Journal of Visual Languages and Computing (Xxxxx) XXXX—XXXX

Journal of Visual Languages and Computing y

Contents lists available at ScienceDirect - l
VISURL LANGURGES 4

AND COMPUTING ”

journal homepage: www.elsevier.com/locate/jvic

A visual language and interactive system for end-user development of
internet of things ecosystems

Barbara Rita Barricelli*, Stefano Valtolina

Department of Computer Science, Universita degli Studi di Milano, Via Comelico 39/41, 20135 Milan, Italy

ARTICLE INFO

Keywords:

Internet of things

Event detection
Unwitting developers
Sociotechnical design
End-user development
eWellness

Visual language

Visual interactive system
Rule Editor

ABSTRACT

This paper presents the definition of a visual language and its implementation with the design of a visual
interactive system for the collaborative management of Internet of Things (IoT) sensors (e.g., wearable fitness
trackers, ambient sensors, fitness apps, nutrition apps, sleep trackers) for improving people's quality of life and
promoting wellness awareness. The system, called SmartFit Rule Editor, is designed to be used by coaches and
trainers of non-professional teams of athletes for monitoring and analyze fitness and wellness data streams and
to support them in detecting relevant events and specifying rules for actions taking. Our research is framed
under the scope of computer semiotics and semiotic engineering theories. This allows us to study how to
support coaches and trainers as a community of domain experts — but not IT and IoT experts — to use elements
of a visual language to indirectly manage physical devices and their data streams without the need to know
technical specification of the devices, the apps, and the data. We apply a socio-technical approach to design
being able to study the social and the technological aspects of the use of the Internet of Things ecosystem,
considering them as closely interconnected and dependent. Such an approach underpins user-centered design
and development methodologies in order to design the most suitable User eXperience according to users'

culture, needs, context of use, and activity.

1. Introduction

Community of domain experts but not IT and Internet of Things
(IoT) experts need an effective, easy-to-use and easy-to-learn strategy
for managing physical devices and their data streams, without the need
to know technical specification of the devices, the apps, and the data.
The relationship between domain experts and IT experts has often been
fraught with misunderstandings and even frustration. Part of this
disconnection between the Communities of Practice [1] is a natural
disparity between their work cycles. For a domain expert, the IT system
development cycle appears to be a long, drawn-out process. Moreover,
once the requirements are explained, it is not easy for domain experts
to follow them through the implementation process once they are
translated into technical forms. In the developers' defense, what they
receive as requirements is often not sufficiently detailed and precise
and many requirements are “refined” in the development process.
More importantly, once the translation is accomplished, the process for
changing a requirement requires going through the same complex
consultation and translation process for the change. In several cases,
the owners of the requirements (i.e. the domain experts) lose control
over their expression and evolution when it is handed off to be

* Corresponding author.
E-mail address: barricelli@di.unimi.it (B.R. Barricelli).

http://dx.doi.org/10.1016/j.jv1c.2017.01.004

embedded in a software solution, and never regain control. To this
aim, business rule management systems (BRMSs) [2] enable a great
leap forward in bridging the gap between domain and IT experts. Using
BRMSs, the domain experts define their policies and rules and provide
the clear communication between them and the developers implement-
ing the application system solution. Thus, domain experts have control
on exactly how their rules are being executed, and, perhaps more
importantly, how the system is designed to facilitate change when
business rules change. In traditional information systems, the rules and
policies get hard-coded into the application. When changes need to be
made, the entire software development life cycle must restart and all its
phases need to be repeated: requirements analysis, system design,
making sure it does not adversely affect anything else, implementing
the change, testing it, and deploying it. With a BRMS, the business
logic (again, the part most likely to require change) is separated out and
can be changed without impacting the remainder of the application. An
assessment of the impact of the change on these rules must still be
done, but this is much simpler than a full system impact assessment
and it can be done in a more understandable way by domain experts
themselves. For this reason, rules should first be specified at the
conceptual level, using concepts and languages easily understood by

Received 11 February 2016; Received in revised form 26 July 2016; Accepted 8 January 2017

1045-926X/ © 2017 Elsevier Ltd. All rights reserved.

Please cite this article as: Barricelli, B.R., Journal of Visual Languages and Computing (2017), http://dx.doi.org/10.1016/j.jvlc.2017.01.004

http://www.sciencedirect.com/science/journal/1045926X
http://www.elsevier.com/locate/jvlc
http://dx.doi.org/10.1016/j.jvlc.2017.01.004
http://dx.doi.org/10.1016/j.jvlc.2017.01.004
http://dx.doi.org/10.1016/j.jvlc.2017.01.004

B.R. Barricelli, S. Valtolina

the domain experts who are best qualified to validate the rules. This is
particularly true for the quantified-self movement, the result of
technology advances in the field of lifelogging, where thanks to the
sensors used as small and wearable devices that are affordable and
easily interconnectible, it has become a wide spreading phenomenon
that sees people to keep track, by using rules, of their habits, health
conditions, physiological data, and behavior, and to monitor conditions
and quality of the environments in which they work and live. Typical
BRMSs such as Drools," OpenRules” or IBM Operational Decision
Manager” offer different solutions for editing, managing and executing
rules and in some cases they also provide functions for modeling, in a
graphical way, the execution data-flows by applying a set of rules.
Moreover, as described in Section 2, the literature reports several
solutions for modeling business rules by using UML-Based Rule
Modeling Language [3] or standard ontology modeling notation such
as RDF or OWL, or other strategies based on Extended Tabular Trees
or Decision Tables approach. Anyway, all these approaches require
significant knowledge of standard modeling notation, and the pro-
gramming is still the central metaphor. However, what is necessary to
support nontechnical people in keeping track of their daily activities is
a new manner for expressing rules that can meet their expectations and
decision making attitude. This requirement pushes towards the design
of new manners for visually specifying rules at conceptual level by
adopting a graphical interaction strategy for expressing rules and
related constraints and actions in an easier and more natural way.
The emphasis of the interaction needs to be the communication process
that takes place among users and the system in order to meet the users'
expectations as thus defined in their mental model and tacit knowl-
edge. Our approach, specifically implemented in the context of
eWellness domain, aims at helping domain experts, in our case coaches
and trainers, in expressing rules based on their working settings by
using a set of conditions that if met, have to trigger suitable actions,
therefore allowing the establishment of a correct interpretation and
semiosis process among users and the system. The IoT panorama that
characterizes current eWellness domain faces the problem to monitor a
huge quantity of data collected by sensors and services that need to be
exchanged together with their users' needs and/or preferences, in order
to keep track and influence behaviors and critical situations. In this
context one of the main problems is the need to express conditions and
spatial-temporal and thematic relations that typically affect the sensors'
data-stream management. In general, sensors besides spatial and
temporal information provide thematic information in order to dis-
cover and analyze data. Thematic domain contains metadata that
describe a real-world state from sensor observations, such as a sensor
that is used for gather data about calories burned, heartrate, or
duration of a physical activity.

Section 2 describes current solutions based on the use of decision
tables, decision trees or mashup techniques that are still highly
complex and negatively affect the effectiveness of the communication
process between users and the system. On the other hand, a visual
approach to temporal conditions definition could help the user in
successfully expressing them without having to learn specific languages
and their syntax. Defining suitable visual representations for temporal
structures for rules needs the integration of theoretical and methodo-
logical work both from traditional areas devoted to temporal repre-
sentation (logic, reasoning, and databases) and from the information
visualization research field.

Stemming from these considerations, this paper presents the Rule
Language we defined and its implementation in a visual interactive
system that allows domain experts to unwittingly develop an IoT
ecosystem [4—7]. We use the term unwitting developers to identify

1 http://www.drools.org/
2 http://openrules.com/
3 http://www-03.ibm.com/software/products/it/odm

Journal of Visual Languages and Computing (xxxx) xxxx—xxxx

those people who are motivated in using specific software environ-
ments to reach their objectives and thanks to their motivation they are
more keen to overcome any eventual difficulty. As reported in [4,5],
programming is not these people's goal, instead constructing and
deconstructing software objects are. The architecture of the SmartFit
Framework is designed on Software Shaping Workshop (SSW) meth-
odology [8], one of the most established methodologies for End-User
Development (EUD) [9].

Specifically, this work results in the design of a Rule Editor as part
of the SmartFit Framework whose aim is to gather, compute, and
diffuse data originated and streamed by physical and social IoT devices,
sensors, and applications. The graphical Rule Editor uses a notation
able to facilitate team sport members in taking under control their
athletes' physical activities and their nutrition and sleep behaviors.

The essential idea of using a semiotics-driven design is to define a
new perspective in designing and developing interactive systems to
support collaboration in multidisciplinary projects, especially adopting
participatory design techniques. The key concept is to involve domain
experts in activities for mapping and translating their professional
knowledge into proper vocabularies, notations, and suitable visual
structures of navigation among interactive systems interface elements.
Such an approach to design is aimed at supporting communication
among different communities of experts (e.g., IT, domain, HCI, and
interaction design) and enabling their collaboration in designing
together effective interactive systems for specific application domains.

The paper is organized as follows. Section 2 describes how EUD
methods and techniques can be used to empower the end user in the
IoT domain and illustrates the state-of-the-art solutions provided by
Workflow Management Systems (WfMSs) and BRMSs in supporting
nontechnical people in keeping track of their activities and behaviors.
In Section 3, the methodology at the base of the design of the SmartFit
Framework is illustrated and discussed in detail. Section 4 presents the
architecture of the Framework and its systems. The Rule Language is
presented in Section 5, while its implementation in the SmartFit Rule
Editor is described in Section 6. The evaluation process and its results
are reported in Section 7, while Section 8 concludes the paper offering
an overview of future works and developments.

