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Abstract

This study constructs a approach to reproduce the real-time falls of humans,

which uses a triaxial accelerometer and triaxial gyroscope to detect the occur-

rence of a fall, and an attitude algorithm to estimate the angles of each part

of the human body, where internet of healthcare things collects the information

of each sensor, and a Bayesian Network deduces the next action. Inferential

Bayesian probability could present more complete data of a fall to healthcare

providers. Even if the data are damaged by the transmission network or equip-

ment, the next action still could be deduced by Bayesian probability, and be-

cause the fall could be reproduced in a 3D Model on the client side, the fall

occurrence is shown more intuitively, and could thus serve as reference for first

aid.
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1. Introduction

With the advance of internet of things, medicine has developed at a tremen-

dous pace, and various medical technologies and equipment continue to progress.

While the birth rate decreases year by year, the average life span of humans is

prolonged, thus, the elderly population increases gradually; consequently, we

usher in an aging society. The healthcare issues of the elderly have become

increasingly urgent, and falls are the most common accidents of the elderly. A

report [1-2] pointed out that, each year 13.7 % of the elderly fall, wherein, over

a half fell twice or more. Many elderly people suffer injuries from a fall, followed

by irremovability, unconsciousness, or a failure to save themselves. Moreover, as

they wait for first aid, they have already lost the golden time for saving, thus,

they may experience more severe injury or even indelible consequences. There-

fore, it is an urgent issue to reduce the fall occurrences of the elderly. At present,

most measures to detect falls focus on its occurrence, rather than reproducing

the fall or reflecting the body part collided [3-4]. If these two drawbacks can

be solved, the time spent to determine the reason for the fall and the injured

body part can be reduced, thus, the elderly can be saved sooner. This paper

contributes in the following three aspects:

(1) To detect the occurrence of a fall via triaxial accelerated velocities and

angular accelerated velocities.

(2) To reproduce real-time human posture and falls.

(3) To deduce the probability of the next action.

2. Fall Detection and Posture Reconstruction

The major experimental methods employed in studies of fall detection could

be classified into three categories: fixed type, non-fixed type, and mixed type,

which has the strengths of the previous two types. Regarding the fixed fall

detection method, a sensor is affixed in the environment, where a camera or

other sensors are used to detect the occurrence of a fall [5-6]. As there is
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no need to carry or wear a sensor, it does not pose any burden to people;

however, due to the limited recording angles, there are dead spaces, which is a

big drawback in the detection of falls. Moreover, it has high cost and restricts

the user to within a certain range. While the non-fixed fall detection method

avoids the drawbacks of dead angles or limited space, the user must carry the

sensor. To make the sensors more convenient for users, in addition to costing

less than the first method, wearable devices are made as small as possible, and

often include an accelerometer, gyroscope, and horizon finder. While the mixed

type combines the strengths of the previous two methods, and greatly raises the

recognition rate of falls, it also contains their shortcomings [7-8]. The analytical

methods adopted by previous studies of the detection of falls were mainly the

threshold analytical method and an intelligent algorithm.

2.1. Threshold Analytical Method and Relevant Studies

The analytical method is easiest. First, based on the data received by a

sensor, a reference value is defined, which could be directly used to detect a

fall. When the data received are lower or higher than the reference value, it

could be determined that a fall has occurred. For instance, in the fall detection

study of Bourke [8], the upper and lower thresholds were defined, as based on

the steady signals of the daily actions (sit, lie down, and walk) of an accelera-

tion sensor, where signals received within the thresholds implied daily actions,

while those surpassing the thresholds implied a fall. In the experiment of his

study, sensors were placed on the trunk and thigh to measure their recognition

rate, and the results showed that when a sensor was placed on the trunk, its

recognition rate was 100In the fall detection research of Dai [9], a smart phone

containing a triaxial accelerator was used as a sensor, where the total accelera-

tion and acceleration in the absolute vertical direction were combined, and the

results under different circumstances were observed in order to define the fall

threshold. This study compares Dai’s system with products currently available

on the market. Regarding the experimental method, this study places sensors

on the chest, thigh, and waist in order to test the detection rates of sideways,
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forward, and backward falls, as well as daily actions, and the results show that

the misjudgment rate of a sensor placed on the waist is the lowest. In the fall

detection research of Sposaro and Tyson [10], a smart phone was used as a sen-

sor, and the user could define the threshold according to his/her own situation.

