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Abstract

Over the last few years, the Internet of Things (IoT) has grown in protocols, implementations and use cases. In terms of com-
munication protocols, the Constrained Application Protocol (CoAP) stands out among the rest. This is extremely lightweight and
capable of running in resource constrained devices and networks. There exist many implementations of CoAP, each of these with
its own particular features and requirements. Therefore, it is important to choose the CoAP implementation that suits better to the
specific requirements of each application. This paper presents a feature and empirical comparison of several open source CoAP
implementations. First of all, it surveys current CoAP implementations, and compares them in terms of built-in core, extensions,
target platform, programming language and interoperability. Then, it analyzes their performance in terms of latency, memory and
CPU consumption in a real testbed deployed in an industrial scenario.
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1. Introduction

“The Internet of Things is a system of interrelated computing devices, mechanical and digital machines, objects,
animals or people that are provided with unique identifiers and the ability to transfer data over a network without
requiring human-to-human or human-to-computer interaction”1. According to Evans2 and Chase3, by 2020, 50
billion devices will be connected to the IoT while Jeon4 further claims that they will reach 75 billion. Even though
these predictions are probably too optimistic (as by 2015 we are far behind the expected growth2), the amount of
interconnected objects grows daily at a fast pace thanks to the communication protocols.
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Some common Internet protocols, such as HTTP5, have been originally used to connect the first IoT devices but
new, lighter ones have emerged, to fit the constrained requirements imposed by IoT environments, including CoAP6,
MQTT7, AMQP8 and DDS9 among others. Even though it is one of the newest protocols, CoAP is getting some
momentum as it follows the REST paradigm, making the adaptation process from HTTP easy for developers. Besides,
it is very light both in terms of device and network requirements.

One of the final goals of the IoT industry is to get to as many different kind of devices as possible. As said in
the previous paragraph, CoAP could be a good fit to do so, but it is very important to correctly choose among the
wide pool of existing implementations. The selected one has to support the requirements of the system and it has to
correctly balance the required CPU and memory resources and energy consumption.

The main objective of the work presented in this paper is to ease the selection of the CoAP implementation that
better fits each project by analyzing different open source implementations’ features and experimental behavior. The
selection of the proper implementation for each project must be based both on offered features and performance. The
implementations selected for the analysis target several platforms and are written in different languages. All the tests
have been conducted on an industrial deployment over the Raspberry Pi platform, analyzing the response time or
latency, as well as the memory and CPU needed to deploy the implementations.

The rest of this paper is organized as follows. First, related work is presented. Next, CoAP is described along with
some extensions and implementations. After that, in Section 4, a feature comparison of different implementations is
carried out. Following section describes the experiment set-up and the measured parameters. The results are presented
in Section 6 and finally conclusions and guidance for future work are offered in Section 7.

2. Related Work

There is some previous work analyzing CoAP’s performance in different platforms and its comparison against
other IoT protocols. Early on, when CoAP’s standardization was not complete, there was some work made analyzing
different implementations, like Lerche et al. 10 and Villaverde et al. 11 In the latter, the authors analyze CoAP theoreti-
cally short after the first draft of CoAP was presented and analyze some of the implementations from that time. The
paper presents a list of available implementations and some conclusions based on other papers’ analysis. Lerche et
al. 10 summarize the results of the first ETSI CoAP Plugtest12. They present the participant implementations and their
interoperability but they do not offer a performance analysis of any sort. Both Lerche et al. 10 and Villaverde et al. 11

present a list of available implementations, but since they were written, CoAP’s standardization went on and new im-
plementations have shown up, so they are not up to date. To research more current work on CoAP’s performance, it is
necessary to widen the search parameters to other protocols or focus on a sigle implementation on different hardware.

Focusing on CoAP, Ludovici et al. 13 present their own implementation for TinyOS called TinyCoAP. They com-
pare its performance against HTTP/TCP, HTTP/UDP and the original TinyOS CoAP implementation, CoAPBlip, on
TelosB motes and they measure latencies and memory and energy consumption. Kruger et al. 14 present a bench-
marking of the same CoAP implementation on different hardware, i.e. Raspberry Pi, BeagleBone and BeagleBone
Black. They compare the performance on class 4 and class 10 SD cards and with running, off and uninstalled GUI.
The parameters they measure are latency, bandwidth and CPU and memory usage, all in the loopback interface. They
also compare the latency on a TelosB mote server with a BeagleBone gateway and a laptop client.

