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Abstract— Compressed Sensing (CS) takes advantage of the
sparsity of MR images in certain bases or dictionaries to obtain
accurate reconstructions from undersampled k-space data. The
(pseudo) random sampling schemes used most often for CS
may have good theoretical asymptotic properties; however, with
limited data they may be far from optimal. In this paper, we
propose a novel framework for improved adaptive sampling
schemes for highly undersampled CS MRI. While the proposed
framework is general, we apply it with a recently proposed
MRI reconstruction algorithm employing adaptive image-patch
based sparsifying dictionaries. Numerical experiments demon-
strate up to 7 dB improvements in reconstruction PSNR using
the adapted sampling scheme, on top of the large improvements
reported in our previous work for the adaptive patch-based
reconstruction scheme over analytical sparsifying transforms.

I. INTRODUCTION

Magnetic Resonance imaging (MRI) is a non-invasive and

non-ionizing imaging technique that offers a variety of con-

trast mechanisms and enables excellent visualization of both

anatomical structure and physiological function. However, a

major drawback of MRI that affects clinical throughput and

image quality, especially in dynamic imaging applications, is

that it is a relatively slow imaging modality. This is because

the measurements in MRI, samples in k-space of the spatial

Fourier transform of the object, are acquired sequentially in

time. Therefore, many techniques try to reduce the amount

of data required for accurate reconstruction.

Compressed Sensing enables accurate reconstruction of

images from significantly fewer measurements than the num-

ber of unknowns, or than mandated by traditional Nyquist

sampling, provided the underlying image has a sparse rep-

resentation in some transform domain, and the acquisition

is appropriately incoherent with the transform. The typical

formulation of the CSMRI reconstruction problem enforces

both sparsity and k-space data consistency using the follow-

ing Lagrangian setup [1]

min
x

‖Fux− y‖2
2 +λ ‖Ψx‖1 (1)

Here, x ∈C
P represents as a vector, the P-pixel 2D complex

image to be reconstructed, and y ∈ C
m represents the k-

space measurements. The two are related (in the absence

of noise) as Fux = y, where Fu ∈ Cm×P is the undersampled

Fourier encoding matrix. Matrix Ψ represents a global, typ-

ically orthonormal transform such as wavelets. The quality
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of image reconstruction in CSMRI depends on the choice

of the sampling pattern (Fu) and sparsifying transform or

dictionary.

Various sampling schemes have been proposed for CSMRI

such as Cartesian sampling with random phase encodes and

pseudo random 2D sampling [1]. Wang et al. [2] approximate

pseudo random 2D sampling (for a single 2D image) with

bidirectional Cartesian sampling that is realized with a pulse

sequence program that switches the directions of phase

encoding and frequency encoding during data acquisition.

To account for the unequal distribution of signal energy

across k-space, Lustig et al. [1] perform variable density

random sampling of k-space by drawing sample positions

according to a probability density function (pdf). Out of

many such candidate patterns, they choose the one that has

the lowest mutual coherence with the sparsifying transform.

However, the procedure uses an ad-hoc model for the pdf

and is nonadaptive. Moreover, finding the optimal sampling

scheme that maximizes the incoherence for a given number

of samples is a combinatorial problem that is intractable.

Although random sampling has good asymptotic proper-

ties and there are theoretical performance guarantees for CS

based on mutual coherence, these results are inapplicable for

the small sample (matrix) sizes in CSMRI – especially with

high subsampling. Existing methods for sampling pattern se-

lection in CSMRI may therefore have room for improvement.

In this paper, we focus on the design of adaptive sampling

patterns using training image scans. Such sampling patterns

capture the underlying structure in k-space to provide supe-

rior reconstructions for CSMRI in test scans. Our framework

for sampling design also involves image reconstruction as

one of its components. While the proposed sampling design

algorithm is general, we choose here a recently proposed

[3] adaptive reconstruction framework described in the next

section.

II. ADAPTIVE SPARSIFYING DICTIONARIES FOR MRI

Numerous transforms, either separately or in combination,

have been tested for CSMRI such as wavelets, finite dif-

ferences [1], and contourlets [4]. However, CSMRI recon-

structions obtained with non-adaptive sparsifying transforms,

typically suffer from many artifacts at higher undersam-

pling factors (> 3 fold) [5]. We recently proposed the

idea (DLMRI) of simultaneously learning an image patch-

based dictionary and reconstructing the image using only the

undersampled k-space data [3]. The optimization problem
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proposed there is

(P0) min
x,D,A

∑
i j

∥∥Ri jx−Dαi j

∥∥2

2
+ν ‖Fux− y‖2

2 (2)

s.t.
∥∥αi j

∥∥
0
≤ T0 ∀ i, j.