The smart phone must be placed on the chest or trunk in order to have the best

detection result. When the device detected a signal higher than the threshold, it

would send out an alarm. If the alarm was not turned off after a certain period

of time, it was considered that the user could not move, and the system would

contact pre-set emergency contacts via message and phone call. However, the

system had limited recognition ability as it lacked a specific method to define

its threshold. In addition, due to its lack of reference data, it was prone to

misjudgment when the user was in another status, such as running or jumping.

Although the advantage of the threshold analytical method was ease of imple-

mentation, the threshold definition would directly affect the recognition result

rate of a fall, meaning if the threshold was not precise enough, it would lead to

the misjudgment of a fall.

2.2. Intelligent Algorithm and Relevant Studies

Compared to the threshold analytical method, the intelligent algorithm is

more complex, as it includes the calculation of posture simulation and has a

higher fall detection rate. The data obtained via sensors are analyzed with

specific methods to conclude the eigenvalue, and the learning features are used

to establish a taxonomy module, which could classify the data obtained by the

sensors. Common sorting algorithms include SVM, LDA, PCA, and ANN. In

his study on fall detection and prevention [11], Delahoz explored the intelli-

gent algorithm of fall detection and prevention, including the Decision Trees of

the Machine Learning General Model, and compared Naive Bayes, K-Nearest

Neighbor, and Support Vector Machines. In a fall detection study with an An-

droid smart phone [12], Y. Shi adopted SVM and classified falls into five stages:

normal, unstable, free fall, adjustment, and motionless. Recall was 90%, while

precision was 95.7In his fall detection research [13], Sengto placed a triaxial
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accelerometer on the waist, and proposed the concept of the back propagation

neural network (BPNN) to process the data of acceleration. He classified body

postures including: falling activities, slow posture activities, and sudden posture

activities. Recall was 96.25%, while specificity was 99.5Wu et al. [15] proposed

a fall forecast and protection system, where human height was used to calculate

the seconds between the fall and the collision, which would initiate the pro-

tection device. Zhang et al. [16] built a portable fall detection system, which

broke through the space limit due to the reception of a computer; hence, users

were protected outdoors. Compared with the threshold analytical method, the

advantage of the intelligent algorithm was that the condition to determine the

occurrence of a fall could be customized, and its accuracy was high. However, it

was more complex and required a lot of data for study. Body postures were clas-

sified into various modules, and the learned data would determine the accuracy

of fall detection. If body postures were not included in the learning modules,

or if the intelligent algorithm did not consider such posture, misjudgment was

prone to occur.

3. Inferential Real-Time Falling Posture Reconstruction

3.1. Fall Detection

This study used a triaxial accelerometer and gyroscope to sense the posture

of each part of the human body, in order to simultaneously obtain triaxial

accelerated velocities and triaxial angular accelerated velocities. Sensors are

placed on five parts of the body, as shown in Figure 1. In order to obtain

the real-time rotation angle of the five body parts, the figures of the triaxial

accelerometer and gyroscope should be integrated. The detailed descriptions of

the steps are, as follows.

3.1.1. Weighted Moving Average for Sensing Data

Upon initializing the End Device, this study required stable initial triaxial

accelerated velocities and angular accelerated velocities, thus, we collected 200
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Figure 1: The parts of the human body with sensors.

samples to calculate the averages of the three-axis accelerated velocities (AX ,

AY , and AZ), and triaxial angular velocities (GX , GY , and GZ). First, AX , AY ,

and AZ are converted into the angles of the X-axis and Z-axis and Z-axis and

Y-axis, via Eq.1 and Eq.2, respectively. In the human body coordinate system,

only two angles are required to define the position of a body part. Thus, this

study applies the formulas to obtain the angle of X-axis and the horizontal

plane, and the angle of Z-axis and the vertical plane:

Acx =
tan−1(Az

Ay
)× 180

π
(1)

Acz =
tan−1(Ax

Ay
)× 180

π
(2)

In order to render the triaxial accelerated velocities more accurate, and with-

out noise interference, this paper uses weighted moving average to process the

Acx angle of the X-axis and the horizontal plane, as well as the Acz angle of

the Z-axis and the vertical plane. This study reserved n of the previous Ac

Ac1, Ac2...Acn, where Acn was the final value. Each figure has a weight W W1,
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W2...Wn, and their weighted average is Ac, as shown in Eq.3.