Widening the analyzed protocols scope, CoAP and HTTP have similar structure even though they target different
environments. Colitti et al. 15 work on Tmote Sky and Zolertia Z1 motes to measure response time and energy con-
sumption. Kuladinithi et al. 16 present their own implementation called libcoap and port it to Contiki and TinyOS to
compare the performance against HTTP. Elmangoush et al. 17 present CoAP, HTTP, MQTT and AMQP, but they only
work on the two formers. They use the OpenMTC platform to measure the bandwidth per request interval time, the
response time per request interval time and the response time for different payload sizes.

Another popular IoT protocol is MQTT and De Caro et al. 18 measure several parameters such as the latency,
the bandwidth usage and the package loss ratio over different QoS and network loss configurations on Smartphone
implementations of CoAP and MQTT. Thangavel et al. 19 present a common middleware based for both MQTT and
CoAP and measure the latency and bandwidth consumption.

There are more popular IoT protocols besides CoAP and MQTT. Talaminos-Barroso et al. 20 implement a tool for
an eHealth application with the possibility of using DDS, MQTT, CoAP, JMS, AMQP and XMPP. They benchmark
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the CPU and memory usage, the bandwidth consumption and the messages’ latency and jitter. Mun et al. 21 selected
CoAP, MQTT, MQTT-SN, WebSockets and TCP. The authors aim to ease programmers make a good choice selecting
the protocol that better fits for their applications, and to do so, they measure the performance, the energy efficiency
and the memory and CPU usage. Chen et al. 22 analyze MQTT, CoAP, DDS and a custom protocol over UDP. They
use a network emulator to configure different parameters and measure consumed bandwidth, latency and package loss.

As it has been presented in previous paragraphs, CoAP’s performance has been compared against other protocols,
such as HTTP, MQTT and others. Some CoAP implementations’ performance has also been studied on different
hardware. However, the only work done analyzing different implementations of CoAP is based on early drafts of the
CoAP specification, therefore it is not up to date. Besides, it analyzes their interoperability and main features, it does
not conduct a performance analysis. Thus, this paper’s goal is to fill that gap offering an up to date comparison, both
empirical and feature-based, to help system designers choose the implementation that better fits their requirements.

3. CoAP

Published as RFC 725223 by the IETF CoRE Working Group24 on June 2014, the Constrained Application Proto-
col6 is a web transfer protocol designed for resource constrained devices and networks. It is built on top of UDP and
it follows the REST paradigm, so it works similar to HTTP. It uses a subset of HTTP’s request verbs: GET, POST,
PUT and DELETE; also response codes and content-formats, even though in this last case there in an additional one.
The default port for CoAP is 5683 and the one for secure CoAP 5684. A CoAP URI consists on the following format:
coap://host[:port]/[path][?query]. The user needs to know the path in order to access the available resources, and it
will also be able to send queries to the server in the URI. As it is implemented over UDP, CoAP does not guarantee
the arrival of the packets, and therefore implements two main types of messages that differ in whether they require
acknowledgment: Confirmable and Non-confirmable. The other two types are Reset and ACK, which can piggyback
data. To securize the connections, CoAP can not use TLS due to the underlying UDP protocol as it requires ordered
and guaranteed message delivery. DTLS is UDP’s alternative to TLS, but it also pays the cost of losing some of the
benefits of using UDP derived from not requiring an open connection.

