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Abstract: 
The unsharp masking filter (UMF) has been widely used in im­

age processing front ends for contrast enhancement. The filter, 

being easy to implement, is based on the concept of augmenting 

a scaled and high-passed version of the image to itself. The UMF 

performance is critically dependent on the generation of the high­

passed signal to be added as well as its associated scale factor. 

However, the optimal choice of filter parameters still remains a 

challenging task due to possible intensity clipping problems where 

the filtered pixel magnitude is vulnerable to be out of the permit­

ted display ranges. In this research, an adaptive scheme is for­

mulated such that the scale is derived from the pixel intensity of 

the input image. Specifically, pixels in the mid-range intensity will 

be assigned a larger scaling factor according to a Gaussian-like 

profile. In addition, the optimal profile coefficients and the width 

of the high-pass generator window are determined by adopting 

the particle swarm optimization algorithm. Satisfactory simula­

tion results obtained from a collection of a large set of images have 

shown the effectiveness of the proposed image contrast enhance­

ment approach. 
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1 Introduction 

Image processing is a valuable technique used in a wide 
range of applications. For example, in traffic monitoring, it is 
required to eliminate shadows in images captured from cameras 
[1] and extract vehicles from the background scene [2]. More­
over, image processing methods are used in segmenting blood 
vessels in fundus images [3] to help medical diagnostic. In re­
mote sensing applications, pixel classifications are conducted 
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[4] to identify land covers. In robotic applications, vision-based 
tracking is carried out to monitor a moving mobile platform [5]. 

In the above mentioned successful application examples, im­
age contrast enhancement is often regarded as the front end of 
the processing pipeline [6]. Among the available methods, fre­
quency histogram based [7] and spatial based [8] approaches 
are being widely applied. To this end, the unsharp masking 
filter (UMF) [9] in the latter category, is renowned for its con­
ceptual tractability and implementation simplicity. 

The development of unsharp masking filter is motivated by 
practices in the printing industry where edges around objects 
are made more striking by superimposing on the edges a high­
passed and scaled portion of the object itself [10]. It is noted 
that, however, the performance of the UMF heavily relies on 
the quality of the extracted high-pass signal and the magnitude 
of the scaling. On the other hand, improper choices of filter pa­
rameters often degrade the filtering effectiveness. In particular, 
when the scaling factor is mis-determined, pixel magnitudes of 
the resultant image may be driven beyond the permissible stor­
age or display limits. 

In this research, the choice of UMF parameters is treated as 
an optimization problem using the image information content 
as a criterion. While striving for determining the proper param­
eter values, the particle swarm optimization (PSO) algorithm 
is employed as the optimizer for its proven solution quality 
and implementation simplicity [11]. The parameters including 
the high-pass signal generator window width, scale factor, and 
mean and variance of the intensity adaptation Gaussian profile, 
are coded as particles in the PSO algorithm. A modified itera­
tion termination mechanism is also proposed to improve search 
efficiency. The developed image contrast enhancement method 
is further tested against the information content criterion. 
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The rest of the paper is organized as follows. In Section 
2, the basics and limitations of current UMF implementation 
are reviewed. The application of PSO to obtain optimal filter 
parameters is detailed in Section 3. In Section 4, experiments 
conducted are described and results are presented. Finally, a 
conclusion is drawn in Section 5. 

2 Unsharp Masking Filter 

The essence of an unsharp masking filter is to enlarge the 
contrast around edges of objects in an image. On one hand, the 
superimposed signal can be treated as a high-passed version 
of the image itself. On the other hand, the augmentation may 
be derived from subtracting the input image by its low-passed 
version. The latter approach is advantageous that undesirable 
effects caused by high-passing noisy pixels can be reduced. 

Consider an input image X = {x( u, v) }, where (u, v) is the 
pixel coordinate following the raster-scan convention. Here, 
u = 1,···, U, v = 1,···, V are the width and height of the 
image. The filtered output pixel is given by 

y(u, v) =x(u,v) + >..z(u, v), (1) 

where>.. is the scaling factor and z( u, v) is the augmenting sig­
nal. Note that if the input is a color image, the intensity is 
obtained from a color space conversion, for example, convert­
ing from the RGB format to the HSV format and extract the 
V-component as the intensity image. 