Operator Ri j ∈ Cn×P extracts (as a vector) the 2D image

patch xi j of size
√

n×√
n pixels from x as xi j = Ri jx, where

(i, j) indexes the top-left corner of the patch in the 2D image;

D ∈ Cn×K is the image patch-based complex dictionary

and αi j ∈ CK is the sparse representation of the patch in

D with at most T0 non-zeros; A denotes the set
{

αi j

}
i j

;

and ν is a weight that depends on the measurement noise

level (σ ) as ν = λ
σ

with λ being a positive constant. The

formulation enforces both k-space data fidelity and sparsity

of the overlapping patches of the reconstructed image.

An iterative alternating algorithm is used to solve (P0).

Significant improvements in reconstruction quality were ob-

served [3] with such an adaptive framework as compared

to non-adaptive CSMRI methods such as those of Lustig et

al. [1]. The adaptive reconstruction framework also signif-

icantly improved the undersampling limit achievable with

CSMRI (almost 2.5-4 times higher undersampling factors

than existing CSMRI methods at comparable reconstruction

errors [3]). However, the issue of optimal sampling was not

discussed in that work. This is the topic of this paper.

III. DESIGN OF THE SAMPLING PATTERN

We work with a fully sampled training image scan(s) for

this section. The goal is to choose a sampling pattern in

k-space that gives the best reconstruction of the training

image(s) at a given undersampling factor (M). The entire

k-space of the training image(s) is partitioned into J cells.

Examples of such cells for Cartesian and 2D pseudo random

sampling are shown in Figure 1. The total number of sample

points is kept fixed, but they can be re-distributed by moving

a sample point from one cell to another. The cost function

that we optimize is

(P1) min
SM

max
j

N

∑
i=1

∥∥(yi
j −H j

(
SMyi

))
⊙Wj

∥∥2

2
(3)

where yi represents the k-space values of the ith reference

image (N references are assumed), SM is the undersampling

mask in k-space at the undersampling factor M (i.e. SMyi

represents the undersampled k-space measurements), H rep-

resents the reconstruction method for obtaining the full k-

space from the undersampled one, and W is a weighting

function for k-space. The subscript j is used to index the

values in the jth k-space cell C′
j, so that yi

j ∈ C
|C′

j |, where

|C′
j| denotes the number of pixels in C′

j. The problem (P1)

thus minimizes the maximum (weighted) reconstruction error

in the k-space cells for the reference image(s).

Recently, Seeger et al. [6] also proposed optimization of k-

space sampling for CSMRI. The optimization there was done

sequentially on a single sagittal brain slice using information

gain as the criterion, and the resulting sampling pattern was

tested on other test data using the reconstruction strategy

Fig. 1. Sampling Design: Two cells, C1 and C2, are shown in k-space
for Cartesian sampling (left) and 2D pseudo random sampling (right). The
arrows show the phase encode/sample point in C1 being moved to another
location in C2.

of Lustig et al. [1]. However, as opposed to their work, we

optimize directly the errors in k-space and our cost function

is adapted to both the training data and the reconstruction

strategy. We also work at higher undersampling factors than

[6] and do not apriori dedicate samples for the k-space center.

Our problem formulation (P1) of finding the optimal

undersampling pattern SM is combinatorial and NP-hard.

We propose an approximate algorithm for its solution. In

order to optimize the cost function in (P1), we start with

an initial pattern, and iteratively modify it based on the

quality of the reconstruction it provides in k-space. A key

idea that distinguishes the proposed approach, is that the

reconstruction results in each step provide not only a measure

of the effectiveness of the sampling pattern used, but are also

employed to prescribe how the pattern should be modified

to improve the results.

A. Algorithm

Our algorithm alternates between two steps - reconstruc-

tion of reference image(s) with a fixed sampling pattern

(reconstruction update step), and update of the sampling

pattern given the reconstructions (sampling update step). In

the following, we will first work with the case N = 1 (single

reference) for simplicity, and then generalize to the multiple

reference/training images case.

The training image is first reconstructed [3] from the

initial undersampling pattern. This reconstruction is then

transformed to k-space using the discrete Fourier transform

(DFT), producing the reconstructed k-space data, which is

then partitioned into cells similarly to the training k-space. In

each of the cells, we compute the l2 norm of the difference

between the reconstructed and training k-space data. This

value is normalized (weighted) by the p-th power of the

peak magnitude of the training k-space data in the cell (i.e.,

Wj =
1

‖y j‖p

∞

is constant over the k-space locations within the

cell), producing the total cell error.