Ac =

∑n
i=1WiAci∑n
i=1Wi

(3)

3.1.2. Kalman Filter for Sensing Data

The angular velocity obtained with a gyroscope had noise at all times, thus,

when calculating angle, we must calculate angular velocity integration; though

it was a small error, when accumulated over time, it would grow. The shorter

the sampling time is, the bigger the error will be, thus, this paper required

timely human angle data and long-term observation. Hence, high sampling

frequency and long-term accumulation of data could lead to high angle drift

and misjudgment of angle. Therefore, this paper adopts the Kalman filter and

dynamic information of the target in order to remove the influence of noise

and obtain a good estimated angle. First, this study calculates the integral

of angular velocity G via Eq. 4, and via accumulation, obtains the current

estimated angle; where t0 is the initial time, t1 is the current time, and G0

is the initial angular velocity. Through integration, this study obtains current

angle Ag.

Ag =

∫ t1

t0

(G−G0)dt (4)

Then, as an actual measured standard value S is required, this study reserved

n previous Ac1, Ac2,..., Acn; where Acn was the latest value, and they were

divided by n to obtain the average with Eq. 5. The actual variance R is the

result of the standard value minus Ac with Eq. 6. Then, the Kalman gain K

could be calculated via Eq. 7. P is the deviation of the previous calculated

value and the previous measured value; in this paper, the initial value of P is

set as 1. To avoid the denominator of Eq. 7 being 0, 0.0025 was added to P, and

P would be updated by each new K, as shown in Eq. 8. The K gain is used to

calculate the final angle of Ag, as shown in Eq. 9. Through non-stop iteration,

the angle gained by this study would become more accurate, and misjudgment
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would not occur due to noise.

S =

∑n
i=1Aci
n

(5)

R =

∑n
i=1(Aci − S)2

n− 1
(6)

K =
P

P +R
(7)

P = (1−K)× P (8)

Ag = Ag +K(Ac −Ag) (9)

3.1.3. Judgement of Fall

Upon obtaining the angles of the various parts of the human body, this

study draws the current state of posture, and this visual model allows easy

determination of the current posture state with the naked eye. However, as it is

impossible for a user to monitor whether the person monitored is in danger, a fall

detection system is required to remind the user. Common falls can occur due to

loss of balance, and the body would produce accelerated velocity different from

the normal state. At the moment of colliding with the ground or objects, a very

large accelerated velocity, much higher than that of normal posture, would be

produced. In fact, based on Figure 2, the scalar measurement of the accelerated

velocity of a person falling while walking clearly shows that a very large scalar

of accelerated velocity is generated in the red block. The change rates of both

triaxial accelerated velocities and triaxial accelerated velocities would increase;

Eq. 10 is used to calculate the scalar of triaxial accelerated velocities; Eq. 11

is used to calculate the change rate of triaxial accelerated velocities; where Ax,

Ay, and Az are the accelerated velocities in X-axis, Y-axis, and Z-axis.

Axyz =

√
Ax

2 +Ay
2 +Az

2 (10)
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Figure 2: The scalar measurement of the accelerated velocity of a person falling.