Let the input image be low-pass filtered by convolving with 
an averaging kernel. The kernel size is w x w pixels. Then the 
equivalent high-passed signal is 

(a) (b) 

(c) (d) 

Figure 1. Over-range phenomenon; (a) input im­
age, (b) filtered image, (c) pixels of y( u, v) < 0 
(black), (d) pixels of y( u, v) > 1 (white). 

probability that the addition of the enhancement term >..z( u, v) 
may cause the output pixel magnitude to rest beyond the allow­
able display range. That is, when y( u, v) < 0 or y( u, v) > 1, 
the displayed image may not truly represent the correct infor­
mation contained in the scene. Hence, it is a critical issue that 
the gain factor>.. has to be properly determined. 

Figure 1 illustrates the over-range phenomenon of a typical 

z(u, v) = x(u, v) - x(u, v) 0 A(w), (2) indoor image (Fig. l(a». The kernel width and scale factor 
are arbitrarily set to w = 3, >.. = 30, and the unsharp masking 
process is conducted. It can be seen in Fig. 1 (b) that the over­
range phenomenon is evident where the output image appears 
unnatural. Pixels whose magnitudes are below zero are shown 
in Fig. l(c) while those above unity are shown in Fig. l(d). 
This example has clearly indicated that an optimal choice of the 
scale factor is necessary to obtain a satisfactory filtered image 
as shown below. 

where 0 is the convolution operator, A( w) is the averaging ker­
nel. When w is small, the kernel becomes an impulse and the 
convolved signal will resemble that of the input image. On the 
contrary, a large w value will make the kernel to behave as an 
averaging operator over a large neighborhood. The magnitude 
of the high-passed signal z( u, v) is hence affected by the choice 
of the w. Consequently, the UMF performance crucially relies 
on a proper selection of the w value. 

An example case is now presented to illustrate the impor­
tance of choosing optimal UMF parameters on its performance. 
If the storage or display device accepts only applied magnitudes 
in [0, 1] , then the filtered output image must be confined. That 
is, we have to ensure that y( u, v) E [0, 1] as required. Further­
more, it is noticed that the input is also limited within [0, 1] 
in most systems in practice. Hence, there is always a non-zero 

The effect of the low-pass kernel parameter, w, on the UMF 
performance is illustrated in Fig. 2. In figures 2(a) and 2(b), 
the resultant over-range phenomenon from small neighborhood 
size, w = 1 and>.. = 5, is depicted. For a large neighbor­
hood size, w = 10 and>.. = 5, the phenomenon is illustrated 
in figures 2(c) and 2(d). A careful inspection will reveal that 
for different averaging kernel parameters, the over-range phe­
nomenon is more severe for the larger w value. 
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Ca) (b) 

Cd) 

Figure 2. Influence of low-pass kernel parame­
ter; (a) pixels below zero (black), w = 1, (b) pixels 
above unity (white), w = 1, (c) pixels below zero 
(black), w = 10, (d) pixels above unity (white), 
w = 10. 

The above example has revealed that the choices of the scale 
factor A and averaging kernel size w are crucial to the perfor­
mance of the UMF. Moreover, the effects of these parameters 
on the filtered results are inter-related. In order to alleviate the 
over-range problem, the scale factor A is made adaptive to the 
local pixel magnitude x( u, v) . The development of the adaptive 
scheme is presented below. 

Consider a general pixel in the input image x( u, v), its mag­
nitude will be added with the scaled and high-passed value 
AZ( u, v) from the UMF operation. Here, we propose to adjust 
A in accordance to a Gaussian-like profile 

On the other hand, when the pixel intensity rests on the low­
or high-range regions, the particular pixel will receive reduced 
scalings. By reducing the augmentation magnitude, the over­
range problem could be alleviated. 

An example case is tested against different settings of fJ and 
a and the over-range phenomena are indicated in Fig. 3. In the 
tests, we have set w = 3, k = 15 as constants. It is observed 
from the figure that the adjustment profile A(U, v, x(u, v)) 
with different parameter settings are affecting the UMF per­
formance. In particular, for large a in tests 2 and 4, the output 
has a larger number of over-range pixels. 

The motivation for employing adaptive scaling and the ef­
fect of the filter parameters on the UMF performance have 
been demonstrated. It is obvious that proper parameter settings 
are necessary in order to obtain satisfactory image contrast en­
hancements. In the following section, the use of the particle 
swarm optimization algorithm for determining optimal param­
eters will be described. 