The IETF proposes some extensions to broaden the capabilities of the CoAP specifications:

• Constrained RESTful Environments (CoRE) Link Format25: this extension defines the format for the links
that constrained servers use to describe their resources, attributes and relationships between links.
• Block-Wise Transfers in the Constrained Application Protocol (CoAP)26: this extension allows large pay-

loads to be sent when needed (e.g. firmware updates), avoiding IP fragmentation.
• CoRE Resource Directory27: the IETF proposes an entity called Resource Directory, which has the informa-

tion about resources of other CoAP servers, allowing battery saving and making the server discovery easy.
• Observing Resources in the Constrained Application Protocol (CoAP)28: this extension enables CoAP

servers to send push notifications to clients, like other publish/subscribe protocols such as MQTT or XMPP.
• Group Communication for the Constrained Application Protocol (CoAP)29: this extension explains how

CoAP should be used in a multicast environment.
• CoAP Simple Congestion Control/Advanced CoCoA30: the CoAP specification proposes basic behaviors to

avoid network congestion but to add more sophisticated methods, the IETF is working on this draft.

There are many available CoAP implementations with different features and targets. The aim of this work is to
use and compare open source libraries that target several platforms and environments. We tried to cover different
programming languages and runtime environments and to do so the following implementations have been selected:

• libcoap31 is a library written in C and it is designed to fit in a wide range of devices, from embedded devices to
big POSIX ones. It supports the official RFC 7252 for the client and server side and it also provides support for
several extensions, i.e. Observe mode, Block-Wise transfer and Resource Directory. The source code comes
with very complete examples and it is designed to easily add DTLS with OpenSSL or tinydtls.
• smcp32 is another C library. It aims to be implemented in devices from bare-metal sensors to Linux-based

devices, including embedded ones. It supports client and server sides following the RFC 7252 and it is possible
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to use it with BSD sockets or µIP. As for CoAP extensions, it supports the Observe mode and Multicast groups.
It provides a command line client called smcpctl and has an, at this time, experimental DTLS branch.
• microcoap33 is a limited CoAP library in C that targets small microcontrollers. The source code provides

examples for POSIX and Arduino. It follows the RFC 7252 but it does not support it entirely. It supports only
the server side and has limited features. It does not support DELETE requests, only GET, PUT and POST, the
ACKs can only be piggybacked and it does not support retries.
• FreeCoAP34 is the last C library analyzed in this paper. It targets GNU/Linux devices as it uses GnuTLS for

security even if it has a new tinydtls branch. It follows the stable specification RFC 7252.
• Californium35 is a very complete Java library for not so constrained devices. It targets backends with JVM and

it offers both client and server sides. In addition to the RFC 7252, it also supports some extensions, i.e. Observe
mode, Block-Wise transfer and Resource Directory. It has optional DTLS support with the Scandium project.
• h5.coap36 is a JavaScript library that targets the Node.js platform. It provides only the client side and it follows

the stable definition of the RFC 7252. In addition, it supports the Observe mode and the Block-Wise transfer.
• node-coap37 is another JavaScript library for Node.js. It provides both client and server sides and follows the

stable version of the RFC. It supports not only the core but also the Observe mode and Block-Wise transfer
extension.
• CoAPthon38 is a RFC 7252 compliant Python library that supports both client and server sides. In addition to

the core features, it also supports Observe mode, Core-Link format, Multicast and Block-Wise transfer exten-
sions.
• CoAPy39 is another Python library. It follows an old draft of CoAP (draft-ietf-core-coap-02) making it the-

oretically not compatible with the others. In addition to CoAP’s specification, it also supports Block-Wise
transfer.

Despite the list above that covers different targets and languages, there are other implementations worth mentioning
that have been discarded for different reasons. Copper40 is a visual client implemented as a Firefox plugin. Erbium41

is a widely used C implementation, targeted towards ContikiOS and TinyCoAP42 targets tinyOS. As in this paper the
working environment is going to be Raspberry Pi, they do not fit.

4. Feature Comparison

Once the different implementations overview has been presented, the next step is to start comparing them in order
to offer a guideline for the library selection based on their features. To get this, the first step is to compare the libraries
based on their characteristics (language, target, extensions, etc.) and then to describe how the library integration
process is for new implementations.