The total errors for the various cells are then sorted in

increasing order and the cells corresponding to the top L

error values are chosen and modified (improved) during the

sample re-distribution process (sampling update step). These

are the “bad” cells that require more samples to reduce

their errors (choosing L > 1 allows more than 1 cell to be

improved, while also reducing the cost in (3)). Denote the

cells sorted in ascending order according to their total errors
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by
{

C j

}J

j=1
, with the corresponding total errors

{
E j

}J

j=1
.

Let e � sEJ−L+1, where s is a fixed parameter. Thus, e is a

measure of the total error in the “best” of the L “bad” cells.

The k-space samples are re-distributed by moving samples

from low-error cells to the top L cells. The top L cells

are handled sequentially beginning with cell CJ . The non-

sampled point (at location P1) in cell CJ of the reconstructed

k-space that has the highest point-wise error is chosen as

the candidate to be sampled. The sampled point P2 from

C1 of the reconstructed k-space that has the lowest point-

wise error (note that this error need not be zero as data

fidelity may not be exactly enforced during reconstruction)

is moved to P1. The value of the reconstructed k-space at P1

is then set equal to the training value at that point, and at

P2 the value is set to zero. Sample points are sequentially

added to CJ at non-sampled locations preferenced by the

point-wise reconstruction error (higher errors first). This is

done until the total error of CJ falls below e. Furthermore,

points to be added to CJ are taken from sampled locations

of C1 preferenced by their point-wise reconstruction error

(lower errors first). This is done as long as the total error of

the reconstructed k-space in C1 remains below e. Once that

condition is violated, sample points are instead chosen for

removal from the next cell, i.e. C2 and so on. Thus, sample

points are sequentially moved from the cells with lower total

errors to the top L cells (starting with CJ , then CJ−1 and so

on) until the latter have total errors less than e.

It is possible that the total error of a cell (among the

top L cells) may fail to diminish below e. This can happen

either if we run out of sampled points due to saturation of

errors (near e) in all the low error cells or if there are no

more unsampled points left in the high error cell in which

case the error there is due to the reconstruction method

not enforcing ‘exact’ data consistency. Once the sample re-

distribution process (sampling update step) is complete, the

image is reconstructed using the new sampling pattern.

The sampling design iterates over the two steps of recon-

struction and sample/phase encode re-distribution. Different

values of the power factor p can result in different types of

re-distribution (corresponding to different weighting func-

tions W ). The value p = 0 implies constant weighting (of

1 for all cells) on the k-space reconstruction error, which

generally implies that cells (with less samples) near the

center of k-space will get higher preference (more likely

to be in the top L bad cells) due to higher signal energy

concentration near the k-space center. Thus, the predominant

movement of sampled points in this case would be towards

the center of k-space. Higher values of p result in more gen-

eral re-distribution of sampled points. While the algorithm is

outlined for a single training scan, it can be easily extended

to the case of multiple training images (of same size and scan

parameters) by working with cumulative (over the training

set) errors of k-space cells in the sampling update step.

IV. NUMERICAL EXPERIMENTS

We performed simulations to test the performance of our

sampling framework. The training and test images (512×512

Fig. 2. Training image (Top left) and test images

complex MRI scans kindly provided by Prof. Michael Lustig,

UC Berkeley) used in our simulations are shown in Fig.

2. The training image was chosen as one slice (with rich

features) of a multi-slice data acquisition. In the numerical

experiments, we work with simulated k-space data that are

obtained by 2D DFT of the complex MR images. The

undersampling patterns designed with the training image

were tested on other slices of the multi-slice acquisition as

well as on a test image from a different scan (Top right of

Fig. 2). 2D pseudo random sampling (Fig. 3) and Cartesian

sampling (Fig. 7) schemes are used. The parameters of the

DLMRI algorithm [3] were set as n = 36,K = n,T0 = 7,λ =
140. The k-space of the training slice is shown in Fig. 7.