Av =

∣∣∣∣∣∣
d(
√
Ax

2(t) +Ay
2(t) +Az

2(t))

dt

∣∣∣∣∣∣ (11)

Axyz and Av are considered as the conditions to determine a fall. Moreover,

according to the angles of inclination of the various body parts, we could detect

the presence or absence of a fall, as shown in Figure 3. First, this study collects

the sensor data of the various parts of the body, and calculates the angle of each

part. When Axyz and Av were too large, this study temporarily considered that

a fall had occurred; however, high accelerated velocity does not always imply

the occurrence of a fall, as the user may be exercising, which produces high

accelerated velocity, such as jumping or climbing stairs, and the user did not

lose his/her balance. Hence, this study placed a sensor on the waist of a user

to detect a fall, and classified a fall into four directions: forward, background,

left, and right. If an angle was not within the four directions, the angles of the
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arms and legs would be used to determine falls in a sitting or lying position

(Figure 4), and falls in the kneeling position (Figure 5). These two falls are not

included in the four directions falls; hence, they should also be considered. If

a fall does not fall into the above categories, the system would consider it as a

jump or other posture and continue to detect. If a fall is directional, it would

use the angle of the sensors on both hands to determine if the person used

his/her hands for support while falling, or was supporting himself/herself with

the elbow. Then, the posture of the legs is judged in a similar manner, meaning

we would use the angle of the sensors on both legs to determine if the person

is using his/her legs for support while falling, or is supporting himself/herself

with their knees. After learning the direction and postures of the arms and legs,

the final results are displayed to the user, and whether or not there was a fall is

determined. As each fall is different, this study roughly classifies falls according

to direction and the posture of arms and legs. Moreover, this study categorizes

similar falls into one type in order to make it easier for healthcare providers

or users to determine the direction of falls, support of hands, and bending of

knees, and further analyze the injured part.

3.2. Inferential Real-Time Posture Reconstruction

This section constructs a human model and reproduces a fall. To visualize a

fall requires a 3D model in line with a real human skeleton, where the angles of

the five sensors (i.e. waist, right hand, left hand, right leg, and left leg) draw the

real-time posture of a person. Then, a Bayesian Network is employed to deduce

the next posture, in order to reduce the judgment range of the next posture and

increase accuracy.

3.2.1. Category of Human Skeleton

The human skeleton shows that humans have many complicated bones,

meaning it is impossible to design a specific device for each part. Thus, this

study simplifies the skeleton, while maintaining precision, in order to establish

a simple skeleton that does not affect the precision of the sensor data of posture
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Figure 3: Diagram of fall detection.

reproduction in order to reproduce a fall. The degree of simulation lay in the

quantity of sensors. This study considers the reproduction of most human body

actions of the simplified human skeleton into 22 parts, as shown in Figure 6,

including the Cranium, Cervical Vertebrae, Lumbar Vertebrae, Pelvic Girdle,

Left Clavicle, Left Humerus, Left Ulna, Left Carpals, Left Finger, Left Femur,

Left Tibia, Left Metatarsal, Left Toes, Right Clavicle, Right Humerus, Right

Ulna, Right Carpals, Right Finger, Right Femur, Right Tibia, Right Metatarsal,

and Right Toes.
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Figure 4: Fall in a sitting or lying position.

Figure 5: Fall in the kneeling position.

3.2.2. Posture Structure of Human Skeleton

After establishing the human skeleton, this study defines the correlation be-

tween parent and child nodes, as shown by the arrows in Figure 7. When a

parent node is in posture, so are its child nodes. For instance, the right thigh-

bone moves with right shin bone, right metatarsal bone, and right toes; hence,

we must define some rotating nodes. There are 14 rotating nodes, including the

neck joint, waist joint, right clavicle joint, left clavicle joint, right elbow joint,

left elbow joint, right wrist joint, left wrist joint, right hip joint, left hip joint,

right knee joint, left knee joint, right ankle joint, and left ankle joint. Then,

this study defines the bones influenced by each node. When a node is rotated,
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Figure 6: Reproduction of human skeleton.

its child nodes would move with it, followed by the movement of more child

nodes. For instance, the right clavicle joint is moved with right clavicle and

right humeri, while the right humeri is moved with right elbow joint, its child

nodes, and the right ulna. The right wrist joint is moved with the right wrist

and right fingers. After defining the correlation between bones, it is convenient

to control each part without concern for the separation of bones. As the human

body posture changes, the biaxial gyroscope can detect the movement and an-

gular acceleration of object. The reason is the human limb does not swing and

twisting actions occur simultaneously , So the features of three-axis acceleration

and dual-axis gyroscope are enough to detect the changes of human postures.