Table 1 summarizes the features of the analyzed libraries. In the first place the used version of each library is listed.
The first differentiating characteristic is the programming language in which they are written and the targeted platform,
being four of them written in C and one in Java, while the four left are evenly distributed between Python and Node.js
(Javascript). All of them are supposed to comply with RFC 7252 except for CoAPy, that is based on a previous draft
(draft-02). Regarding client and server implementations, they all support both sides except for microcoap (server
side only) and h5.coap (client side only). Most of them also implement the most important extensions: the Observe
mode and the Block-Wise transfer. In addition, the most mature ones (i.e. libcoap and Californium) also support the
Resource Discovery extension.

When considering interoperability, CoAPy uses some options such as deprecated Path-Uri, where code 9 is used.
The next draft (draft-03) changed this option to code 11, thus making implementations from the previous drafts
non-interoperable. The rest of the libraries claim to use the latest specification and are therefore expected to be
interoperable.

Regarding performance, the first four libraries are expected to be faster and more lightweight. This is due to
the fact that they are developed in native C instead of a non-native language that requires an additional layer: Java
Virtual Machine (JVM) for Californium, Node.js and the V8 JavaScript engine for JavaScript libraries and the Python
interpreter for Python ones.
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Table 1. Characteristics of the implementations
Library Version Language Target platform Specification Client/Server Extensions* Notes
libcoap Develop C POSIX, Contiki, RFC 7252 Client & Server Observe, Block-Wise, –

Sept. 24, 2016 lwIP, TinyOS Resource directory
smcp Master C Embedded devices, RFC 7252 Client & Server Observe, Multicast –

Sept. 24, 2016 bare-metal sensors,
Linux-based devices

microcoap Master C Arduino, POSIX RFC 7252 Server – Partial Support
Sept. 24, 2016

FreeCoAP Master C GNU/Linux RFC 7252 Client & Server – –
Sept. 24, 2016

Californium 1.1.0- Java JVM supporting devices RFC 7252 Client & Server Observe, Blockwise –
SNAPSHOT Resource Directory

h5.coap 0.0.0 JavaScript Node.js supporting devices RFC 7252 Client Observe, Block-Wise –
node-coap 0.18.0 JavaScript Node,js supporting devices RFC 7252 Client & Server Observe, Block-Wise –
CoAPthon Master Python Python supporting devices RFC 7252 Client & Server Observe, Core-Link –

Sept. 24, 2016 Multicast, Block-Wise
CoAPy 0.0.3-DEV Python Python supporting device Draft-2 Client & Server Blockwise Inactive
* Even if most of them do not explicitly say it, they support Core Link-Format extension.

Some of the implementations are more mature than others, this has made that few of them have evolved not only
to offer basic functionalities but also to provide advanced mechanisms to deal with resources, available request types
and response codes. Due to this, the creation and management of resources varies between implementations and this
affects considerably the development process of applications, as it is described in the following lines:

• libcoap: it has an interface which makes adding new resources very easy. The library itself manages the
response codes, so the developers only need to add the name of the resource, which request types it supports
and link each kind of request to a handler.
• smcp: similar to libcoap, the developers only need to create the handlers and resources and add them to the

system with the help of an interface. The library handles the response codes.
• microcoap: to add new resources to the server, they have to be defined and added to a resource array along with

the handlers. The library manages everything else by itself.
• FreeCoAP: the response codes have to be defined by the developers and the resources’ path too, but this

implementation does not include an interface to ease the handling of resources. Adding new resources and
handling the response codes or actions is a bit tricky.
• Californium: this is a very mature implementation and it makes it easy to add and manage resources. To add

a new resource, a Java class needs to be created, with the handlers for the different types of supported requests.
Then, through an interface, the resources are easily added to the server and the library itself handles the rest.
• node-coap: the handling of resources and response codes is on the developers’ hands. This implementation

does not provide an interface to ease the creation of resources and management of the response codes, so the
handling of resources and request has to be made by the application itself, not the library.
• CoAPthon: a Python class has to be created for each resource, with the methods that the application support.

The library manages by itself the response codes and everything else.
• CoAPy: a Python class has to be created for each resource, but the application needs to handle the response

codes, the library does not provide this feature.

To summarize, libcoap, smcp, microcoap, Californium and CoAPthon are the easiest libraries to build a server
with, because they all handle the response codes within the library itself. The developers just need to define the
resources and the handlers and link then to the server, the library handles everything else. The rest of libraries require
the developer to handle this explicitly adding unneeded complexity to the application.