2. Related work

One of the key objectives in EUD is to provide people with the
capability to create and modify software. In particular, the goal of EUD
is to extend that capability to a wider range of people, beyond
professional programmers, in a way that will help these people in
achieving successful results in their daily activities. EUD represents the
ideal approach for empowering end users and make them becoming
unwitting developers in their own IoT environment [4—7]. As widely
reported in the literature, EUD can be enabled by applying methods
and techniques and by offering specific tools that support end users in
the development of solutions with limited programming skills and
knowledge about programming languages. Specifically, the solutions
offered by EUD include tools for the customization of applications by
parameters setting, control of a complex device (like a home-based
heating system), and even scripting of interactive Web sites [10]. In the
case of EUD, we are particularly interested in those who are not
professional programmers, but might still engage in some kinds of
programming activity. Significant researches have highlighted the
differences between end-user programming from professional pro-
gramming; with an intent-based differentiation: End-user program-
ming produces program for personal use or for their Community of
Interest [11]; Professional programming produces program to be used
by larger and more generic groups of users [12]. In the IoT context,
end-user programming allows users to configure, adapt, and evolve
their software by themselves [13] and such tailoring activities, together
with personalization, extension, and customization, aim at program-
ming not (only) the user interface and the behavior of an interactive

B.R. Barricelli, S. Valtolina

system, but embraces the whole IoT scenario of sensors and devices.
Therefore, in such context, end-user programming activities need to
distinguish according to three different levels on which they can
operate: hardware, software, and data. The activities on hardware are
those made on the devices via their bundled applications. They
typically are configuration, personalization, and customization by
setting parameters and choosing among existing behaviors. The
activities on software target concern the applications used for control-
ling more than one sensor/device (even of different brands) and
include tailoring by integration of existing and/or new functionalities,
macros, visual programming, and programming by examples. The
activities that can be made on data can be resumed in aggregation,
filtering, and porting. What we are interested in this paper is those last
type of activities addressed to supporting non-technical people in
managing the workflow of data coming from the set of sensors and
services that populated their working environment with special regard
to eWellness context.

2.1. Systems for designing workflows

Current WfMSs provide users with various approaches for simplify-
ing the acquisition of programming skills in the field of the workflow
design. Commercial systems such as Talend Studio,* StreamBase
Studio,” and Waylay.io® are designed for offering programming assis-
tance by using metaphors in graphical interfaces, or by using abstract
representations to hide complex programming concepts, or by provid-
ing helper codes to avoid syntactic errors. While Talend works on static
data coming from fixed datasources, StreamBase and WayLay can
receive and analyze continuous data streams and are specifically
designed for IoT. Despite their different attitude to analyze dynamic
flow of data, these systems adopt typical control strategies that aim at
helping users to overcome their cognitive difficulties in programming
by offering a graphical interface for designing workflows and data-flows
as graphs of connected nodes representing tasks and data sources.
These environments provide rich user interface support for the full
application lifecycle, spanning feed integration, application modeling,
development, data streams recording/playback, testing, and debug-
ging. These environments offer the possibility to define UML-based
modeling of data, states, and processes or to use standard ontology
modeling notation such as RDF or OWL for representing the business
data and relationships against which rules will execute, simplifying
solution development. However, they are not just graphical modeling
tools but they are a complete, unified graphical programming environ-
ment. They offer graphical transformation and mapping tools that
allow developers to drag and drop a rich set of out-of-the box catalog
functions or user-defined functions into the rules editor. Even if they
are much simplified programming environments than today's
Integrated Development Environments (such as Eclipse,” Visual
Studio,® and Netbeans®), programming is still their central metaphor.
For example, the screenshot in Fig. 1, depicting the StreamBase studio
interface, presents a graphical representation that exposes technologi-
cal constructs such as icons for carrying out classic Database
Management Systems operations, function-based tasks or queries that
can be performed by using a specific programming languages para-
digm, i.e. StreamSQL.

For avoiding the need to learn a SQL-like language or other
programming-oriented constructions, in some case unknown by non-
technical people, interesting solutions can be found in the field of the
BRMSs able to offer easier way for editing rules. In [14] the authors

4 http://www.talend.com

5 http://www.streambase.com

© http://www.waylay.io

7 https://eclipse.org

8 https://www.visualstudio.com
2 https://netbeans.org

Journal of Visual Languages and Computing (xxxx) xxxx—xxxx

propose the integration of Drools and the XTT2 rules representation
and the HQEd visual Rule Editor. The results of the modeling are
translated in Drools Language (DRL) files, which can be executed by
the Drools engine. However, the weakness of these approaches is that
the XTT2 language has not been standardized and has several limita-
tions as reported in [15] despite the high expressiveness of DRL.
Another paper presents a solution for graphical modeling of rules [16]
that are then automatically translated in the programming language
supported by the adopted rule engine. In this case, the graphical editor
is integrated in Drools Guvnor.'” Drools Guvnor provides a guided text
editor for writing rules that are then translated into the Drools rule
engine compliant language. However, the expressivity of the visual
language described in [16] is reduced with respect to drools textual
language especially for what concerns the specification and processing
of complex events. This language allows to specify a business rule can
be expressed in form: When something is true, Then do this. Instead,
the Guvnor text editor allows to specify more complex conditions on
events. Apart from supporting logical combinations of conditions, the
editor also includes rich timing comparison operators that allow to
specify different timing relations between events, such as the event A
happens before or after event B.

Other visual strategies typically used for modeling workflows are
based on the use of mashup techniques for combining existing Web-
based content and services for creating new applications. These
strategies stem from the idea to adopt a control-metaphor based on
the use of “spreadsheets” or “pipes”. Decision tables are one of the most
popular way to present sets of related business rules inside spreadsheet
tables. They are generally used to describe and analyze decision
situations, where the state of a number of conditions determines the
execution of a set of actions. BRMSs such as OpenRules or Drools allow
users to configure different types of conditional logic to generate rules
in the base of data entered into a spreadsheet. A disadvantage of the
technique is that a decision table is not equivalent to complete test
cases containing step-by-step instructions of what to do in what order.
When this level of detail is required, the decision table has to be further
detailed into test cases making it difficult to read and understand.
Other solutions rely on the use of metaphor provided by the most
famous system that apply them, it is Yahoo's Pipes.'" it is based on the
idea of providing a visual pipeline generator for supporting end users in
creating aggregation, filtering, and porting of data originated by
different sources. Systems like Bipio'? or DERI pipes'® typically use
formula languages and/or visual programming for data transformation
and mash-up. An advanced use of such visual paradigm is offered by
WebHooks'* that allows the end users to even write their personal API
for enabling connections with new sources of data. In general, the
visual strategies adopted by such Yahoo's Pipes-compliant solutions are
promising techniques but, in our opinion, they present some lacks.
Some studies [17] also found that, although these strategies tried to
simplify mashup development, they are still difficult to use by non-
technical users, who encounter difficulties with the adopted composi-
tion languages [18]. The preparation steps to setup the pipes or
customizing the operators of these pipes require low-level technical
skills such as data processing or programming. As a result, this mashup
approach hurdles users in their everyday situations. Moreover, events
in each stream of a IoT scenario are time and space dependent and so
the related rules need to take into account these types of conditions.
Nevertheless, in the described systems, time and space dimensions are
almost neglected.

10 http://guvnor.jboss.org/

11 https://pipes.yahoo.com/pipes/

12 https://bip.io/

13 http://pipes.deri.org

14 https://developer.github.com/webhooks

B.R. Barricelli, S. Valtolina

B 58 Authorng - PlattormDema/ HeloQuate sbapp - Stresmbaie Studio 7.1 - -

. ? . . . Y0 -0-Q-

Parameters Dymamc Vanables Metadats

R lockssql

i i4

0O
Ea
n
~
v

Journal of Visual Languages and Computing (xxxx) xxxx—xxxx

Fig. 1. StreamBase Studio screenshot. An example of a visual workflow design strategy.

2.2. From BRMs graphical interfaces to event-based visual notations

Solutions described in the previous section and currently adopted
in several WfM and BRM systems or Yahoo's Pipes-like applications,
despite being an easy strategy for editing rules, suffer of the problem to
compel end users in acquiring technical knowledge to manage the
workflow that characterize their working context. Moreover, there are
many end users' daily settings where a programming environment is
plainly inappropriate and inaccessible for the situation. For example, in
an eWellness context, where a trainer has to monitor the activities of
her/his athletes, she/he has a requirement for a lightweight, minimalist
approach without the constraint to manage the whole workflow and
data-flow that underlies their knowledge domain. For example, they do
not wish to handle the amount of involved sensors and services on
which data they need to execute integration, filter, join, transform
operations in order to detect relevant events. What they need is a
simplified environment to monitor events and to perform a set of rules
to take into account for supporting their decision making. Recent
applications in IoT field have focused their attention on the modeling
tasks on the base of event-condition-action (ECA) [19] rules able to
monitor regular day-to-day activities for detecting anomaly or specific
situations. Famous examples are IFTTT'® and Atooma.'® These
applications allow users to define sets of desired behaviors in response
to specific events. This is made mainly through rules definition-wizards
that rely on the sensors/devices states. Rules can be typically chosen
among existing ones or can be tweaked through customization. These
activities put in place a task automation layer across all sensors/devices
in the IoT environment. The visual strategy aims at creating automated
rules by using graphical notation for programming statements such as:
“IF this DO That” or “WHEN trigger THEN action”. These solutions
offer a very easy to learn solution based on the definition of ad hoc rules
that can notify the end users when something happens, e.g., when their
favorite sites are updated, when they check-in in some places or their
friends do, or warn them when specific weather conditions are going to

15 https://ifttt.com
16 http://www.atooma.com

take place. However, the language is not expressive enough for the
specification of more sophisticated rules based on time and space
conditions. For example, in a scenario where we want to monitor data
related to health conditions and behavior of a group of athletes, we
need to keep track of the collected data through all the everyday or
occasional activities that may influence on the people's quality of life,
e.g., in wellness domain: weight, sport/fitness, food, and sleep quality.
Apart from supporting logical combinations of conditions, we need to
specify timing comparison between different events. For example that
the athlete has taken less calories of those burned in a physical activity
that has been taken place after lunch.

3. Research approach

Our research's approach is socio-technical, i.e. it focuses on both
the social and the technological aspects without considering them as
distinct but seeing them as tightly interconnected and related. Such an
approach is based on user-centric design and development methodol-
ogies (User-Centered Design, but in particular EUD) in which the user
is seen in her/his activity but also directly involved in the creation and
design processes. In EUD literature, several methods and tools are
available to support the participation of end users in design and
development [20—23]. In our research, we adopt the SSW methodology
[8]. SSW allows a multidisciplinary design team to design and develop
interactive environments that support the activities of users acting a
specific role in their community and having a specific application
domain; are tailorable, customizable and adaptive to the working
context; support the exchange of information among users belonging
to different communities. The SSW methodology is evolutionary and
participatory: the final user can customize and evolve her/his own
virtual environment and she/he is involved in each step of the system
development. A representation of the implementation of the SSW
methodology for our research is depicted in Fig. 2.

