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In traditional compressed sensing MRI methods, single sparsifying
transform limits the reconstruction quality because it cannot sparsely
represent all types of image features. Based on the principle of basis
pursuit, a method that combines sparsifying transforms to improve
the sparsity of images is proposed. Simulation results demonstrate
that the proposed method can well recover different types of image
features and can be easily associated with total variation.

Introduction: Recently emerged compressed sensing (CS) [1,2] pro-
vides a firm foundation to reconstruct a signal from incomplete measure-
ments assuming the signal can be sparsely represented by certain
transform. CS was first applied in MRI in [3] and the result is very
impressive. Sparsity of images limits the quality of a reconstructed
image for compressing sensing MRI (CS-MRI) [1–3]. A traditional
2-D wavelet was employed to sparsify magnetic resonance (MR)
images [3]. The wavelet is good at sparsely representing point-like fea-
tures but fails in sparsely representing curve-like features. New tailored
geometric transforms such as curvelet [4] and contourlet [5,6] can be
used to sparsely represent curves. However, neither is good at represent-
ing point-like image features. So far, how to exploit multiple geometric
transforms to improve the sparsity of MR images for CS reconstruction
has not been discussed. This Letter presents a new method to combine
these transforms for CS-MRI and improve the quality of reconstructed
images.

Theory: As a major approach to solve CS, basis pursuit [7] suggests
improving the sparsity of signal x with length N in overcomplete wave-
form dictionaries C ¼ [C1, C2, . . .Cj. . .,CM]T (M . N ) and finding
the sparsest representation by solving the l1 minimisation problem.
Each waveform Cj is a row vector with length N. Then coefficients
aM�1 ¼CM�N xN�1 and each entry aj is the inner product kcj; xl.
The MR image can be reconstructed from undersampled k-space data
via finding a solution to

arg min
x
kak1 subject to Fux ¼ y ð1Þ

where kak1 ¼
PM
j¼1
jajj ¼

PM
j¼1
jkcj; xlj;Fu is the undersampling Fourier

operator and y is the acquired incomplete k-space data.
We view [C1, C2, . . .Cj. . . ,CM] as concatenation of the subsets
fcLi

; i ¼ 1; 2; � � � ; Ig, where Li is the indices of waveforms in the ith
subset. Since l1 norm is a separable function, kak1 can be calculated as

kak1 ¼
PM
j¼1
jkcj; xlj ¼

PI
i¼1

P
j[Li

jkcj; xlj ¼
PI
i¼1
kkcLi

; xlk1 ð2Þ

This indicates that l1 norm minimisation in the global overcomplete
dictionary is equivalent to minimising the sum of l1 norm of the
dictionary’s subsets. So, (1) can be written as

arg min
x

PI
i¼1
kkcLi

; xlk1 subject to Fux ¼ y ð3Þ

This provides us with an opportunity to recover the MR image from the
union of subsets of the waveform’s dictionary. In this Letter, we consider
each union of subsets cLi

comes from commonly used transforms which
sparsify different types of image features. Because these subsets are
complementary to give sparse representation of image features, sparsity
of image can be improved according to basis pursuit [7]. However, it is
hard to explicitly show the waveforms of frame-based transform, e.g.
curvelet and contourlet. Furthermore, storing and computation of a is
expensive because the dimension of a is higher than the dimension of
signal x for the overcomplete dictionary. Instead, we can apply fast
forward transform Ti on the image and get another version of (3):

arg min
x

PI
i¼1
kTixk1 subject to Fux ¼ y ð4Þ

This is the proposed mathematical model in this Letter that combines
sparsifying transforms for CS-MRI. It guarantees unbiased treatment
of different transforms that sparsify images. In this Letter, a wavelet
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that is good at representing point-like features and a contourlet that is
good at representing curve-like features are employed as two fast trans-
forms. An improved contourlet [6] is adopted because it has lower com-
puting complexity [5,6] than a curvelet while approximating curves as
well as a curvelet.

Because the acquired k-space data is often contaminated by noise in
real applications, we solve the basis pursuit denoising problem as

arg min
x

1

2
kFux� yk22 þ l

PI
i¼1
kTixk1 ð5Þ

where l trades off data consistency and sparsity. Large l can suppress
heavy noise.