5. Experiment Setup

Current industry solutions mainly use wired networks such as Profibus, Modbus, CAN, Profinet, etc. These are
not very flexible and modifying their set-ups requires wiring changes; so as wireless networks are becoming more
reliable, their acceptance as a valid alternative is growing. The present experiment has been deployed on an industrial
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Table 1. Characteristics of the implementations
Library Version Language Target platform Specification Client/Server Extensions* Notes
libcoap Develop C POSIX, Contiki, RFC 7252 Client & Server Observe, Block-Wise, –

Sept. 24, 2016 lwIP, TinyOS Resource directory
smcp Master C Embedded devices, RFC 7252 Client & Server Observe, Multicast –

Sept. 24, 2016 bare-metal sensors,
Linux-based devices

microcoap Master C Arduino, POSIX RFC 7252 Server – Partial Support
Sept. 24, 2016

FreeCoAP Master C GNU/Linux RFC 7252 Client & Server – –
Sept. 24, 2016

Californium 1.1.0- Java JVM supporting devices RFC 7252 Client & Server Observe, Blockwise –
SNAPSHOT Resource Directory

h5.coap 0.0.0 JavaScript Node.js supporting devices RFC 7252 Client Observe, Block-Wise –
node-coap 0.18.0 JavaScript Node,js supporting devices RFC 7252 Client & Server Observe, Block-Wise –
CoAPthon Master Python Python supporting devices RFC 7252 Client & Server Observe, Core-Link –

Sept. 24, 2016 Multicast, Block-Wise
CoAPy 0.0.3-DEV Python Python supporting device Draft-2 Client & Server Blockwise Inactive
* Even if most of them do not explicitly say it, they support Core Link-Format extension.

Some of the implementations are more mature than others, this has made that few of them have evolved not only
to offer basic functionalities but also to provide advanced mechanisms to deal with resources, available request types
and response codes. Due to this, the creation and management of resources varies between implementations and this
affects considerably the development process of applications, as it is described in the following lines:

• libcoap: it has an interface which makes adding new resources very easy. The library itself manages the
response codes, so the developers only need to add the name of the resource, which request types it supports
and link each kind of request to a handler.
• smcp: similar to libcoap, the developers only need to create the handlers and resources and add them to the

system with the help of an interface. The library handles the response codes.
• microcoap: to add new resources to the server, they have to be defined and added to a resource array along with

the handlers. The library manages everything else by itself.
• FreeCoAP: the response codes have to be defined by the developers and the resources’ path too, but this

implementation does not include an interface to ease the handling of resources. Adding new resources and
handling the response codes or actions is a bit tricky.
• Californium: this is a very mature implementation and it makes it easy to add and manage resources. To add

a new resource, a Java class needs to be created, with the handlers for the different types of supported requests.
Then, through an interface, the resources are easily added to the server and the library itself handles the rest.
• node-coap: the handling of resources and response codes is on the developers’ hands. This implementation

does not provide an interface to ease the creation of resources and management of the response codes, so the
handling of resources and request has to be made by the application itself, not the library.
• CoAPthon: a Python class has to be created for each resource, with the methods that the application support.

The library manages by itself the response codes and everything else.
• CoAPy: a Python class has to be created for each resource, but the application needs to handle the response

codes, the library does not provide this feature.

To summarize, libcoap, smcp, microcoap, Californium and CoAPthon are the easiest libraries to build a server
with, because they all handle the response codes within the library itself. The developers just need to define the
resources and the handlers and link then to the server, the library handles everything else. The rest of libraries require
the developer to handle this explicitly adding unneeded complexity to the application.

5. Experiment Setup

Current industry solutions mainly use wired networks such as Profibus, Modbus, CAN, Profinet, etc. These are
not very flexible and modifying their set-ups requires wiring changes; so as wireless networks are becoming more
reliable, their acceptance as a valid alternative is growing. The present experiment has been deployed on an industrial
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prototype over Raspberry Pi-s, which is a widely used platform for gateways and Industry 4.0 scenarios. Selecting the
Raspberry Pi enables the opportunity of testing a wider pool of implementations than those available for constrained
devices. In this case, as both client and server were needed, two Raspberry Pi 3 model B were connected via WiFi
through a local 56 Mbps router.