3.2.3. Angle limit of skeleton

After establishing the 3D skeleton model and defining the correlation of

nodes, this study defines the angle of each bone in order to restrict the rotation of

each node and avoid impossible angles. Human joints could be roughly classified

into three categories, uniaxial, biaxial, and multiaxial joints, as shown in Figure

8. The red areas refer to the range of rotation. When the rotation angle of

each joint is restricted, it could avoid impossible angles, and determine joint

limits. For instance, the X-axis angle of the right leg is −90◦, and because the
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Figure 7: Correlation between parent and child nodes of the human body with sensors.

X-axis angle of the right hip joint cannot be −90◦, it could be concluded that

the rotated joint is the right knee.

Figure 8: Three categories of joints.

3.2.4. Inference of Posture in a Bayesian Network

This section explains how to use a Bayesian Network to infer the next body

posture, which serves as the reference angle of the next data. The probability

table of a Bayesian Network could reduce the range of angles. When the next
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data appear, we could directly select an angle from the range, and infer whether

the next figure would be within a reasonable range. If the next angle surpasses

the deduced angle range, the angle would not be used, and the deduced angle

would be kept. The following paragraphs explain the steps to establish a prob-

ability table for a Bayesian Network. First, this study uses a previous angle to

infer the next angle with EMA, which uses the moving average of exponential

diminishing weight, where the weight influence of each figure exponentially de-

creases with time, thus, more recent data has greater weight influence, while

older figures have a certain weight. The degree of weight is determined by con-

stant α, which is between 0 and 1. A user could adjust α in order to determine

the degree of weight, as shown in Eq. 12. EMAn refers to the estimated value

of the next angle; while EMAn−1 refers to the estimated value of the previous

angle, and EMAn−1 is the actual angle. As shown in Eq. 13, EMAn is theo-

retically an infinite series. Because 1- is smaller than 1, the figures of each item

would be smaller and smaller, and thus, could be ignored. The denominator

would be close to 1
α .

EMAn = EMAn−1 + α(Agn−1 − EMAn−1) (12)

EMAn =
Agn−1 + (1− α)Agn−2 + (1− α)2Agn−3 + (1− α)3Agn−4 + · · ··

1 + (1− α) + (1− α)2 + (1− α)3 + · · ··
(13)

When the inferred value of the next angle is obtained, proceed to build the

Bayesian Network. First, define the directed and acyclic graphic, as shown

in Figure 9. Where Ag is a previous actual angle; EMAn−1 is the previous

inferred angle; and EMAn is the current inferred angle, as calculated based on

the EMA formula of the previous section. Thus, Ag and EMAn−1 are known.

This study places five sensors on five body parts, and each part has two angles.

The probability table of EMAn is subject to the values of EMAn−1 and Ag;

however, there was no need to define the entire table. For example, in order

to establish the probability table of the angle of the waist sensor along the X-
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axis, WA−Agx and WA−X−EMAn−1 are required to calculate EMAn. The

range of the probability table is based on the limitations of bones, and this study

defines variable θ as the range of the probability limit of our inferred angles.

When a fall or other accident occurs, the angles would change rapidly. As

the sampling speed of our sensors is high, the difference among the measured

angles would not be large. For instance, if the angle of a sensor is changed

from 0◦ to 180◦ at the fasted speed possible, the angle data received by the

user would not be changed directly from 0◦ to 180◦. Instead, in line with the

actual angle change of the sensor, the figure would change from 0◦, to 10◦, to

20◦...and to 180◦. Therefore, the difference between two angles would not be

too large, and the change is gradual. Hence, this study defines variable θ as the

threshold of the maximum angle change. Figure 10 shows the angle change from

0◦ to 90◦ and back to 0◦ at an extremely fast speed, which shows that most

angle changes would not surpass 10◦. Hence, this paper sets θ as 10◦. During

continuous monitoring of a human body, if the result of an upper angle minus a

lower angle is greater than 10◦, θ would be set as the angle. If any angle change

is greater than θ, θ would be defined as the angle. Next, this study defines each

probability in the probability table of EMAn.