At Metadesign level one or more IoT Engineers configure the IoT
elements in the ecosystem and design the data flow that will gather and
organize data to be served at the Design level interactive system. At
Design level, Coach and Trainer (but eventually more than one for each

B.R. Barricelli, S. Valtolina

Journal of Visual Languages and Computing (xxxx) xxxx—xxxx

loT

_____________________________ loT
, Engineer, ™ =" Engineer,
(HW +SW) i !
Engineer,
(SW + DATA)
CoaChhssearicaais Trainer
(DATA)

- Athlete; <

Athlete,

Athlete,

Fig. 2. The SSW implementation for SmartFit Framework.

category) will use their system to design the rules to be used at Use
level. At Use level the Athletes will be provided with an interactive
system for monitoring their own behavior and lifestyle and to share
their data with the other athletes in their team. The vertical arrows in
Fig. 2 show the flow that the meta-design, design, and use process
follows, while the dashed lines indicate that the users at the same level
are able to share among themselves the outcome of their metadesign,
design and use activities. The SmartFit Framework architecture and its
three interactive systems are described in detail in the next section.
Our research is framed in a computer-semiotics context. According
to Andersen's definition [24], computer semiotics is “a discipline that
analyzes computer systems and their context of use under a specific
perspective, namely as signs that users interpret to mean something”.
Computer systems are studied in computer semiotics from two
different, though related, perspectives. First, they are utterances in
which designers and developers formulate an understanding of the
problem domain and of the application domain of the system [25-28].
Semiotic engineering [9] views interactive software systems as artifacts
through which the communication between users and designers takes
place. The designer sends users “a one-shot message” which unfolds
into further two-way message exchanges, according to de Souza [27]
explaining how and why they should communicate with the software
application in order to achieve a specific goal. To decode and interpret
the designer's message, the users have to communicate with the very
message itself employed in the software. The message gradually
unfolds all the meanings the designer encoded in it before the users.
In this view, the message (i.e. the software application) serves as the
designer's deputy and represents the mediator through which end users
can interact with the system. From a semiotic engineering perspective,
Human—Computer Interaction is seen as a process of “communication
about communication” i.e. “meta-communication” [27]. Indeed, sys-
tem designers tell users how and why to interact with the system they
have created, and this explanation is embedded in the system's inter-
face, which serves as a means for transferring the designers' messages
to the users. Second, in so transferring messages, computer systems
provide a formal symbol-manipulation mechanism that serves as a
structured channel for communication through the system. The
symbols are computed by the machine and the results of the processing

appear as messages on the computer monitor. At that point, the human
perceives the messages and transforms them back into signs. These two
ways in which computer systems are part of sign-based communication
are related: Skilled use of a software application depends on the user's
understanding of how the formal symbol-manipulation relates to the
problem and application domains. In other words, competent interac-
tion with and communication through the system depends on the user
understanding the utterance of the designers and developers [25,26].
Conversely, if the software is designed to structure navigation and
content in ways unfamiliar to the user,the user will not be able to use
the software for the task at hand or to communicate with other users in
a collaboration context.

Specifically, to our work, we apply the semiotic model of digital
communication among IT experts, domain experts, and end users that
we published in [29].

To describe this semiotic approach, the communication process
that takes place among all the stakeholders in a participatory design
process, exploiting on the participation of domain experts in the
knowledge management design, is enabled by the means of the design
of usable and effective interfaces, that according to semiotic engineer-
ing theory can be seen as composed of messages (embodying the
implicit information).

From a preliminary comparison with coaches and trainers we
involved in the design process and test of our prototype, we understood
that such users need to have control over the conditions and the action
sequences of their task and automate the triggering of its execution
once the specified conditions are met. They do not want to be distracted
by the complexity of the composition paradigm of a workflow but they
want to focus on their daily tasks that have to be defined in an easy way
also by nontechnical users without the IT assistance.

As part of the participatory design process, we organized a focus
group involving coaches and trainers of a teenager soccer team of Milan
affiliated to the Centro Sportivo Italiano (Italian Sport Centre), high-
lighted as ECA rules could well represent the message that a coach or a
trainer wants to communicate. These communication strategies were
devised by experts who collaborated in three participatory design
sessions. During these sessions four domain experts were involved:
Three coaches and one trainer. A first session, lasting approximately

B.R. Barricelli, S. Valtolina

Journal of Visual Languages and Computing (xxxx) xxxx—xxxx

transform e,
join
J e,
filter 4‘ join
€4

enhance — aggregate —

v
22
ol
$
<)

46 ¢

before e,

€3
time

action PAcE

Fig. 3. The SmartFit Framework.

three hours, was set up for defining a set of tasks to be carried out in
order to monitor specific situations and conditions of members of a
non-professional soccer team. During the session, coaches have high-
lighted the need to monitor specific situations and trigger related
corrective actions such as “If yesterday my athlete overtook his caloric
intake of 3000, today I suggest him to run more than 1 hour” instead of
having to design the whole workflow for monitoring data coming from
her/his athletes' sensors and services. The results of this session have
highlighted how by keeping track of events related to athletes' habits, in
terms of physical activity, nutrition, sleep and so on, can help the
coaches in understanding the variety of the team members and finding
successful schemes of training. A second session was set up for
discussing about possible solutions for helping coaches and trainers
in creating rules in a digital environment by means of a visual language.
Also this session requested a debate of around three hours. According
to the results of this session and as outlined in [30], a summary of
common characteristics that point to the need for defining ECA rules is:

® Users need to take the control of rule conditions, including (i) the
choice of resources and (ii) the specification of spatio-temporal
condition combinations. For example, the user may to be interested
in selecting specific sensors and services for monitoring the calories
intake before a heavy physical activity.

e Users need to take the control of actions triggered by rules, including
(i) the choice of resources and (ii) the specification of action
sequence for execution. For example,since the user want to monitor
the calories intake and the minutes of heavy physical activities, she/
he may to be warned in case of critical situations such as that the
caloric intake is too low with respect to the time spent on heavy
physical activities.

e Users want to delegate the checking of condition fulfillment and the
subsequent initiation of rule execution. For example, the user may
enable automatic triggering, by email or sms, of suggestions or
warning in case some critical conditions are met.

From literature analysis [31,32], it emerges that the ECA rule-based
paradigm turns out to be one of the most promising ones for
supporting non-expert users in configuring smart devices in intelligent
environments. Other studies such as [33,34] claimed as the use of ECA
rules is well suited for monitoring wellness events. Regardless of the
application domains, the literature explains how the use of visual tools
based on IFTTT-like approaches is a suitable solution for supporting
EUD strategies based on ECA rule [35,31]. These studies showed that
the perceived usability of these visual tools is good and that the average

user can successfully carry out trigger-action programming, also when
it is extended with the possibility of creating multiple triggers and
actions.

For these reasoning, starting from the IFTTT-like approaches, our
idea aims at extending the ECA language for providing coaches and
trainers with a familiar graphical notation for editing rules, that can be
stored and shared among all member of the community to which they
belong. An initial proposal of our Rule Language is published in [36]
and is refined and extended in this paper (see Section 5).

The third and last session was devoted to the design of the SmartFit
Rule Editor interface, as is described later in Section 6.1.

The final SmartFit Framework is based on a cloud-based architec-
ture able to host the ECA rules that coaches and trainers can
personalize and use in their context of use without the need to reedit
them or to define the whole workflow. In contrast to traditional systems
that host networked applications on dedicated server hardware, a cloud
computing model allows applications to be provided over the network
“as a service” supplied by an infrastructure provider. As argued in [30],
our cloud-based architecture aims at offering a new layer of service,
named a “rule as a service” for allowing coaches and trainers to share
their ECA rule definitions and in this way improving collaboration,
integration, and community-based cooperation within their organiza-
tions. Share rules allow users to exploit common experiences in order
to discover existing solutions that can fit their needs. This increase the
sense of belonging to a common community that help to find fruitful
solutions based on shared experiences.

4. The SmartFit Framework

All the interactive systems used by IoT Engineers, Coaches and
Trainers, and by the Athletes, together with the IoT devices, constitute
the SmartFit Framework. SmartFit aims at offering a set of graphical
visual environment for exploiting the potentials of an IoT environment
in the domain of non-professional athletes training. In Fig. 3 the
different environments are illustrated showing the flow of the process,
starting with the connection of the IoT devices, passing through the
Data flow design system, called StreamLoader (for the Engineers), the
Rules design system, called SmartFit Rule Editor (for Coaches and
Trainers), and ending with the deployment of the rules for their actual
use in everyday life (for the Athletes). Up to now, this one is the only
system that still has to be completed.

The architecture at the base of our SmartFit Framework has been
designed to help members of non-professional sport teams, in config-
uring and managing a network of sensors and services which the aim of

B.R. Barricelli, S. Valtolina

Journal of Visual Languages and Computing (xxxx) xxxx—xxxx

Athletes’ interactive app

| .
:
=
GUI Rules DB &
Translator N\
(V]
Visual ECA rules m 3
= o
| .
Data-Warehouse 3]
e}
©
(@]
—
E
©
(O]
S
)
(7]
S
(]
>
8
- ~
- ~

- ’,” // 4 s ~ 8
-7 - s 4] (%]
- - 7/ [+ c
= 3 o
)&) 7 2]

\._/ y ! <

1
0Ot

Fig. 4. SmartFit cloud architecture.

providing coaches and trainers with strategies for monitoring their
athletes' activities. As depicted in Fig. 4 the architecture of the SmartFit
Framework is composed of four layers: Sensor Layer, StreamLoader,
Rule Editor and Interactive App. The first one is the physical network
of sensors and services while the other three are tailor-made environ-
ments designed to address specific needs of three different
Communities of Practice that co-exist in a eWellness scenario: IoT
engineers, Coaches and Trainers, and Athletes.

Sensor layer: At sensor layer, each node of the network is in charge
of managing a bunch of sensors and can execute a set of Extract,
Transform, Load stream processing operations. Sensors are handled
through a distributed publish—subscribe system [19]. Each time a
sensor is published, its type, schema, and frequency of data generation
are made available to subscribers. When a conceptual dataflow is
realized into the StreamLoader, a translator module is in charge to
execute it at network level. This module described in [37,38] aims at
providing a network control protocol stack able to interpret the logical
description of the data flow and dynamically to coordinate the network
configurations, such as dataflow execution, segmentations, and QoS
parameters. When the dataflow is graphically described by the IoT
sensors/devices engineers in the StreamLoader it is translated and
executed in the network and monitored. The executor module coordi-

nates their execution.