The listed libraries have been tested unmodified (except for FreeCoAP, which has been ported to IPv4) both in terms
of interoperability and performance. All implementations have been tested against each other except h5.coap server
microcoap client as they are not implemented. The requests have a single byte payload, while the responses’ ones are
alternatively 7 and 8 bytes long. However, it is important to note that at the time that the tests have been conducted
it has been discovered that CoAPthon does not allow to add any payload to 2.04 Changed responses43, thus it sends
less bytes in the response, saving time and resources. Regarding the metrics, memory usage, CPU consumption and
latency have been measured. For ROM usage, both the executable and library files’ sizes have been taken into account.
RAM and CPU consumption has been analyzed with the GNU/Linux time tool, which shows statistics of an execution.
Round Trip Time (RTT) has been selected to measure latency with Tcpdump network sniffer on the client. 50 requests
have been sent for each combination of client and server, with a single second waiting interval between send requests.

6. Results

After describing the experiment scenario, this section presents the results. Table 2 shows the outcome of the
interoperability test between different implementations, where PUT requests have been sent to the server in order to
observe its response. As expected from Section 4, all but CoAPy are interoperable. This test has been carried out
without a network packet analyzer, but when adding one for the performance test, an issue between h5.coap client
and CoAPthon server was found that was not obvious on the interoperability test. CoAP messages use two kind
of identifiers, message identifiers that allow to pair a message with its acknowledge and tokens for a more generic
purpose, that may be empty. CoAPthon server is generating a token when the client sends an empty one, contrary
to RFC 7252, and h5.coap is checking the tokens to match in order to accept the acknowledgment, so they are being
rejected and the message is sent again until the maximum allowed number of retries.

Table 2. Implementation interoperability
�������Client

Server libcoap smcp microcoap FreeCoAP Californium node-coap CoAPthon CoAPy

libcoap � � � � � � � –
smcp � � � � � � � –
FreeCoAP � � � � � � � –
Californium � � � � � � � –
h5.coap � � � � � � � –
node-coap � � � � � � � –
CoAPthon � � � � � � � –
CoAPy – – – – – – – �

Regarding the latency, Table 3 shows the median (left column) and maximum (right) values in milliseconds
(rounded to the first decimal), to represent normal and worst case scenarios for every server-client combination.
As expected, libcoap, smcp and microcoap are faster servers, as C is a lower level language not requiring additional
abstraction layers and thus being more optimized. Java (Californium), Node.js (h5.coap and node-coap) and Python
(CoAPthon) implementations have given surprisingly good results as clients even in comparison to most of the C ones,
being libcoap (C) the fastest library for most cases.

Table 3. Median and Max of RTT in ms�������Client
Server libcoap smcp microcoap FreeCoAP Californium node-coap CoAPthon CoAPy

libcoap 5,0 16,1 5,3 40,8 13,9 223,4 10.0 33,5 11,4 75,6 13,9 109,6 19,4 104,3 – –
smcp 16,2 44,5 15,6 54,5 13,4 45,1 11,5 41,3 15,8 91,2 20,2 134,1 29,4 180,3 – –
FreeCoAP 21,1 226,3 18,7 124,1 21,6 551,6 13,4 37,6 19,2 87,1 21,7 100,8 27,0 113,8 – –
Californium 10,8 40,2 11,0 51,0 12,4 32,8 12,0 33,8 12,3 79.0 13,7 101,8 18,7 35,0 – –
h5.coap 9.0 24,3 8,1 12,7 8,1 14,0 8.0 18,1 10.0 94,4 12,7 107,5 – – – –
node-coap 9,6 22,9 9,0 24,4 9,3 25,8 9.0 24,1 10,3 94,6 13,6 109,0 16,3 40,4 – –
CoAPthon 8,8 42,9 10,5 35,0 7,7 61,6 7,7 21,7 12,0 101.0 13,7 120.0 15,2 26,9 – –
CoAPy – – – – – – – – – – – – – – 13,9 110,3
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Considering the system resource consumption, Table 4 shows the ROM usage in bytes. Some of the studied libraries
(libcoap, smcp, h5.coap, node-coap, CoAPthon and CoAPy) need to be installed, showing either the .a files’ or lib
folder sizes in the library row; while the rest (microcoap, FreeCoAP and Californium) include all the dependencies
in the executable. In the Server and Client rows, the sizes of the respective executables are shown, corresponding to
the examples that have been used for the previous analysis. C implementations have bigger executable and library
sources than Python or JavaScript, while Java’s executables are considerably heavier. The size of I/O libraries has not
been taken into account except for Californium and using non native languages require adding a runtime environment
(Node.js), an interpreter (Python) or a Virtual Machine (Java), which is heavier than the size difference.