Figure 9: The directed and acyclic graphic of Bayesian Network.

First, this study sets inferred angle EMAn to maximum, and the probability

decreases as it becomes further apart from EMAn. θ is considered as the range

boundary of the probability, and the probability angle within θ was 0. The

decreased probability is similar to the weighted moving average. First, the
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Figure 10: The angle change of human posture.

deviation figure Dev is calculated with Eq. 14, where EMAn is the current

inferred angle, Ag is the previous actual angle, and the actual angle is closest

to the present.

Dev = |EMAn −Ag| (14)

The probability of EMAn, P (EMAn), was shown in Eq.15. Within θ, the

probability of other angles, P (Ang), was shown in Eq.16. In Eq. 17, X is the

absolute value of the result of the other angle minus the inferred angle. In

other words, if it is different from EMAn, its probability would also decrease.

If the angles within θ surpassed the rotation limit of the joints, P (Ang) would

surpass θ, and should be set as 0. P (Ang) is set as an impossible angle. The

denominator of other P (Ang) within θ must minus the total of numerators

of those Ang outside θ in order to comply with the principle of the Bayesian

Network, meaning that the sum of probability of all the incidents is 1.

P (EMAn) =
Dev + θ + 1

(θ + 1)2 + (2θ −Dev + 1)Dev
(15)
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P (Ang) =
(Dev + θ + 1)−X

(θ + 1)2 + (2θ −Dev + 1)Dev
(16)

X = |Ang − EMAn| (17)

In the EMAn angle probability table, N is the molecular of Eq.15; M is the

denominator; and X is the absolute value of the difference between the other

angle and the inferred angle. The probability table of the inferred angle of the

other joint is completed in the same manner, and only the bone angle limit of

each part is different. For example, starting from the latest actual angle, the

blue area refers to the joint angle limit, while the green area refers to θ. Then,

the probability of the inferred angle would be the biggest, and while it becomes

further apart from the inferred angle, the probability would decrease to the two

sides till the joint angle limit or θ limit. When Ag and EMAn−1 are entered,

the probability table of the next inferred angle, EMAn, is obtained. When the

next actual angle is about to come, reduce the probability of the next angle.

If the actual angle is outside the inferred angle range, consideration it as noise

and discard it.

If the actual angle Agn+1 is within the inferred angle range, Agn+1 would re-

place EMAn to update the probability table. When the same Ag and EMAn−1

appear in the next part, the probability table could be used as Ag, EMAn−1,

and inferred angle are the same. As the inferred angle is EMAn, similar expo-

nential changes would definitely occur. In other words, a similar angle change

would appear with the previous actual angle for Ag. The next actual angle

would be similar to the previous actual angle recorded. Thus, the probabil-

ity table is used rather than the inferred EMAn. With long-term monitoring

of human angles, this study obtained many different angle probability tables

corresponding to Ag and EMAn−1, and used the actual angle to update the

probability table, rendering our inferred angles more accurate.
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4. Experimental Results

4.1. Experimental Environment

The systems used by this paper were Microsoft Windows 7 and Ubuntu

14.04. The CPU used was Intel(R) Core(TM) i5-4460@3.20GHz. The memory

was 8.00GB. Angles were collected with Microsoft Windows 7. According to

Ubuntu 14.04, this study was within the framework of IoTivity. The hardware

devices used in this experiment paper are as shown in Figure 11.

This section probed into actual fall positions. According to different direc-

tions, this study classified falls into five types, forward, backward, left, right,

and others. This system would reproduce most postures outside a fall. And the

directions above were used as the classification basis of falls. Forward, back-

ward, left, right, and other falls were the standard falls. This paper measured

each type of fall 100 times, thus, there were 500 falls. For instance, there were

100 forward falls, and their postures were random. If the system correctly de-

termined the direction and the posture of arms and legs, then the determination

was correct; otherwise, it was wrong. The test results are as shown in Table 1.