StreamLoader: By means of the StreamLoader system, IoT sen-
sors/device engineers are in charge of connecting, maintaining, and
setting up the devices and sensors to be used by the Smartfit and its
inhabitants (coaches, trainers, and athletes). StreamLoader allows the
design of data flows by aggregating data sources and applying operators
to them for filtering, transforming, and composing the gathered data.
More details about this environment are referred in [38,39]. The
StreamLoader output is a flow of events that can be used by coaches
and trainers, for defining rules to monitor particular situations and to
adopt suitable actions according to the occurrence of given conditions.
As reported in Fig. 4, the final flow of events is stored in a data-
warehouse that is then forwarded to the Rule Editor to be analyzed by
coaches and trainers. Exploiting the Rule Language explained in the
next section, the Rule Editor enables coaches and trainers to act as end-
user developers by designing the ECA statements to be used to
supervise athletes' performances and lifestyle and they also analyze
the gathered data in their interactive system. StreamLoader produces
streams of events according to the multigranular space, time and
thematic data model.

Data produced by sensors or services are heterogeneous in spatial
and/or temporal granularities (e.g., temperature in a room versus

B.R. Barricelli, S. Valtolina

temperatures in a geo-graphical area or data acquired one time for day
or every hour), in thematics (data about calories burned or data about
heartrate). Relying on the concepts of temporal and spatial granula-
rities, an event is stored as a tuple of data coming from a sensor which
generated values having a spatial reference about its location and that
are captured at a given time period according to given thematic.
Therefore, an event is a value represented at a given spatio-temporal
granularity for which thematic information is added. Granularities are
used for identifying correlations among data produced by different
sensors and for imposing consistency constraints in the composition of
sensor data produced by heterogeneous devices. We remark that
whenever a sensor is not able to produce the spatio-temporal informa-
tion of the produced data, this information is added by the publish—
subscribe system that we adopt in our architecture.

Rule Editor: The Rule Editor has been designed to offer the
possibility to exploit the expressivity of our ECA language specification
through a visual interaction. By means of graphical user interface
(GUI), coaches and trainers can express their intent through a familiar
and easy to manipulate interaction strategy. At the same time, the GUI
forwards this visual specification to a translator module to translate it
into an “executable” language to provide to a rule engine. Specifically,
the translator module translates the ECA rules expressed by the visual
specification in DRL files, which can be executed by the Drools engine.
Coaches and trainers act as non-technical users and for this reason the
Rule Editor needs to provide them with interactive strategies able to
hide the complexity of the underlying transport module. Moreover, in a
typical non-professional sport team, coaches and trainers are involved
as volunteers or semi-pros that need to re-use existing ECA rules for
taking advanced by training and monitoring strategies of others
colleagues or more expert professional. To make this efficient, the
Rule Editor stores generated rules into a repository that manages them
for one or more teams. From a technical point of view, designing
storage architectures for these rule definitions presents several chal-
lenges and opportunities. Tackling these problems requires a combina-
tion of architectural optimizations to the storage devices and layers of
the memory/storage hierarchy as well as techniques to manage the flow
of data between the software layers and storage. Our cloud computing
data center is modeled upon a simple design-for-failure infrastructure.
It uses low-cost, purpose-built, scalable solutions while still utilizing a
standard delivery model. The peculiarity of our architecture is to
provide a service specially designed for exposing rules through a
JSON API. The rules are stored without specifying their validity, that
is, without indicating the time period in which the rules are enabled. In
this way, the rules can be reused and customized by other users
according to their needs. Finally, to effectively manage policies
implemented as large numbers of rules, the Rule Editor provides the
possibility to search the repository for specific rules, based upon
criteria related to the spatio-temporal-thematic granularity used for
storing the flow of events in input to the Rule Editor. Moreover, the
Rule Editor enables the assignment of additional metadata properties
(built-in or customized to your own needs) such as who authored the
rule, when the rule was last modified or the effective date range for the
validation of the rule. These properties are in addition to the ability to
search based on the vocabulary terms used in rule definitions and the
actions taken as results.

Interactive App: Finally, at the last layer of our architecture, an
interactive app acts for supporting athletes that can be seen as the real
end users, to passively use the data gathered by the IoT sensors and
devices to improve their lifestyle and sport performances. This tailored
interactive system can be used to have a view on their behavior and
performances at any time during the day.

5. Rule Language

A business rule is a statement that describes a policy or procedure
[40]. A business policy defines the scope or spheres within decisions

Journal of Visual Languages and Computing (xxxx) xxxx—xxxx

can be taken. In this context, a policy needs to be translated into a more
specific statement that specifies the details of how the policy is
enforced. These statements are the business rules and are used for
explaining the conditions and actions that unambiguously enforce the
policy. For example, if a coach wants to monitor her/his athletes'
behaviors about their diet and quality of sleep she/he could define rules
for checking the athletes' calories intake and the hours of sleep. In
creating these rules, the coach has to specify what happen when a
particular set of conditions occur, by defining a list of actions to trigger.
For example, the coach can specify that if the conditions are met, a
warning is sent by sms. In a rule, the condition evaluation is not tied to
a specific evaluation sequence or carried out at a predefined time, but it
happens continually, at any time during the life time of the sensors or
services; whenever the condition is met, the actions are executed.
According to this rule definition, SmartFit aims at providing non-
professional sport team members with an environment for rules that
are used for monitoring events related to athletes' habits, in terms of
physical activity, nutrition, sleep and psychological conditions. This
editing system is designed for providing a means of expressing rules in
a format and language that is familiar to the policy managers, the sport
team members in charge to define rules. The main aim of SmartFit is to
offer a ECA language specification through a visual notation that can
unambiguously express the coaches and trainers' intents through a
familiar and easy to manipulate interaction strategy, and at the same
time a language that can be translated into something “executable” by
the software application. A peculiar characteristic of this language is
the need to monitor events that are time dependent. In IoT contexts of
use, rules are designed around the requirement to manage the
processing of real time or near real time events, and for this reason,
time becomes an important variable of the reasoning process. In what
follows the formal description of the language used for expressing rules
is presented.

5.1. SmartFit Rule Editor Language

The Rule Editor Language we defined allows the domain experts
(coaches and trainers) to specify composite rules on different kinds of
events that are detected by IoT devices, sensors and applications used
by the athletes. In the notation used for the language definition, we
used square brackets to denote optional components. A
CompositeRule, as it can be seen by its definition, is composed of
one or more Rule(s) and is associated to an Action. An Action in the
current implementation of the Language in SmartFit Rule Editor is
message that is sent to the athletes via their SmartFit environment.
Moreover, a CompositeRule might have the indication of a
ValidityInterval, that is the period of time considered for the data
stream filtering; all events taking place outside the specified
ValidityInterval would be ignored. A Rule is defined by the Event that
has to take place and a specific condition on that Event. For example,
an Event in the eWellness case could be “Calories Intake” and as a
condition “greater than 1500”. In our work, we define the Event as the
stream of Data that is gathered by a specific device. It is important to
underline the fact that Data might not be only composed of numbers or
strings, but could be defined by a complex structure that has one or
more parameters. As an example, physical activity detected by a fitness
monitoring device could be described by duration, calories burned,
heartrate, distance, location etc. Therefore, a parameter is defined as
the couple ParName (name of the parameter) and ParValue (the value
recorded by the fitness monitoring device). Condition can be of two
types: on value or on time. ConditionOnValue allows to express a filter
on the value of a specific parameter using common mathematical and
logical operators. ConditionOnTime, on the other hand, allows to
express conditions on temporal frame in which the events specified
by the rules take place. An important aspect of this language is that is
simplified in comparison to Drools one, as discussed later in this
section.

B.R. Barricelli, S. Valtolina

CompositeRule ::= Rule [AND| OR] Action
[ValidityInterval]

Rule ::= ON Event WHENEVER Condition

Event ::= Data GATHERED BY DEVICE (DId)

Data ::= Parameter

Parameter ::= ParName ParValue

ParValue ::= Integer | Real |l Stringl Datel Set

Action ::= SEND MESSAGE TO USER_APP (AId)
ValidityInterval ::= TODAY | YESTERDAY | 1 DAY BEFORE | 2
DAYS

BEFORE | 3 DAYS BEFORE | 1 WEEK BEFORE | 1 MONTH BEFORE |
6 MONTHS BEFORE | SINCE THE BEGINNING

Condition ::= ConOnValue |l CondOnTime
CondOnValue ::= ParName Operator ParValue
Operator ::==I <>l ININOT IN|BETWEEN | NOT

BETWEEN | IS NULL| IS NOT NULL

CondOnTime ::= Rule starts BEFORE | AFTER | WHEN Rule
starts

[Range] [and ends BEFORE | AFTER | WHEN Rule ends
[Range]]

Range ::=+/— Integer

5.2. Overcoming drools complexity

To implement the Drools rules editing in an interface would force
the user to select among a set of different types of presets that are not
easily recognizable without effort. Drools has a set of 13 temporal
operators: After, Before, Coincides, During, Finishes, Finished by,
Includes, Meets, Met by, Overlaps, Overlapped by, Starts, and Started
by. All 13 operators have different meaning but some of them are not
very distinguishable from one another. The different combinations of
rules temporal conditions are depicted in Fig. 5. We described the rules
temporal conditions with an approach based on Allen's work on
interval-based temporal logic [41]. All these combinations can be
codified using the Rules Language we defined. This simplification, in
respect to Drools syntax, allows to create easy-to-use interfaces and a

Journal of Visual Languages and Computing (xxxx) xxxx—xxxx

fast process of composite rules creation. All the combinations can be
codified using the Rules Language we defined. This simplification, in
respect to Drools syntax, allows to create easy-to-use interfaces and a
fast process of composite rules creation. Let us propose an example for
proving the reduced complexity in the SmartFit Rule Language is the
creation of a complex temporal condition:

Rule R1 starts before Rule R2 starts (Range: +15 min) and ends
after R2 ends.

