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A B S T R A C T

In this paper, two new Artificial Neural Network MPPT controllers based on fixed and variable step size have
been proposed and investigated. The data required to generate the ANN model are generated using the classical
Perturbation and Observation algorithm. The neural network MPPT controller is developed in two steps: the
offline step required for training of different neural networks parameters in order to find the optimal neural
network MPPT controller (structure, activation function and training algorithm) and the Online step where the
optimal neural network MPPT controller is used in PV system. The performance of the proposed variable step
size and fixed step size ANN-MPPT methods are analyzed under different operating conditions using Matlab/
Simulink. To validate the simulated system hardware implementation of the proposed algorithms was carried
out using experimental prototype MPPT based on Flyback converter connected to Solarex MSX-60 (4 panels)
and dsPIC30F4011 control circuit. Analysis and comparative study between the proposed fixed and variable
step size ANN-MPPT controllers have been presented, showing a real contributions in term of tracking accuracy,
response time, overshoot and steady state ripple. In addition, this paper can be considered as a review study on
ANN-MPPT methods for PV systems.

1. Introduction

Today, demand for electricity is growing and becomes increasingly
important for humanity, and it's an important factor for economic
development. To these reasons, many countries have turned to new
forms of green energy called "renewable energy" that are currently too
expensive and relatively inefficient. Renewable energy is the energy
which comes from natural resources such as sunlight, wind, rain, tides
and geothermal heat. These resources are renewable and can be
naturally replenished. There are many remote sites in the world
powered by independent power generation systems. These generators
use local renewable sources. There are photovoltaic panels, wind
turbines, biomass, geothermal, etc. Electricity from renewable sources
is intermittent and dependent on characteristic of the site as well as
climatic conditions. These renewable generators are typically coupled
to a storage system ensuring continuous availability of energy [1,2].

Among those energy sources, solar energy, free and abundant in
most parts of the world, has proven to be an economical source of
energy in many applications. Photovoltaic (PV) has been continuously
growing at a rapid pace over the recent years, used in many applica-
tions such as water supply in rural areas, battery charging, mountain

cabins, light sources, water pumping, meteorological measurement
systems, highway/traffic conditions, island electrification and satellite
power systems [2,3]. The performance of photovoltaic systems depends
mainly on the irradiance, temperature, weather conditions, thermal
characteristics, module material composition and mounting structure.
Many advances and researches regarding the development of PV
technology have been adopted and funded in several countries such
as efficiency, solar materials, DC/DC converters, MPPT methods, grid-
connected photovoltaic system, etc.

Although the aforementioned advantages of PV systems, it still
presents some drawbacks comparing to conventional energy resources
especially its high fabrication cost, low energy conversion efficiency,
and nonlinear characteristics. The overall system cost can be reduced
using high efficiency power trackers which are designed to extract the
maximum possible power from the PV module (maximum power point
tracking, MPPT) [4–6]. A variety of MPPT methods have been
developed and improved continuously. These methods include perturb
and observe (P &O) [7–9], Incremental Conductance (IC) [10–12], Hill
Climbing (HC) [13–15], fractional open-circuit voltage [16,17], frac-
tional short-circuit current [18,19], neural network [20], fuzzy logic
methods [21], and genetic algorithms [22]. These techniques differ in
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many aspects such as required sensors, complexity, cost, range of
effectiveness, oscillation around the MPP, convergence speed, correct
tracking when irradiation and/or temperature change and hardware
implementation.

Recently, artificial neural network technique has provided new
interest in PV systems. Neural networks can be trained off-line for non-
linear mapping and can then be used in an efficient way in the on-line
environment [23]. The main advantage of neural network is that it do
not require an accurate mathematical model and they can detect
complex nonlinear relationships between dependent and independent
variables. Due to previous disadvantages, many MPPT controller using
artificial neural network (ANN) have been developed [24–28].

Despite, a several maximum power point tracking algorithms based
on fixed step have been developed and improved, some problems are
unavoidable such as the oscillation around the MPP and accuracy and
failure accuracy especially accentuated under shading conditions. To
overcome these drawbacks, modified MPPT with variable step size is
proposed [11,29,30].

In this work, the ANN approach is proposed to provide the power
converter duty cycle under different atmospheric conditions. Since
trained, neural network can quickly map nonlinear relationship
between input data and the output. The data required to generate the
ANN model are obtained using the principle of perturbation and
observation (P &O) method. The neural network MPPT controller is
developed in two steps: the offline step required for the training of
different set of neural network parameters in order to find the optimal
neural network controller (structure, activation function and training
algorithm) and the On-line step where the optimal neural network
MPPT controller is used in PV system. The P &O algorithm used for the
generation of training data as well as proposed neural network MPPT
controllers are simulated and tested using Matlab/Simulink model
under different atmospheric conditions. To verify the efficiency of
proposed ANN-MPPT controllers, hardware implementation was car-
ried out using Flyback converter connected to Solarex MSX-60 (04
panels) and dsPIC30F4011 control circuit. Both, simulation and
experimental design are provided in several aspects, in which com-
parative study between the proposed fixed and variable step size ANN-
MPPT controllers have been presented and discussed in details.

2. Related works on the use of neural networks in PV MPPT

Recently, artificial intelligence techniques are becoming the most
leading approaches used in PV systems and becoming more and more
popular, since is regarded as capable of resolving a significant problems
of conventional method such as oscillation around the MPP, the
convergence speed, failure accuracy under fast changing atmospheric
conditions, etc.