In Fig. 3, 5.3 fold undersampling is employed on the k-

space of the training slice. The parameters for the sampling

design are set as J = 16384, p = 0.25,s = 0.74,L = 52, and

cell size of 4×4. Five iterations of the algorithm are executed

(with no sampling update step in the last iteration) and the

initial (variable density random pattern) and final sampling

patterns are shown. Based on the locations at which samples

were added/removed (Fig. 3), it can be inferred that the

algorithm captures the underlying k-space structure. The

peak signal to noise ratio (PSNR) in dB computed as the ratio

of the peak intensity value of the original image to the root

mean square (rms) reconstruction (from the undersampling

pattern) error for that image (rms error computed between

image magnitudes) is plotted over algorithm iterations for the

training image reconstruction. The PSNR improves by 7 dB

with iterations indicating that our sampling design algorithm

leads to better sampling patterns. The PSNR also converges

quickly indicating fast algorithmic convergence.

The training image reconstructions with the initial and

final undersampling patterns shown in Fig. 4 depict the

improvement in reconstruction error. The reconstruction error

magnitudes (computed as

∣∣∣|Î|− |I|
∣∣∣, where I is the original

image and Î is the reconstruction) also show errors of
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Fig. 3. 2D random sampling at 5.3 fold undersampling. Top: Initial
sampling pattern (left), final sampling pattern (right). Bottom: k-
space locations (compare final and initial patterns) where samples
were added (in red) and removed (in blue) after 5 iterations (left),
plot of training image reconstruction PSNR over iterations (right)
beginning with initial reconstruction.
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Fig. 4. Top: Training image reconstruction with initial sampling
pattern (left) and final sampling pattern (right). Bottom: Recon-
struction error magnitudes for Top row images.

much smaller magnitude and structure for the final sampling

pattern compared to the initial one. The initial and final

undersampling patterns are also tested on the test images.

The test reconstructions and error maps shown in Figs. 5 and

6 show upto 5.5 dB improvement in reconstruction PSNR

with the adapted sampling pattern compared to the initial

pattern. The significant improvements on a variety of test

images indicate the promise of our adaptive sampling design.

Fig. 7 employs Cartesian sampling with 4.3 fold under-

sampling of k-space. The parameters for sampling design

PSNR = 28.2 dB PSNR = 32.4 dB

PSNR = 25.6 dB PSNR = 30 dB

Fig. 5. Test image reconstructions with initial sampling pattern
(left) and final pattern (right).
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Fig. 6. Top: Test image reconstructions with initial sampling
pattern (left) and final pattern (right). Bottom: Reconstruction error
magnitudes for top row images.

are set as J = 51, p = 0.04,s = 0.74,L = 3, and cell size

of 10 in the phase-encoding direction. Five iterations of the

algorithm are executed. The final undersampling pattern is

shown along with the initial pattern. Since p= 0.04 is small,

sample points move more towards the center of k-space.

The PSNR of the training slice reconstruction is plotted over

algorithm iterations. It increases by nearly 6.3 dB indicating

good improvements on training data. The initial and adapted

undersampling patterns are also tested on the test images.

The test reconstructions and error maps shown in Fig. 8

show upto 6.6 dB improvement in reconstruction PSNR with
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PSNR = 23.6 dB PSNR = 29.9 dB

Fig. 7. Cartesian sampling at 4.3 fold undersampling. Top: Training
image k-space (left), plot of training image reconstruction PSNR
over iterations beginning with initial reconstruction (right). Middle:
Initial sampling pattern (left), final pattern (right). Bottom: Training
image reconstruction with initial sampling pattern (left) and final
sampling pattern (right).

the adapted sampling pattern compared to the initial one.

The promising improvements in reconstruction performance

shown on both training and test data indicate the superior

performance of adaptive sampling design.

V. CONCLUSIONS

In this paper, we introduced an adaptive sampling frame-

work for CSMRI. This framework was also combined with

an adaptive reconstruction framework that learns the spar-

sifying dictionary directly from the sampled k-space data.

The iterative algorithm for sampling design utilizes fully

sampled training image scans to adapt an initial undersam-

pling pattern. The k-space errors of the image reconstructed

from the undersampled k-space data are reduced in each

iteration. Significant improvements in reconstruction PSNR

were observed in both training and test images when using

the adapted sampling pattern compared to the initial pattern.

The proposed framework for sampling design is generic and

can be combined with any reconstruction strategy. A more

detailed study of the parameters involved in sampling design

and a comparison to the work of Seeger et al. [6] will be

presented elsewhere. We also plan to study the performance

of alternative choices for the weighting function (W ).

PSNR = 25.8 dB PSNR = 32.4 dB
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Fig. 8. Test image reconstructions with initial sampling pattern
(left) and final pattern (right). Second row: Reconstruction error
magnitudes for first row images.
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