The creation of such condition takes place in SmartFit by asking the
user to select only the parameters written in bold in the condition text.
The interaction with the system is very easy and fast and results in the
creation of a natural language sentence that is very easy for the user to
understand, even if she/he reads them a long time after it has been
created (i.e. recall is not needed to understand the interaction with the
system; instead, recognitions work effectively).

The same temporal condition, if expressed in Drools, would force
the user to understand which one of the available operators to use.
Actually, one operator is not enough to represent entirely the condition
that the user is asked to edit. In fact, to express that two rules are
overlapping there is need to choose the Overlaps operator but it is not
possible to express the fact that the first Rule (R1) starts before and
ends after the second Rule (R2). Therefore, a combination of more than
one operator would be necessary, increasing in this way the complexity
of the user interaction and augmenting user's cognitive effort.

6. SmartFit graphical Rule Editor

By exploiting the Rule Language described in the previous section,
the rules can be specified by means of the graphical Rule Editor.
Through a visual notation, coaches and trainers can specify conditions
to monitor of athlete well-being on the base of the flow of events
provided in output by IoT engineers at meta-design level with the
SmartLoader environment. A screenshot of the initial screen of Rule
Editor is shown in Fig. 6.

R1 begins and ends before R2

- e
R1

& e
& R2 ®

R2 begins and ends before R1

/2 |
L R2 ®

[r1 |
¢ R1 +

R1 begins after R2 begins and ends before R2 ends

. R1 °

[

[R2 <

L

R2 begins after R1 begins and ends before R1 ends

[R2 ®

[

* R1 +

[

R1 begins before R2 begins and ends before R2 ends

- °
R1
[r2 |
L R2 2

R2 begins before R1 begins and ends before R1 ends

P °
L, R2 ®
R1

* +

R1 begins with R2 and ends before R2 ends

* R1 +
R2]
L=

R2 begins with R1 and ends before R1 ends

H

R1 begins after R2 begins and ends with R2

R2 begins after R1 begins and ends with R1

1 |
. R2) - R1 >
R1 and R2 begin and end together
. .
- R1 | +
[ry |
° R2 °

Fig. 5. All 11 possible combinations that can be codified using Rule Language.

B.R. Barricelli, S. Valtolina

Composite rule settings

Composite rule name

Journal of Visual Languages and Computing (xxxx) xxxx—xxxx

Barbara LOGOUT

Status Testing Ready
Visibility Private Shared
Validity interval Since the beginning v
Action

Rules editor

Temporal conditions

< Add condition

=) =

Fig. 6. The Rule Editor system.

6.1. Design rationale

The design of the SmartFit Rule Editor interface is an outcome of
the third session of the focus group we organized with the domain
experts. We adopted the PICTIVE method (Plastic Interface for
Collaborative Technology Initiatives through Video Exploration) [42],
based on collaborative prototyping and visual communication para-
digms, and used a combination of deliberately low-tech design tools
(e.g., paper and pencil, colored labels, and sticky notes) with high-tech
video recording facilities. A mock-up prototype of SmartFit Rule Editor
was created using low-tech design tools. Recording facilities have been
used to capture the process of prototyping, in order to use the
recordings as a guide for the implementation of the system or to
explain the logic that exists behind the design decisions.

The prototype showed us what features the domain experts expect
to find in the system and how they see the composite rule creation
process organized.

As to the features, the requests were to have four sections in the
system:

1. New rule: This section is the one that is further described in this
paper, that is the composite Rule Editor.

2. My rules: In this section the users find all the rules they created with
the possibility of manage them (modify, delete). Among the other

10

details that the users can change for the rules, it is also possible to
set the sharing status of the rule, i.e. to be shared or not with others.

3. Shared rules: This section is dedicated to all the rules that have been
shared with others and to those that were created by other users and
that were adopted by the Editor user. Shared rules can be modified
by the user to adapt them to their needs.

4. Settings: This final section allows to set some properties of the
system (e.g., colors) that can be customized to enhance the user
experience quality.

In designing the composite rule creation process, the domain
experts pointed out the need to have it split into three main steps:

1. Composite rule settings: This first step allows the user to assign a
name to the composite rule, to specify if the rule is ready to be used
or in a testing phase, to share the rule or maintain it private, to set a
validity interval of application of the rule and finally to define the
action that has to be taken when the rule is eventually verified.

2. Rules editor: This represents the core of the SmartFit Rule Editor, in
that allows the user to create the composite rule, using some logical
operators (and, or) and grouping and reordering the rules if needed.

3. Temporal conditions editor: This last step is the one that allows the
user to define specific temporal conditions that need to be satisfied
to relate the rule with the time dimension.

B.R. Barricelli, S. Valtolina

"day": "30-01-2016",
"data flow": {
"step counter": ({
"type": "sensor",
"total steps_day": "9000",
"num_ steps": [
{
"start": "11:00",
"stop": "11:30",
"steps": "7000"
b
{
"start": "13:00",
"stop": "14:30",
"steps": "2000"
}
1
b
"hours_ sleep daybefore": "7"

b

Journal of Visual Languages and Computing (xxxx) xxxx—xxxx

"calories_ intake": {
"type": "mobile app",
"total cal day": "4500",
"calories": [
{
"time start": "08:00",
"time_end": "08:20",
"num": "1000"
br
{
"time start": "12:00",
"time_end": "12:45",
"num": "2000"
br
{
"time_ start": "20:00",
"time end": "20:40",

num": "1500"

}

Fig. 7. JSON flow of events.

6.2. The graphical editor

As depicted in Fig. 8 the graphical interface is based on drop-down
menus that are populated by using the attributes that characterize the
JSON of the flow of events produced by the IoT Engineers with the
SmartLoader environment. At this development stage of the Rule
Editor, we are able to manage events sampled on a daily basis. For
each day, the dataflow reports a set of events that can be collected at
different time.

For example, Fig. 7 presents a flow of three events caught at day
“30-01-2016” and that concern the number of steps, the hours of sleep
of the day before, and the calories intake at breakfast, lunch and
dinner. An example of CompositeRule creation is given in Fig. 8, where
the user has defined four Rule conditions:

® R1: Hours of sleep less than 7.

Rules editor

It R1 Hours of sleep v | less
It R2 calories (intake) - DINNER v | greater
AND OR [
It R3 steps v less
It R4 | Activity duration v | less

® R2: Calories intake at dinner greater than 1500.
® R3: Number of steps less than 8000.
® R4: Activity duration less than 45 min.

The rules are built in this way: R1 AND R2 AND (R3 OR R4). The
meaning of the CompositeRule created in this example is: “if the hours
of sleep of the day before are less than 7 AND if the calories intake at
dinner (before the sleep) is greater than 1500 AND (if the number of
steps is less than 8000 at day OR the duration of physical activity is not
less of 45 min at day THEN send the athlete a message that warns
about the behavior and performances.”

The Rule Editor aims at allowing non-technical people to specify
rules by using simple drop-down menus. The conditions can be
composed of combining groups of statements connected by using the
operator AND or OR. The order of the conditions that can be changed
by the user just by dragging and dropping the statements into the right

+ Add rule © Add group
X Delete

1500
v 8000

Fig. 8. The composition of the rules of a CompositeRule.

11

B.R. Barricelli, S. Valtolina

New temporal condition

before v

(Range: +/-

Overlaps?

Journal of Visual Languages and Computing (xxxx) Xxxx—xxxx

yes ® no

Fig. 9. The creation of a temporal condition in the Rule Editor system.

position.

The user can collect data for a given period of time set by using the
“validity interval” parameter (see Fig. 6). In our example the data are
collected since three days before. Temporal conditions are defined as
depicted in Fig. 9 and use the automatically assigned names of the
Rules as elements to be composed (R1, R2, R3, ...). An example of
temporal condition is that R3 (number of steps less than 8000) has to
take place before R2 (calories intake at dinner greater than 1500) with
arange of +5 min. In other words, the dinner must begin within 5 min
after the user has finished to walk (for less of 8000 steps). Another
complex temporal condition is depicted in Fig. 10. In this case, R4
(activity duration less than 45 min) begins before R2 (Calories intake at
dinner greater than 1500) and ends after + 10 min. In other words, the
trainer wants to check if her/his athletes eat too much and how, if they
eat not seated at a table but when they are on the move and quickly (in
less than 45 min). For creating a such temporal condition, the user
needs to select the overlap flag. After having indicated an overlap
between two rules, the user can also specify if the event of the first rule
has to end after or before the second one and by when.

After the composition of a rule or a set of rules, SmartFit can
translate them in DRL files, which can be then executed by the Drools
engine.

In Fig. 11 is reported the final translation in DRL matching the
rules generated by the user that can be executed by the Drools engine.
The window:time are used for collecting events of interest by defining a
time-window (three days in the examples that is 72 h). The engine will
automatically disregard any sensor reading older than specified time-
windows and keep the collected values consistent. The command: this
before [0m,5m] $calories (in bold in the code) is used for translating

12

conditions that need to be performed on events in the stream that are
ordered by a timestamp. The parameter [Om,5m] means that the
previous pattern will match if and only if the temporal distance
between the time when $steps finished and the time when $calories
started is maximum 5 min. In our case, the fact that the number of
steps is taken into account only before the timestamp associated to the
attribute $calories.

The outcome of the use of the system is a translation into DRL that
can be executed by the Drools engine. Once a rule is created, it is stored
in a repository for further re-use or for sharing it among members of a
community of trainers and coaches. In this way, it is easy for other
users to customize existing rules according to their needs.

7. Evaluation

To evaluate the SmartFit Rule Editor, a user test has been carried
out. It is important to underline that this experiment was not intended
to evaluate the tool performances in converting the rules into DRL, but
to evaluate and discuss the approach for visual and interactive creation
of rules in a Web-based system. The user test consisted asking 10
participants (HCI experts) to create a CompositeRule following a set of
tasks specifications. Since the goal was not to measure performance in
terms of time of execution, we did not collect times and duration of the
single tasks but we focused on the interaction with the element of the
interface. For better understanding the opinion of the participants, we
collected information about their profile through an initial and a final
questionnaire. The initial questionnaire was devoted at collecting
demographic information about the participants, while the final one
was composed of three different parts:

B.R. Barricelli, S. Valtolina

New temporal condition

before v

(Range: +/-
and ends

R2 ends

(Range: +/- 10 mins

Overlaps?

Journal of Visual Languages and Computing (xxxx) Xxxx—xxxx

® yes

Fig. 10. Another example of temporal condition created in the Rule Editor system.