Total variation (TV) is employed to assist the wavelet in [3]. Our com-
bined transforms can also be associated with TV as

arg min
x

1

2
kFux� yk22 þ l

PI
i¼1
kTixk1 þ bTV (x) ð6Þ

where b denotes the weight of TV.
The nonlinear conjugate gradient algorithm is employed as the

numerical calculation for (5) and (6). We refer to the literature [3] for
details but one must be aware of updating the solution according to
(5) and (6).

Stimulation results: An MR image with fully sampled k-space data is
acquired on a 1.5 Telsa GE MRI system. Ten per cent of k-space data
is sampled according to the variable density sampling pattern [3] in
Fig. 1a. We use the Daubechies wavelet with four decomposition levels
and the contourlet with 25, 24, 24, 23 directional subbands from coarse
to fine scales. l is 0.0030 for single transform and 0.0015 for combined
transforms to avoid affecting the performance of suppressing noise.
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Fig. 1 Sampling pattern and reconstructed images

a Sampling pattern with 10% of k-space data sampled
b–c Reconstructed images from fully sampled and zero-filling k-space,
respectively
d– f Reconstructed images of wavelet, contourlet and combined sparsifying
transforms without TV
g– i Reconstructed images of wavelet, contourlet and combined sparsifying
transforms with TV

Fig. 1d shows that the wavelet induces square-like artefacts and the
curves are bad. Fig. 1e shows that the contourlet induces curve-like arte-
facts and loses the point feature. Fig. 1f shows the combined transforms
can efficiently suppress both of the artefacts and improve the quality of
reconstructed images. The point and curve features are simultaneously
reconstructed well.

Because TV is well known for enforcing images to be piecewise con-
stant, it is reasonable to use small b to avoid removing textures and
oscillatory structures of MR images. In simulation, TV weight is 5 �
1024. With single transform, small TV weight cannot suppress the
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artefact very well, as shown in Figs. 1g and h. However, the same weight
is sufficient for combined transforms because few artefacts exist, as
shown in Fig. 1i. In fact, we observe an obvious piecewise constant
for both single and combined transforms when TV weight is larger
than 1 � 1023.

Besides the visual appearance, power signal-to-noise ratio (PSNR)
and transferred edge information (TEI) [8] serve as objective criteria.
The PSNR is defined as

PSNR ¼ 20 log10

255ffiffiffiffiffiffiffiffiffiffi
MSE
p

� �
ð7Þ

where MSE ¼
1

P � Q

PP
p¼1

PQ
q¼1

(~x(p; q)� x̂(p; q))2 and (p; q) is the pixel

location of a P � Q image. x̂ is the reconstructed image using CS-
MRI and ~x is the reconstructed image from fully sampled k-space
data. PSNR evaluates the difference in grey values between x̂ and ~x.
TEI computes the edge information that x̂ has inherited from ~x.

Table 1 shows that combined transforms are obviously superior to a
single transform without TV. When TV is added, combined transforms
maintain an advantage over single transform though the improvement on
single transform can be higher than combined transforms. It is
demonstrated that combined transforms can perform well with small TV.

Table 1: Comparison of objective criteria for sparsifying transforms

PSNR TEI

Zero-filled 24.2 0.250

Wavelet 31.6 0.564

Contourlet 32.9 0.648

Combined transforms 34.7 0.675

Waveletþ TV 34.4 0.648

Contourletþ TV 34.4 0.668

Combined transforms þTV 35.7 0.691

When using different MR images and sampling patterns, analogous
results of combined transforms with and without TV are still observed
in terms of visual quality and objective criteria.

Conclusion: Combining wavelet and contourlet can simultaneously
recover the point-like and curve-like image features. The combined
ELECTRON
sparsifying transforms can improve the reconstruction qualtiy of MR
images from undersampled k-space data. For future work, the theoretical
work on applying combined transforms for CS is to be considered to
guide the reconstruction of images with plentiful features that the
single transform cannot sparsely represent.
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