3 Particle Swarm Optimization 

Potential solutions for UMF parameters in the particle swarm 
optimization (PSO) algorithm are coded into a vector represen­
tation called a particle. The PSO iterative procedure can be 
described by the following expressions, 

i ii + i ( i) + i ( i i) Vt+l = W Vt Cg gbest,t - Xt Cp Pbest,t - Xt , (5) 

(6) 

where xi is the problem dependent d-dimensional particle posi­
tion in the solution space, i is the particle index, i = 1, ... ,P, 
vi is the velocity of the particle movement assuming a unity 
time step, Wi is the velocity control coefficient, c� , c� are ran­
dom gain control variables, gbest is the global-best position, 
Piest is the position of a particular particle corresponding to its 
problem dependent best objective obtained so far. Subscript t is 

'
( ) 

_ {-(x(u, v) - fJ)2 } 
/\ U, V - exp 

2 ' 2a 

the iteration index. Typical parameter values, such as W = 0.6, 

(3) c� , c� E [0,1] are used in the experiments. 
At the start of the algorithm, the particle positions xb are 

randomly assigned to cover the solution space. A problem de­
pendent objective function, acting as the fitness of a particle, is 
evaluated and assigned to each particle. Based on the set of 

where fJ E [0,1] is the center of the adjustment profile, a > ° 
is the standard deviation of the Gaussian profile. That is, we 
have now 

A+--- kA(U, v, x(u, v)), 
objective values, the particle having the highest (lowest) fit­

(4) ness for a maximization (minimization) problem is taken as 
the global-best gbest,O. This set of initial objective values is 
denoted as the particle-best piest,o' The velocity is then cal­
culated using some random gain coefficients (c� , c�) usually 
sampled from an uniform distribution. The particle positions 

where k is the multiplicative gain factor compensating for 
max(A( u, v, x( U, v))) = 1. By using this profile, pixels hav­
ing intensities in the mid-range intensity will receive a higher 
augmentation of the high-passed signal to enhance the contrast. 
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.. IS0;�':;<�,: �::;; , 

(a) J.L = 0.1, a = 1, x < 0 : 7680 (b) J.L = 0.1, a = 1, x > 1 : 6408 

(c) J.L = 0.1, a = 5, x < 0 : 8041 (d) J.L = 0.1, a = 5, x < 0 : 7090 

(e) J.L = 0.9, a = 1, x < 0 : 650 (f) J.L = 0.9, a = 1, x < 0 : 6630 

(g) J.L = 0.9, a = 5, x < 0 : 8012 (h) J.L = 0.9, a = 5, x < 0 : 7086 

Figure 3. Demonstration of the effect of adjust­
ment profile parameters; left column - pixel in­
tensities less than zero (black), right column -
pixel intensities greater than unity (white). 

are updated according to Equ. (6) and then the procedure re­

peats. Finally, at the satisfaction of some termination criteria, 

the global-best particle is reported as the solution to the prob­

lem. 

In the optimization of UMF parameters, we code the vari­

ables as a particle 

x= [wkJ-l oy . (7) 

The objective function to be maximized is the information con­

tent, Shannon's entropy, contained in the filtered image. 

1-£ = - LPi 10gPi, i = 0" " ,255 (8) 

where Pi is the probability that a pixel intensity falls within one 

of the 256 intensity regions for a 8-bit digital image. In addi­

tion, in order to search for optimal parameters for minimum 

over-range artifacts, the entropy is combined with a penalty 

component, giving 

() = 1-£ x (1 'Tl ) - Ux V ' 
(9) 

where 'Tl is the number of over-range pixels, U x V is the total 

number of pixels in the image. If there is a large number of 

pixels falling outside the permitted display range, then () will 

decrease and signify a less optimal solution. With regard to 

the PSO termination condition, we use the following procedure 

described in Algorithm 1. 

Algorithm 1 PSO Iteration Procedure 

1: set iteration count m = 0, no-improve count n = 0; 
2: repeat 

3: conduct PSO procedure, Equ. (5), (6); 

4: if ()o < ()i, advance no-improve count n = n + 1; 
5: advance iteration count m = m + 1; 
6: until m - n > "(. 