1. SUS (System Usability Scale) [43]: A 10-item attitude Likert scale
(see Fig. 12).

2. CUSQ (Computer Usability Satisfaction Questionnaire) [44]: A 19-
item attitude Likert scale (see Fig. 13).

3. UEQ (User Experience Questionnaire) [45]: A 26-item attitude
Likert scale that allows to measure both usability (efficiency,
perspicuity, dependability) and user experience (originality, stimu-
lation) aspects (see Fig. 14).

A further unstructured interview with each participant concluded

the user test sessions and allowed us to gather further information and
suggestions on how to improve the SmartFit Rule Editor environment.

7.1. Participants

All the participants had normal color vision and normal or lens-
corrected visual acuity. The participants were then welcomed indivi-
dually and asked to read the Participant Information Sheet and invited
to pose any questions about the test objectives and modalities of
conduction. Once the participants were satisfied with the answers, they

rule "Hours of sleep/Calories intake/physical activities check"

"20:00")

from accumulate (step_counter (($n_step:

when
$hours : Number (IntValue < 7) from entry-point “hours_sleep_daybefore” over win-
dow:time (72h)
$calories_dinner: calories intake.calories.num (calories.time star
$calories : Number(IntValue > 1500) from entry-point $calories_dinner
over window:time (72h)
Ssteps : Number (IntValue < 8000
num_steps.steps) over window:time(24h), sum (Sn_step), this before
[Om, 5m] $calories)) over window:time (72h)
then
// warning
end

Fig. 11. The translation of the CompositeRule in DRL.

13

B.R. Barricelli, S. Valtolina

Journal of Visual Languages and Computing (xxxx) xxxx—xxxx

Strongly Strongly
disagree agree
1 2 3 4 5

1. | think that | would like to use this system frequently

2. 1found the system unnecessarily complex

3. lthought the system was easy to use
2 I think that I would need the support of a technical person to be able to use
* this system

5. Ifound the various functions in this system were well integrated

6. |thought there was too much inconsistency in this system

quickly

7 I would imagine that most people would learn to use this system very

8. 1found the system very cumbersome to use

9. | feltvery confident using the system

10. 1 needed to learn a lot of things before I could get going with this system

Fig. 12. The System Usability Scale (SUS) questionnaire.

were asked to read and sign the Informed Consent Form. The
participants were then invited to sit on a chair positioned in front of
a monitor and to fill out the pre-test demographic questionnaire. The
characteristics of the participants are summarized in Figs. 15 and 16.

7.2. Protocol

The participants have been asked to perform the following tasks
using data that we provided:

1. Set up the general settings of a CompositeRule.

2. Creation of three rules with the editor.

3. Creation of two temporal conditions to put in relation two of the
three rules created before.

The user test has been performed with a think-aloud protocol and
with the presence of an observer (direct observation). We decided not
to measure time of task executions but to focus on the task perfor-
mance and the eventual problems encountered.

7.3. Results

All participants completed successfully the user test in a reasonable
time, i.e. less than 5 min (even if we did not use time as metric),
creating correct rules and temporal conditions. Some problems have
been highlighted during the test and have been confirmed by the
unstructured interviews and the final questionnaires.

7.3.1. SUS

The result of SUS questionnaires is 72.5, which is above 68, the
result considered by SUS method as the average. Therefore, the results
of the SUS questionnaire are above average, even if the results highlight
that the usability of the system still needs improvements. The average
of the positive questions answers is 3.72, which gives indication of the
positive attitude of the users in respect with the system and its features.
The average of the negative questions is 1.92, which is a confirmation
that work can be done on the system and its interface to improve the
overall usability. Among the positive questions, the two that scored the
higher results are “I think that I would like to use this system
frequently” (average result: 4) and “I thought the system was easy to

Strongly Strongly
disagree agree
1 2 3 4 5

1. Overall, | am satisfied with how easy it is to use this system

2. It was simple to use this system

3. I can effectively complete my work using this system

4. 1am able to complete my work quickly using this system

5. lam able to efficiently complete my work using this system

6. | feel comfortable using this system

7. It was easyto learn to use this system

8. Ibelieve | became productive quickly using this system

The system gives error messages that clearly tell me how to fix problems

10.

Whenever | make a mistake using the system, | recover easily and quickly

11.

The information (such as online help, on-screen messages, and other
documentation) provided with this system is clear

12.

It is easy to find the information | needed

13.

The information provided for the system is easy to understand

14.

The information is effective in helping me complete the tasks and
scenarios

15.

The organization of information on the system screens is clear

16.

The interface of this system is pleasant

17.

1 like using the interface of this system

18.

This system has all the functions and capabilities | expect it to have

19.

Overall, | am satisfied with this system

Fig. 13. The Computer Usability Satisfaction Questionnaire (CUSQ).

14

B.R. Barricelli, S. Valtolina

Journal of Visual Languages and Computing (xxxx) xxxx—xxxx

annoying

enjoyable

not understandable

understandable

creative

dull

easy to learn

difficult to learn

valuable inferior
boring exciting

not interesting interesting
unpredictable predictable
fast slow
inventive conventional
obstructive supportive
good bad
complicated easy
unlikable pleasing
usual leading edge
unpleasant pleasant
secure not secure
motivating demotivating

meets expectations

does not meet expectations

O|O|O|O[0O|O|0O|0|0|0|O0|O0|O0|O[0O|0O|0O|0|0O|0|0|0|0|0O|0O|N~

O|O|O|O|O|O[O|O|0O|O|0O[0|O0|0|0|O0|0|0|0|0|O|0|0|O|0|w
O|O|O|O|O|O[O|O|0O|O|0O[0|O0|0|0|0|0|0|0O|O0|O|0O|0|0|0O|
O|O|O|O|O|O[O|O|0O|O|0O[0|O0|0|0|O0|0|0|0O|O0|O|0O|0|0|0|~

O|O|O|0O|O|0O|0|O|O|O|O[O|0O|O|0O|0O|0O|O0|0|0|0O|0O|0O|0|0|0|+

O[O|O|0O|O|O|0|0O|O|O|O[0O|0O|0O|0O|0|0O|O0|0|0O|0O|0O|0O|0O|0|0|w

O|O|O|0O|O|0O|0|0|O|O|0O[0O|0O|0O|0|0|0O|0|0|0O|0O|0O|0O|0O|0|0|+~

inefficient efficient
clear confusing
impractical practical
organized cluttered
attractive unattractive
friendly unfriendly
conservative o) O O O | innovative

Fig. 14. The User Experience Questionnaire (UEQ).

1
| -
0
18-24 35-44 25-34

Fig. 15. The age groups of the test participants.

6
6
5
4
3
2
2
1 1
1 . .
0
1-4 5-8 9+

not every day

Fig. 16. The hours of use of computers by the test participants.

15

use” (average result: 3.9). This suggests that the participants recog-
nized the utility of the system and were not afraid of using it. Among
the negative questions, the one that resulted in the lowest average is “I
needed to learn a lot of things before I could get going with this system”
(average result: 1.4). This gives us hints about the easiness to use the
system but teaches us that more can be done to improve the results.

7.3.2. CUSQ

The CUSQ questionnaires result is very positive, according to all
metrics used by the CUSQ model: System Usefulness (SYSUSE),
Information Quality (INFOQUAL), Interface Quality (INTERQUAL),
and Overall Satisfaction (OVERALL). For all the factors, the results
average is 4 (on a scale from 1 to 5). The questions with the higher
results (both 4.2/5) are “It was easy to learn to use this system” and
“The interface of this system is pleasant”. The questions with the lowest
results (both 3/5) are “The system gives error messages that clearly tell
me how to fix problems” and “The information (such as online help, on-
screen messages, and other documentation) provided with this system
is clear”. This reflects perfectly the comments that were collected
during the final unstructured interview that are discussed later in this
section. These two results reinforce the belief that one major improve-
ment in the system design would be the creation of help tools, tooltips
and an initial tutorial to help the users in speeding up their learning
curve and to help them in fixing errors that may happen during the use
of the system.

7.3.3. UEQ

In the UEQ questionnaire the items are on the Likert scale
opposites are two concepts with opposite meaning. The items consti-
tute six different scales that are aimed at offering results categorized
into attractiveness, perspicuity, efficiency, dependability, stimulation,
and novelty. The six scales can be structured as illustrated in Fig. 17.

B.R. Barricelli, S. Valtolina

| Attractiveness |

|
J J

| Pragmatic quality | ‘ Hedonic quality |

.

Efficiency | Stimulation |

—»’ Novelty I

Perspicuity I

Dependability |

Fig. 17. The structure of the six scales of UEQ.

IRRRERER]

Fig. 18. The chart of the results of UEQ evaluation.

While attractiveness can be seen as a standalone value, perspicuity,
efficiency, and dependability can be grouped in a Pragmatic quality
dimension (that is focused on goal), and stimulation and novelty are
grouped in Hedonic quality dimension (that is, not goal-focused).

We used UEQ to test if the Rule Editor system has sufficient user
experience in its current implementation. As can be seen in Fig. 18, and
according to the UEQ methodology, all scales show a positive evalua-
tion, i.e. they are greater than 0.8. The values for the UEQ scales are
reported in Fig. 20 (Column Mean).

UEQ methodology suggests to focus on a restricted range of results,
because of the extreme unlikeliness of values above +2 and below -2.
The chart with the restricted scale is shown in Fig. 19.

Particularly, the items in the questionnaire that scored the highest
results were part of the Efficiency scale: “Fast” and “Efficient”. The
confidence intervals for the scales are reported in Fig. 20.

7.3.4. Unstructured interviews

During the unstructured individual interviews that we took after
each user test, some important suggestions for improving the system
emerged:

-2

Fig. 19. The chart of the results of UEQ evaluation with the scale restricted to +2/-2.

16

Journal of Visual Languages and Computing (xxxx) xxxx—xxxx

® The organization of the page suggests the users to divide the creation
of the CompositeRule into 3 distinct steps: general settings, rules
editing, temporal conditions editing. Specifically, a split navigation
interaction design pattern'” is suggested. As described by one of the
participants:

“Splitting the rules and temporal conditions creation in more
steps would help the user in navigating the system. I would suggest
to divide the process into three steps.”