Table 1: Falls Detection Results

Type Test Correct Misjudgment Correct Rate

Forward 100 98 0 98%

Backward 100 91 1 91%

Left 100 89 2 89%

Right 100 96 1 96%

Others 100 99 0 99%

4.2. Comparison between Kalman Filter and General Approach

This section compared the Kalman algorithm, as adopted in this paper,

with the general gyroscope algorithm. First, we used the two algorithms in the

situations of actual posture - Standing still and falling forward, backward, and

sideways.
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(a) Ankle

(b) Wrist

(c) Waist

Figure 11: Sensor Hardware Devices
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Figure 12: Four Types of Situations Comparisons
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We compared the two algorithms in the situations of standing still (Figure

12(a)), fall forward (Figure 12(b)), fall backward (Figure 12(c)), and fall side-

ways (Figure 12(d)). Why did the general gyroscope algorithm have such big

deviations? This study used actual data to compare the algorithm used in this

paper and the general gyroscope integration algorithm. This study compared

the angles along the X-axis of the sensor on the right hand. While the right

hand remained still, the angle changes of the two algorithms were observed, and

the results are as shown in Figure 13. Based on the test results, we can clearly

see that the angle obtained with general gyroscope algorithm would gradually

deviate from the actual angle with time; however, in fact, the angle of the sensor

did not change much, and after 30 seconds, the deviation was greater than 0◦.

Next, the right hand repeatedly moved from 0◦ to −90◦ and back to 0◦, and the

results are as shown in Figure 14. Based on the test results, we can see that the

angle obtained with general gyroscope algorithm was different from the actual

angle. However, the angle obtained with the Kalman algorithm was closer to

the actual angle. Next, the right hand repeatedly moved from 0◦ to −90◦ and

back to 0◦, and the results are as shown in Figure 15. Based on the test results,

we can see that the angle changes obtained with general gyroscope algorithm

were roughly correct; however, the deviation grew with time, while the angles

obtained with the Kalman algorithm did not show cumulative error or loss of

precision. Regarding the general gyroscope algorithm, the accumulated angular

velocity was considered as the initial data. The angular velocity obtained with

the gyroscope algorithm had noise. When we calculated the angle, we had to

calculate the integral of the angular velocity, and though the error was small, the

noise accumulated with time, resulting in bigger angle deviations. This paper

adopted the Kalman Filter to omit noise and obtain a good estimated angle.

4.3. Comparison of the Inferred and Actual Angles

This section compared the inferred and actual angles. We compared the an-

gles along the X-axis of the sensor on the right hand. The right hand repeatedly

moved from 0◦ to −90◦ and back to 0◦, and the results are as shown in Figure
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Figure 13: Angle changes of the two algorithms-case 1.

16. We can see that the error between the inferred and actual angles was not

large, which implies that the practice of establishing the probability table of the

Bayesian Network via the inferred angle in this paper is reliable. As mentioned

in the previous section, when the actual and inferred angles were the same as

previously, we would use the actual angle recorded previously to update the in-

ferred angle. The right hand repeatedly moved from 0◦ to −90◦ and back to 0◦,

and the results are as shown in Figure 17. The green line refers to the improved

inferred angle, which was closer to the actual angle. Certainly, only a small part

of the probability table of the Bayesian Network was improved and replaced.

When a user carries the device for a long time, the scope of the probability table

of the Bayesian Network would expand, and more actual angles would replace

the inferred angles, rendering the latter more accurate.
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Figure 14: Angle changes of the two algorithms-case 2.

5. Conclusion

This paper offers a practical approach and model to reproduce body postures

and falls in real-time, and calculates the angle of each part of the human body via

triaxial accelerated velocities and a triaxial gyroscope. The attitude algorithm

of this paper is not limited to the initial parts of a user, which greatly increases

the convenience of use. Moreover, due to the transmission between internet of

medical things, healthcare providers can monitor and observe the posture and

fall of the user in the 3D model. The probability table of the Bayesian Network

can provide healthcare providers with more complete fall data. Even more, it

is easy to establish the proposed system in the real world due to the features of

cheap hardware and light computing complexity.
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Figure 15: Angle changes of the two algorithms-case 3.
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