In the algorithm ()i and ()o are the objective functions of the 

input and filtered images respectively. The termination coeffi­

cient '"Y is set at 10 ensuring that there is an improvement on the 

filtered image contrast for at least 10 iterations. 

4 Experiment 

Experiments are conducted to verify the effectiveness 

of the proposed adaptive unsharp masking method for 

image contrast enhancement. A collection of 24 colour 

images from benchmark photographs obtained from 

http://rOk.us/graphics/kodak/index.html, together with 76 
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additional images taken by the authors in indoor and outdoor 

environments are used. Because of the differences in the 

feature characteristics in individual images, the output image 

from the UMF may contain a diversified improvement in 

the information content. Example images of various entropy 

increments are shown below. 

In Fig. 4, the image has obtained a relative highest gain 
among the test images. In particular, it is noted that the in­

put image have a low entropy, as the image appears blurry due 

to imperfections during the image acquisition process imposed 

by the environment. 

(a) (b) 

Figure 4. Filtered image with highest gain in en­
tropy (0.722); (a) input image, (b) filtered image. 

Figure 5 depicts the input image and the filtered version. The 

improvement in contrast is high where the image features a flat 

surface with a few objects. In particular, the image is occu­

pied with a large portion of similar color tone. Nonetheless, the 

UMF method is able to provide contrast enhancement. 

(a) (b) 

Figure 5. Filtered image with higher gain (0.435); 
(a) input image, (b) filtered image. 

An image of outdoor scene and its enhanced result from the 

UMF are shown in Fig. 6. The image contains a mixture of 

color tones and a wide depth of view. The original image has 

already a high entropy and the gain in information is the aver­

age within the set of test images. 

(a) (b) 

Figure 6. Filtered image with average gain 
(0.093); (a) input image, (b) filtered image. 

The statistics of the 100 test image results are presented in 

Fig. 7. The relative gain in entropy is plotted in Fig. 7(a) 

where it can be seen that the resultant entropies are above the 

diagonal line. This indicates that contrast enhancements are 

available from the proposed adaptive UMF approach. In Fig. 

7(b), the distribution of information gains is plotted and the 

average improvement is 0.095. 

, Inputimageentropy 
(a) 

.s'c-, ---!'"��'-'-;; •. 'f-', '-;;o.�, --;;.7-, --;; •. 7-. --;;o.-!-, --:0 .• Entrq1ygain 
(b) 

Figure 7. Gain in entropy; (a) comparison be­
tween input and filtered images, (b) distribution 
of entropy gain. 

The distributions of the filter parameters are also depicted. 

In Fig. 8(a), it is shown that the averaging kernel width peaks 

at 11 which is a realistic value that amounts to about 2 '" 3% of 

the image width. The gain factor, magnifying the high-passed 

component to be augmented to the input image, takes on the 

value of 1.395. This value, however, is regarded as problem 

dependent and a challenge in UMF design if the optimization 

approach is not adopted. Figures 8( c) and 8( d) contain the dis­

tributions of the Gaussian profile in adapting the intensity to 

the augmentation magnitude. The mean settles on 0.409 and 

the standard deviation is 0.424. It can be envisioned that pixels 

whose intensities are at the low end or high end are receiving 
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(a) 

(c) 

(b) 

, ; 
-" 

(d) 

Figure 8. Statistics of filter parameter values; (a) 
averaging kernel width w, (b) gain k, (c) Gaus­
sian kernel mean value J-L, (c) Gaussian kernel 
standard deviation (T. 

smaller magnifications as those pixels in the mid-intensities. 

This observation verifies the validity of the proposed adjust­

ment scheme. 

5 Conclusion 

An adaptive gain adjustment approach has been proposed for 

image contrast enhancement using an unsharp masking filter. A 

Gaussian-like profile is designed, where larger gains are allo­

cated to mid-range intensity pixels, in order to avoid drawbacks 

imposed from the over-range phenomenon as found in the case 

of constant scaling. Furthermore, the determination of optimal 

filter parameters is realized by the use of the particle swarm op­

timization algorithm. Satisfactory contrast enhancement results 

are obtained and the effectiveness of the developed method is 

verified. Moreover, statistics from experimental results are pro­

vided as recommendations for future filter designs. 
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