® It would be better to introduce some tooltips, help icons, and
eventually an initial tutorial to better explain to the user all the
features that the system offers. Specifically about the tutorial, one of
the participants said:

“An initial tutorial could be useful to teach the user how to use
the system. I learned it fast but it took me some time to get the
entire flow of the interaction.”

® The rules that are created with the editor are automatically assigned
with an ID with the format R < number>. This ID is used in the
temporal condition editing for referring to specific rules created
before. Two of the participants suggested to allow the user in
creating natural language names to denote the created rules, to help
the user in recognizing the rules to be used for the creation of the
temporal conditions:

“It could be an idea to let the user assign a name to the rule to
improve the selection of rules during the temporal conditions
creation phase.”

“You should consider to allow the user to chose short names for
the rules to make it easier the creation of temporal conditions.”

® One of the participants pointed out that the buttons that allow the
use of logical operators on the rules (AND and OR) are not very
visible so as the direct manipulation feature available for reordering
the rules is not:

“I would put more in evidence the buttons of the logical
operators and the feature of drag-and-drop of the rules.”

8. Conclusion
8.1. Discussion

The design of the Rule Editor stems from the study of current
solutions based on the use of visual strategies for designing workflows
or business rules without requiring any knowledge of software en-
gineering nor programming from the end users. Recent EUD re-
searches in this problem space have highlighted several approaches
ranging from mash-up techniques to visual programming strategies
based on the use of “spreadsheets” or “pipes”. One thing that is
consistent in all these solutions is that the programming is still the
central metaphor. On the contrary, steps should be taken for helping
users in expressing tasks based on their working settings by using a set
of conditions that if met have to trigger suitable actions. This
emphasizes the need to take care of communication process that takes
place among all the stakeholders in a participatory design process,
exploiting on the participation of domain experts in the knowledge
management design, allowing successful communication processes
design. Specifically, this process is enabled by the means of the design
of usable and effective interfaces, that according to semiotic engineer-
ing theory [27,28] can be seen as composed of messages (embodying
the implicit information). Systems such as IFTTT and Atooma are
going in the right direction but we need a usable and effective
interfaces, that according to the semiotic engineering theory will be
able to fit the domain expert's mental model and tacit knowledge,
therefore allowing the establishment of a correct interpretation and
semiosis process by all the stakeholders. In other words, we need an
interface that by using a visual notation can support coaches and

17 http://www.welie.com/patterns/showPattern.php?patternID=split-navigation

B.R. Barricelli, S. Valtolina

1.500 0.377
575 0.553
2.050 0.350
1.775 0.595
1.325 0.667
1.400 0.709

Journal of Visual Languages and Computing (xxxx) xxxx—xxxx

10 0.234 1.266 1.734
10 0.343 1.232 1.918
10 0.217 1.833 2.267
10 0.368 1.407 2.143
10 0.414 0.911 1.739
10 0.439 0.961 1.839

Fig. 20. Confidence intervals (p=0.05) per scale.

trainers' decision making through the use of a formal language for
creating complex rules in which, due the nature of the IoT data, the
temporal conditions have to be taken in greater account.

8.2. Future developments

We are currently working on several activities and research issues
related to the SmartFit.

First we are going on with tests to evaluate the validity-in-practice
of the system features in order to extend, amend or otherwise
recommend how they can be improved or why they are inappropriate.
At the moment, we are monitoring the use of our system in the context
of activities of a teenage soccer team during its seasonal championship.
We provided the soccer team with Fitbit trackers for collecting
biological, activity, and sleep-related data and coaches and trainers
with SmartFit Framework for allowing them to keep track of events
related to athletes' habits, in order to understand the variety of the
team members and find successful schemes of training. At the same
time, we are working on research studies to investigate new rule
storage strategies. In the current prototype, all rules are stored
according to a streamed representation into the database. Therefore,
fetching all rules associated with a request carried out by a user
requires accessing a single, even though very large, tuple. In the current
version all rules are fetched, even those that are not enabled. We thus
plan to evaluate alternative strategies to improve the performance of
the rule selection process.

A second research direction deals with developing an ontology-
based representation of our Rule Language to enhance interoperability.

A third research direction is related to the development of a
comprehensive authorization model for SmartFit and to investigate
security and dependability of the proposed system.

We also will investigate the consequences that the sharing of
composite rule may have on the meta-communication process among
coaches, especially regarding the opportunity of assigning natural
language descriptions of the composite rules to enable the coaches to
better understand the goal of the rules use.

Finally, a last research direction is focusing on the extension of the
scope of the conditions for embracing fuzzy aspects. This extension
aims at using linguistic values of the fuzzy conditions for expanding
their interpretation context. A linguistic variable is represented by a
quintuple of (v, T, X, g, m) where v is name of the linguistic variable, T
is the set of linguistic terms applicable to variable v, X is the universal
set of values, g is the grammar for generating the linguistic term, m is
the semantic rule that assigns to each term ¢ € T, a fuzzy set on X. To

illustrate our approach, consider a sleep monitor. Let v represent a
linguistic variable with a graphical distribution based on four para-
meters. Very_Low for hours of sleep is represented using trapezoidal
function as Very_Low (2 h, 3 h, 4 h, and 6 h). Current IoT applications
use simple statements such as “Hours of sleep <3 hours” to indicate
when the value is very low. Using our extension of the Rule Language,
users can specify the statement “Quantity = $Very_Low”: a set of
values are related to “$Very_Low” in this comparison, rather than one
single value. Fulfillment threshold is allowed to specify the condition
with a degree value in the range of [0, 1]. For example, we can use 0.75
as the threshold to indicate that the value of hours of sleep is very low
with the degree of 0.75. As a result, a value in the range [2.75, 4.5]
indicates that “the number of hours of sleep is very high with a
threshold of 0.75”. This strategy will further increase the efficiency of
our approach in order to balance the human and the machine
empowerment by adopting a EUD paradigm that will allow us the
possibility to assist Communities of Interest in completing their daily
tasks in an easier way.

8.3. Conclusive remarks

This paper describes a methodology to graphically model rules by
using a visual notation able to facilitate team sport members in taking
under control their athletes' physical activities and their nutrition and
sleep behaviors. The Rule Editor is part of the SmartFit Framework
that aims at gathering, computing, and diffusing data originated and
streamed by physical and social IoT devices, sensors, and applications.
The cloud architecture of the Framework has been described and it is
composed of three environments: one for supporting IoT engineers in
configuration the network of sensors and services from which the data
are collected, a second environment is the Rule Editor and finally a
third one that can be used by athletes for monitoring their own
behavior and lifestyle and to share their data with the other athletes
in their team. After presenting strategies of EUD in the IoT context,
aimed at giving the end users more freedom and power to assemble
different data sources/sensors in an ad hoc and personalized solution,
we described the implementation of the SSW methodology for the EUD
in the IoT and specifically for what concerns the design of the Rule
Editor which aims to support coaches and trainers in creating rules in
the eWellness domain. The paper also presents a Rule Language
developed for the eWellness domain. Such language allows coaches
and trainers to express complex rules and temporal constraints
through a visual interface that the evaluation described in Section 7
reports to be easy to use, efficient and fitting the user' mental model.

B.R. Barricelli, S. Valtolina

Specifically, the evaluation highlights positive attitude of the users in
respect with the system and its features and the fact that participants
recognized the utility of SmartFit and were not afraid of using it. Other
valuable features of SmartFit are the possibility to translate the rules in
DRL files and to store them in a cloud computing data center for
supporting a sharing policy among members of the team sport
communities.

References

(1]
[2]
(3]
(4]
[5]

(6]

(71

(8]

[91
[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]

[21]

[22]

E. Wenger, Communities of Practice. Learning, Meaning, and Identity, Cambridge
University Press, Cambridge, UK, 1998.

W.M. Van Der Aalst, A.H. Ter Hofstede, M. Weske, Business process management:
a survey, in: Business Process Management, Springer, 2003, pp. 1-12.

S. Lukichev, G. Wagner, Uml-based rule modeling with Fujaba, in: Proceedings of
the 4th International Fujaba Days, 2006, pp. 31-35.

M. Petre, A. Blackwell, Children as unwitting end-user programmers, in:
Proceedings of VL/HCC 2007, 2007, pp. 239-242.

M.F. Costabile, P. Mussio, L. Parasiliti Provenza, A. Piccinno, End users as
unwitting software developers, in: Proceedings of the 4th International Workshop
on End-User Software Engineering, ACM, New York, NY, USA, 2008, pp. 6-10.
M.F. Costabile, P. Mussio, L.P. Provenza, A. Piccinno, Advanced visual systems
supporting unwitting EUD, in: Proceedings of the Working Conference on
Advanced Visual Interfaces, ACM, New York, NY, USA, 2008, pp. 313-316.

B.R. Barricelli, A. Marcante, P. Mussio, L.P. Provenza, S. Valtolina, G. Fresta,
Banco: a web architecture supporting unwitting end-user development, IxD & A 5
(2009) 23-30.

M. Costabile, D. Fogli, P. Mussio, A. Piccinno, Visual interactive systems for end-
user development: a model-based design methodology, IEEE Trans. Syst. Man
Cybern. Part A: Syst. Hum. 37 (6) (2007) 1029-1046.

H. Lieberman, F. Paterno, V. Wulf (Eds.), End User Development, Springer, 2006.
A. Sutcliffe, End-user development, Commun. ACM 47 (9) (2004) 31-32.

G. Fischer, Communities of interest: learning through the interaction of multiple
knowledge systems, in: Proceedings of the 24th IRIS Conference, vol. 2001,
Department of Information Science, Bergen, 2001.

A.J. Ko, B.A. Myers, H.H. Aung, Six learning barriers in end-user programming
systems, in: 2004 IEEE Symposium on Visual Languages and Human Centric
Computing, IEEE, Washington, DC, USA, 2004, pp. 199-206.

V. Pipek, M.-B. Rosson, V. Wulf, End-User Development: 2nd International
Symposium, IS-EUD 2009, Proceedings, vol. 5435, Siegen, Germany, March 2—4,
2009, Springer, Berlin Heidelberg, Germany, 2009.

K. Kaczor, G.J. Nalepa, L. Lysik, K. Kluza, Visual design of drools rule bases using
the xtt2 method, in: Semantic Methods for Knowledge Management and
Communication, Springer, Berlin Heidelberg, Germany, 2011, pp. 57-66.

