when uncertainty increases.
Consequently, a higher uncertainty may lead to a higher LMP
sensitivity and then greater values of ENR.
Further, when the operating point is extremely low, as in LL1,
ENR may stay at zero because it is preferred to not active

the C-DR program. This is aligned with the results in Case 1 in
Section V-B.
Thus, we can conclude that when the LMP at a specific load

level is sensitive at that load level (e.g., LL3 and 4), ENR de-
creases with wind uncertainty; otherwise, ENR may increase
with wind uncertainty.

E. IEEE 118-Bus System
The IEEE 118-bus system [44] is applied to demonstrate ap-

plicability of the proposed method to large systems. The system,
as shown in Fig. 17, has 4242 MW load and 9966 MW genera-
tion capacity and consists of 118 buses, 54 generators, and 186
branches.
The generator bidding data are similar with that in [16]: 20

low-cost generators with bids $5, $5.5 and from $11 to $19.5
with $0.5 increment; 20 expensive generators with bids from
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Fig. 17. LSE bidder in IEEE 118-bus system integrated with two wind farms.

Fig. 18. LMPs of LSE's buses in IEEE 118-bus system.

$30 to 49 with $1 increment; and 14 most expensive generators
with bidding from $70 to 83 with $1 increment. Seven thermal
limits are applied to the transmission system: 100 MW for line
1–3 and 6–7, 175 MW for line 3–12 and 46–47, 150 MW for
lines 15–33, 300 MW for line 71–72, and 250 MW for line
70–75.
Two wind power farms are connected at bus 85 (WF1) and

bus 22 (WF2). At the bidding hour, the mean power from each
wind farm is set as 300 MWwith a 10% standard deviation .
The LSE performing the strategic bidding is located at the

northwestern part of the system covering the demands on Bus
1, Bus 2, Bus 3, and Bus 4. LMPs on Bus 1 to Bus 4 versus the
system load level is shown in Fig. 18. The coupon prices are set
in the range between $0/MWh and $2.5/MWh with $0.5/MWh
as the increment step. Therefore, there are six different levels,
which are aligned with the six probabilistic levels of demand
reduction from the survey data obtained in [26] and [27]. The
demands at each bus of this LSE and the corresponding flat elec-
tricity rates are shown in Table III. The load dispatched by the
LSE for each bus and the ENR under different coupon prices
are in Table IV. Also, Table V shows the LSE's Bus LMPs.
The results in Table IV reflect that the LSE can obtain a

considerable revenue increment from 237.882 to $59.283

TABLE III
LOAD AND FLAT ELECTRICITY RATE ON LSE BIDDER'S BUSES

TABLE IV
DISPATCHED LOAD ON BUSES AND LSE'S ENR UNDER

DIFFERENT COUPON PRICES

TABLE V
LMP ON BUSES UNDER DIFFERENT COUPON PRICES

through C-DR with coupon price $0.5 MW/h. However, the
LSE's ENR decreases with the coupon price larger than $0.5
MW/h. Two factors are related to this result:
1) Under this operation condition, a small demand reduc-

tion can cause the LMP drop to the lower level due to
its step change pattern. Meanwhile, the change of LMP is
not obvious with the further increasing the coupon price.
As shown in Table V, LMP on Bus 1 decreases from $11.
441/MWh to $5.000/MWh when the coupon price changes
to $0.5/MWh.

2) Higher coupon price increases the payment from LSE to
customers.

Moreover, it can be observed that the impacts of LSE's
strategic behavior to the LMPs may vary at different buses. As
demonstrated in Table V, the LMP on Bus 3 increases while
the LMPs on the other buses decrease. This observation is
reasonable, because the objective of LSE is to maximize its
total payoff gathered from all the customers on different buses.
Therefore, it is possible that the LMP at a specific bus may
increase with the LSE's strategic behavior, while the LSE's
overall profit is maximized.

VI. CONCLUSIONS
In this paper, a strategic bidding approach for LSE with

C-DR is proposed with the consideration of wind power uncer-
tainty and customers' behavior patterns toward different coupon
prices. The contributions of this work can be summarized as
follows:
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1) A strategic bidding model for LSEs using bi-level opti-
mization for C-DR is proposed by recasting the lower-
level problem into the KKT optimality condition. Thus,
this bi-level problem is transformed to a MPEC problem,
then further converted into a MILP problem that is easy to
solve by available software tools.

2) A probabilistic model of residential demand is applied
to mimic customers' behavior patterns toward different
coupon prices. Therefore, the time-consuming interacting
process with numerous customers can be avoided, which
makes online implementation of C-DR feasible.

3) The strategic bidding is studied at five typical operating
points representing different load levels. The simulation re-
sults demonstrate that change of expected net revenue (i.e.,
ENR) is closely related to the CLL, because this deter-

mines whether there will be a considerable price change or
not if the load is reduced.

4) The wind power capacity does not change the patterns of
ENR versus coupon prices, while the wind uncertainty

may have an impact to ENR. ENRmay either decrease
with wind uncertainty when LMP is sensitive to load level
or increase when LMP is not that sensitive to load level.

Furthermore, it should be noted that although the discussion
in this paper focuses on the strategic bidding in RT market, sim-
ilar mechanism or approach can be applied to DAmarket as long
as some price incentives are offered to encourage customers
to participate in DA market such as TOU tariff, which can be
roughly viewed as different C-DR at different time windows.
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