Table 4. ROM usage
libcoap smcp microcoap FreeCoAP Californium h5.coap node-coap CoAPthon CoAPy

Library 296150 383366 - - - 106097 47341 277095 76074
Server 21812 18356 18700 39772 4257012 - 1329 2508 4563
Client 33328 22684 - 31616 4257329 3621 883 1672 1794

Table 5 shows the CPU and RAM usage of a server (left column) and a client (right) execution for 1000 requests.
The data has been collected using the Gnu/Linux tool time, executing /usr/bin/time -v “server/client execution com-
mand”. This command shows the peak usage of the RAM (KB) and the total CPU time (seconds) the application has
used, both in user and system space. The results show that in execution time C implementations are the fastest and
most lightweight. All four tested C implementations are similar in terms of RAM consumption with about 3.3 MB,
while Californium and both Node.js implementations are around 10 times heavier. Python implementations are more
lightweight but are still far behind C ones. In terms of CPU usage, especially the User Time, it is also in clear favour
of C implementations, which are much faster due to compilation and execution of native code.

Table 5. CPU and RAM usage
libcoap smcp microcoap FreeCoAP Californium h5.coap node-coap CoAPthon CoAPy

User Time 0.09 0.06 0.04 0.10 0.13 - 0.06 0.10 2.30 4.66 - 4.22 2.35 2.73 6.60 5.77 0.99 4.96
System Time 0.13 0.08 0.08 0.31 0.09 - 0.13 0.21 0.27 0.41 - 0.62 0.24 0.21 1.23 1.25 0.16 0.13
Peak RAM 3252 3240 3232 3312 3236 - 3240 3256 24492 29676 - 37732 31008 34484 14348 12924 8332 10644

7. Conclusion

In this paper we compare several CoAP implementations’ features and behavior. From this comparison, we confirm
that libcoap, smcp, microcoap, FreeCoAP, Californium, node-coap and CoAPthon are interoperable, while CoAPy is
not, because it is based on an outdated draft. Regarding server performance, C-based implementations stand out.
Among them, libcoap and smcp are the fastest libraries, while microcoap’s and FreeCoAP’s memory requirements
are one order of magnitude lower. However, microcoap does to not include all the specifications of the RFC 7252
and FreeCoAP does not handle response code generation tasks and URIs in a transparent way. At the client side,
where disk space requirements are not critical, the Java, Node.js and Python implementations are surprisingly close to
libcoap and smcp in terms of speed. Moreover, thanks to the higher abstraction level of their languages, Californium
(Java), CoAPthon (Python), h5.coap and node-coap (Node.js) are recommended for CoAP clients.

From this work, different lines of development arise. On one hand, the evaluation of the proposed libraries in
highly constrained platforms, such as devices based on the ARM Cortex-M architecture, would be valuable. On the
other hand, a comparison of CoAP libraries in terms of scalability may also be relevant, since the libraries based on
Java, Python or Node.js may overcome the performance of C-based libraries in larger scenarios. Finally, a comparison
between implementations of CoAP and other IoT lightweight protocols, such as MQTT, AMQP and DDS, may also
provide useful insights for their use in resource constrained platforms.