K. Kaczor, G.J. Nalepa, Critical evaluation of the xtt2 rule representation through
comparison with clips, Knowl. Eng. Softw. Eng. (KESE8) (2012) 46.

D.D. Bona, G.L. Re, G. Aiello, A. Tamburo, M. Alessi, A methodology for graphical
modeling of business rules, in: 2011 Fifth UKSim European Symposium on
Computer Modeling and Simulation (EMS), IEEE, Washington, DC, USA, 2011, pp.
102-106.

A. Namoun, T. Nestler, A. De Angeli, Conceptual and usability issues in the
composable web of software services, in: International Conference on Web
Engineering, Springer, Berlin Heidelberg, Germany, 2010, pp. 396—407.

F. Casati, How end-user development will save composition technologies from their
continuing failures, in: International Symposium on End User Development,
Springer, Berlin Heidelberg, Germany, 2011, pp. 4-6.

J. Widom, S. Ceri, Active Database Systems: Triggers and Rules for Advanced
Database Processing, Morgan Kaufmann, San Francisco, CA, USA, 1996.

C. Stary, Tadeus: seamless development of task-based and user-oriented interfaces,
IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 30 (5) (2000) 509-525.

G. Fischer, J. Grudin, R. McCall, J. Ostwald, D. Redmiles, B. Reeves, F. Shipman,
Seeding, Evolutionary Growth and Reseeding: The Incremental Development of
Collaborative Design Environments, in: Coordination Theory and Collaboration
Technology, Lawrence Erlbaum Associates, Hillsdale, NJ, USA, 2001, pp. 447-472.
R.R. Penner, E.S. Steinmetz, Model-based automation of the design of user

18

[23]

[24]

[25]

[26]

[27]
[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Journal of Visual Languages and Computing (xxxx) xxxx—xxxx

interfaces to digital control systems, IEEE Trans. Syst. Man Cybern. Part A: Syst.
Hum. 32 (1) (2002) 41-49.

C.B. Brodie, C.C. Hayes, Daisy: a decision support design methodology for complex,
experience-centered domains, IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum.
32 (1) (2002) 50-71.

P.B. Andersen, A Theory of Computer Semiotics: Semiotic Approaches to
Construction and Assessment of Computer Systems, Cambridge University Press,
Cambridge, UK, 1990.

Y. Dittrich, How to Make Sense of Software — Interpretability as an Issue in Design,
Technical Report, University of Karlskrona Ronneby, 1998.

Y. Dittrich, Computer Anwendungen un Sprachlicher Kontext. Zu den
Wechselwirkungen Software normaler und formaler Sprache bei Einsatz und
Entwricklung von Software, Peter Lang, 1997.

C.S. de Souza, The Semiotic Engineering of Human—Computer Interaction (Acting
with Technology), The MIT Press, Boston, MA, USA, 2005.

C.F. Leito, C. de Souza, Semiotic Engineering Methods for Scientific Research in
HCI, Morgan and Claypool Publishers, San Rafael, CA, USA, 2009.

S. Valtolina, B.R. Barricelli, Y. Dittrich, Participatory knowledge-management
design: a semiotic approach, J. Vis. Lang. Comput. 23 (2) (2012) 103-115.

J.W. Ng, Task as a service: extending cloud from an application development
platform to a tasking platform, in: 2015 IEEE World Congress on Services
(SERVICES), IEEE, Washington, DC, USA, 2015, pp. 294-301.

B. Ur, E. McManus, M. Pak Yong Ho, M.L. Littman, Practical trigger-action
programming in the smart home, in: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, ACM, New York, NY, USA, 2014, pp. 803—
812.

F. Cabitza, I. Gesso, Reporting a user study on a visual editor to compose rules in
active documents, in: Emerging Research and Trends in Interactivity and the
Human—-Computer Interface, 2014, pp. 182-203

H. Boley, T.M. Osmun, B.L. Craig, WellnessRules: A Web 3.0 Case Study in
RuleML-Based Prolog-N3 Profile Interoperation, Springer, Berlin, Heidelberg,
2009, pp. 43-52.

F. Wang, K.J. Turner, An Ontology-Based Actuator Discovery and Invocation
Framework in Home Care Systems, Springer, Berlin, Heidelberg, 2009, pp. 66—73.
F. Cabitza, D. Fogli, R. Lanzilotti, A. Piccinno, Rule-based tools for the configura-
tion of ambient intelligence systems: a comparative user study, Multimed. Tools
Appl. (2016) 1-21.

B.R. Barricelli, S. Valtolina, Designing for end-user development in the internet of
things, in: End-User Development: 5th International Symposium, IS-EUD 2015,
Madrid, Spain, May 26-29, 2015, Proceedings, Springer International Publishing,
2015, pp. 9-24.

M. Mesiti, L. Ferrari, S. Valtolina, G. Licari, G.L. Galliani, M. Dao, K. Zettsu,
StreamLoader: an event-driven ETL system for the on-line processing of hetero-
geneous sensor data, in: Proceedings of the 19th International Conference on
Extending Database Technology, EDBT 2016, Bordeaux, France, March 15-16,
2016, Bordeaux, France, 2016, pp. 628—-631.

M. Mesiti, S. Valtolina, L. Ferrari, M. Dao, K. Zettsu, An editable live ETL system
for ambient intelligence environments, in: WF-IoT, 2015, pp. 393—-394.

S. Valtolina, B.R. Barricelli, M. Mesiti, End-user centered events detection and
management in the internet of things, in: Current Trends in Web Engineering,
Springer, Berlin Heidelberg, Germany, 2015, pp. 77-90.

D.B. Rules, What are they really, The Business Rules Group, Formerly, known as
the GUIDE Business Rules Project, Final Report, Revision (Online Guide) 1, 2000,
pp. 1-77.

J.F. Allen, Maintaining knowledge about temporal intervals, Commun. ACM 26
(11) (1983) 832-843.

M. Muller, Pictive: an exploration in participatory design., in: Proceedings of the
ACM Conference on Human Factors in Computing Systems, ACM Press, New York,
NY, USA, 1991, pp. 225-231.

J. Brooke, SUS: a quick and dirty usability scale, in: P.W. Jordan, B. Weerdmeester,
A. Thomas, I.L. Mclelland (Eds.), Usability Evaluation in Industry, Taylor and
Francis, London, 1996.

J.R. Lewis, Ibm computer usability satisfaction questionnaires: psychometric
evaluation and instructions for use, Int. J. Hum.-Comput. Interact. 7 (1) (1995)
57-78.

M.S. Bettina Laugwitz, Theo Held, Construction and evaluation of a user experience
questionnaire, in: A. Holzinger (Ed.), USAB 2008, Lecture Notes in Computer
Science, vol. 5298, Springer, 2008, pp. 63-76.

http://refhub.elsevier.com/S1045-(16)30029-sbref1
http://refhub.elsevier.com/S1045-(16)30029-sbref1
http://refhub.elsevier.com/S1045-(16)30029-sbref2
http://refhub.elsevier.com/S1045-(16)30029-sbref2
http://refhub.elsevier.com/S1045-(16)30029-sbref2
http://refhub.elsevier.com/S1045-(16)30029-sbref3
http://refhub.elsevier.com/S1045-(16)30029-sbref3
http://refhub.elsevier.com/S1045-(16)30029-sbref3
http://refhub.elsevier.com/S1045-(16)30029-sbref4
http://refhub.elsevier.com/S1045-(16)30029-sbref5
http://refhub.elsevier.com/S1045-(16)30029-sbref6
http://refhub.elsevier.com/S1045-(16)30029-sbref6
http://refhub.elsevier.com/S1045-(16)30029-sbref7
http://refhub.elsevier.com/S1045-(16)30029-sbref7
http://refhub.elsevier.com/S1045-(16)30029-sbref8
http://refhub.elsevier.com/S1045-(16)30029-sbref8
http://refhub.elsevier.com/S1045-(16)30029-sbref8
http://refhub.elsevier.com/S1045-(16)30029-sbref9
http://refhub.elsevier.com/S1045-(16)30029-sbref9
http://refhub.elsevier.com/S1045-(16)30029-sbref9
http://refhub.elsevier.com/S1045-(16)30029-sbref10
http://refhub.elsevier.com/S1045-(16)30029-sbref10
http://refhub.elsevier.com/S1045-(16)30029-sbref10
http://refhub.elsevier.com/S1045-(16)30029-sbref11
http://refhub.elsevier.com/S1045-(16)30029-sbref11
http://refhub.elsevier.com/S1045-(16)30029-sbref12
http://refhub.elsevier.com/S1045-(16)30029-sbref12
http://refhub.elsevier.com/S1045-(16)30029-sbref13
http://refhub.elsevier.com/S1045-(16)30029-sbref13
http://refhub.elsevier.com/S1045-(16)30029-sbref14
http://refhub.elsevier.com/S1045-(16)30029-sbref14
http://refhub.elsevier.com/S1045-(16)30029-sbref14
http://refhub.elsevier.com/S1045-(16)30029-sbref15
http://refhub.elsevier.com/S1045-(16)30029-sbref15
http://refhub.elsevier.com/S1045-(16)30029-sbref16
http://refhub.elsevier.com/S1045-(16)30029-sbref16
http://refhub.elsevier.com/S1045-(16)30029-sbref16
http://refhub.elsevier.com/S1045-(16)30029-sbref17
http://refhub.elsevier.com/S1045-(16)30029-sbref17
http://refhub.elsevier.com/S1045-(16)30029-sbref18
http://refhub.elsevier.com/S1045-(16)30029-sbref18
http://refhub.elsevier.com/S1045-(16)30029-sbref18
http://refhub.elsevier.com/S1045-(16)30029-sbref19
http://refhub.elsevier.com/S1045-(16)30029-sbref19
http://refhub.elsevier.com/S1045-(16)30029-sbref19

	A visual language and interactive system for end-user development of internet of things ecosystems
	Introduction
	Related work
	Systems for designing workflows
	From BRMs graphical interfaces to event-based visual notations

	Research approach
	The SmartFit Framework
	Rule Language
	SmartFit Rule Editor Language
	Overcoming drools complexity

	SmartFit graphical Rule Editor
	Design rationale
	The graphical editor

	Evaluation
	Participants
	Protocol
	Results
	SUS
	CUSQ
	UEQ
	Unstructured interviews

	Conclusion
	Discussion
	Future developments
	Conclusive remarks

	References