Acknowledgment

This work has been partially supported by the Basque Government through the Elkartek program under the LANA
II project (Grant agreement no. KK-2016/00052), as well as the Spanish Government and the H2020 research frame-
work of the European Commission.



 Markel Iglesias-Urkia et al. / Procedia Computer Science 109C (2017) 188–195 195
Markel Iglesias-Urkia et al. / Procedia Computer Science 00 (2016) 000–000 7

Considering the system resource consumption, Table 4 shows the ROM usage in bytes. Some of the studied libraries
(libcoap, smcp, h5.coap, node-coap, CoAPthon and CoAPy) need to be installed, showing either the .a files’ or lib
folder sizes in the library row; while the rest (microcoap, FreeCoAP and Californium) include all the dependencies
in the executable. In the Server and Client rows, the sizes of the respective executables are shown, corresponding to
the examples that have been used for the previous analysis. C implementations have bigger executable and library
sources than Python or JavaScript, while Java’s executables are considerably heavier. The size of I/O libraries has not
been taken into account except for Californium and using non native languages require adding a runtime environment
(Node.js), an interpreter (Python) or a Virtual Machine (Java), which is heavier than the size difference.

Table 4. ROM usage
libcoap smcp microcoap FreeCoAP Californium h5.coap node-coap CoAPthon CoAPy

Library 296150 383366 - - - 106097 47341 277095 76074
Server 21812 18356 18700 39772 4257012 - 1329 2508 4563
Client 33328 22684 - 31616 4257329 3621 883 1672 1794

Table 5 shows the CPU and RAM usage of a server (left column) and a client (right) execution for 1000 requests.
The data has been collected using the Gnu/Linux tool time, executing /usr/bin/time -v “server/client execution com-
mand”. This command shows the peak usage of the RAM (KB) and the total CPU time (seconds) the application has
used, both in user and system space. The results show that in execution time C implementations are the fastest and
most lightweight. All four tested C implementations are similar in terms of RAM consumption with about 3.3 MB,
while Californium and both Node.js implementations are around 10 times heavier. Python implementations are more
lightweight but are still far behind C ones. In terms of CPU usage, especially the User Time, it is also in clear favour
of C implementations, which are much faster due to compilation and execution of native code.

Table 5. CPU and RAM usage
libcoap smcp microcoap FreeCoAP Californium h5.coap node-coap CoAPthon CoAPy

User Time 0.09 0.06 0.04 0.10 0.13 - 0.06 0.10 2.30 4.66 - 4.22 2.35 2.73 6.60 5.77 0.99 4.96
System Time 0.13 0.08 0.08 0.31 0.09 - 0.13 0.21 0.27 0.41 - 0.62 0.24 0.21 1.23 1.25 0.16 0.13
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7. Conclusion

In this paper we compare several CoAP implementations’ features and behavior. From this comparison, we confirm
that libcoap, smcp, microcoap, FreeCoAP, Californium, node-coap and CoAPthon are interoperable, while CoAPy is
not, because it is based on an outdated draft. Regarding server performance, C-based implementations stand out.
Among them, libcoap and smcp are the fastest libraries, while microcoap’s and FreeCoAP’s memory requirements
are one order of magnitude lower. However, microcoap does to not include all the specifications of the RFC 7252
and FreeCoAP does not handle response code generation tasks and URIs in a transparent way. At the client side,
where disk space requirements are not critical, the Java, Node.js and Python implementations are surprisingly close to
libcoap and smcp in terms of speed. Moreover, thanks to the higher abstraction level of their languages, Californium
(Java), CoAPthon (Python), h5.coap and node-coap (Node.js) are recommended for CoAP clients.

From this work, different lines of development arise. On one hand, the evaluation of the proposed libraries in
highly constrained platforms, such as devices based on the ARM Cortex-M architecture, would be valuable. On the
other hand, a comparison of CoAP libraries in terms of scalability may also be relevant, since the libraries based on
Java, Python or Node.js may overcome the performance of C-based libraries in larger scenarios. Finally, a comparison
between implementations of CoAP and other IoT lightweight protocols, such as MQTT, AMQP and DDS, may also
provide useful insights for their use in resource constrained platforms.
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