Artificial intelligence MPPT techniques includes artificial neural
networks [31], fuzzy logic [32], and genetic algorithm techniques [33],
particle swarm optimization [34], sliding mode [35], etc. These
techniques can be used to perform nonlinear statistical modeling and
provide a new alternative to logistic regression. In addition, many
combined artificial intelligence MPPT methods have been developed
such as genetic algorithm-fuzzy logic controller [36], genetic algorithm-
neural networks [37] and optimization of a fuzzy logic controller using
particle swarm optimization [38].

Among previous artificial intelligence techniques, neural networks
have become increasingly popular since they require less formal
statistical training, simplicity and ease of implementation, they can
detect complex nonlinear relationships between dependent and inde-
pendent variables, they don’t require an accurate mathematical model,
in addition, several ANN training algorithms are available and can offer
a large number of solutions.

From the use of NN concept have resulting a wide research field and
applications in PV systems: PV Irradiation forecasting [39], PV model
parameters identification [40], PV system sizing [41], PV structure

optimization [42] and PV MPPT strategies [43–45]. This last applica-
tion had focused the attention of many researchers and engineers due
to its impact on whole system performances. The MPPT, considered as
the heart of PV system, adjusts the output power of inverter or DC
converter in order to supply reliable energy to the load. The rest of this
section constitutes a brief review of the use of ANNs in PV system
MPPT techniques.

In Ref. [46,56,57], authors have conducted several studies on the
use of brushless motor drive for heating, ventilating and air condition-
ing. In the first study, the brushless motor drive is used as a load for a
photovoltaic system. The MPPT controller is based on a genetic
assisted, multi-layer perceptron neural network (GA-MLP-NN) struc-
ture and includes a DC–DC boost converter. Genetic assistance in the
neural network is used to optimize the size of the hidden layer. The
proposed MPPT controller implemented on DSP, provides an average
power increase of 25.35%. In the second study, an ANN was used to
determine the reference voltage in real time, dependent upon irradi-
ance and temperature. The dataset used to train the ANN was obtained
using experimental measurements, and a relation between the inputs
(insolation and temperature) and output (VMPP) was established. Due
to large dataset used to train the ANN, the GA was used to keep the
most decisive data and remove insignificant data. In the third one, the
application of GA into ANN is regarded as the process of searching for
optimal topology for ANN.

In Ref. [47,55], authors propose a maximum power point tracking
technique based on Extension Neural Network (ENN). The proposed
ENN MPPT algorithm can automatically adjust the step size to track
the PV array maximum power point. The presented method is able to
effectively improve the dynamic response and steady state performance
of the PV systems simultaneously compared with the conventional
fixed step size perturbation and observation and incremental conduc-
tance methods. The simulation results realizing using PSIM circuit-
based model demonstrate the effectiveness of the proposed MPPT
method. On the other hand, the proposed ENN MPPT algorithm needs
less constructed data and simple learning procedure making it easily
implemented using microcontroller platform.

In Ref. [48], authors propose a novel voltage-based maximum
power point tracking technique. The optimal voltage factor is instanta-
neously determined by a neural network instead constant parameter
assumed in other voltage-based MPPT methods. The simulation results
of the proposed MPPT algorithm applied to a Buck converter to
regulate the output power at its maximum possible value show greater
output power up to 3.5% compared to the PV system without the MPPT
strategy. On the other hand, The proposed neural network based
method eliminates the deficiency of the “Look-Up Table” method that
needs a lot of storage memory to save all the environmental conditions.

In Ref. [49], authors propose a novel MPPT that uses an online
learning neural network and the perturbation and observation method
to solve its low performances in case fast changing solar radiation. The
proposed MPPT is able to learn the photovoltaic properties while
operating the P &O under gradually changing solar radiation condi-
tions, and accomplishes the quick tracking of the MPP in case of fast
changing solar radiation. The simulation results show very efficiently
even when the solar radiation changes rapidly.

In Ref. [50], authors propose a novel MPPT system for partially
shaded PV array using artificial neural network and fuzzy logic with
polar information controller. In this study, the ANN with three layer
feed-forward is trained once for several partially shaded conditions to
determine the global MPP voltage; while the fuzzy logic with polar
information controller uses the global MPP voltage as a reference
voltage to generate the required control signal for the power converter.
The proposed system has been verified through the experimental real-
time simulator using dSPAPE platform for different size of PV array
with series–parallel, bridge linked, total cross tied configurations. The
results show that more power can be extracted and overall energy yield
can be increased with the proposed system under from lightly to
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heavily partially shaded conditions.
In Ref. [51], authors propose an intelligent control strategy for the

MPPT of a PV energy system based on four-layer fuzzy neural network
controller (FNNC), which combines the reasoning capability of fuzzy
logical systems and the learning capability of neural networks, to track
the MPP. The parameters in the FNNC are updated adaptively by
observing the tracking error using the derived learning algorithm. The
RBFNN is designed to provide the FNNC with the gradient informa-
tion. The experimental results show that the FNNC tracks the MPP
quickly and steadily, exhibits good robustness to the parameter
variants and external load disturbances, and performs much better
compared with the traditional FLC.

In Ref. [52], authors present a novel methodology for maximum
power point tracking of a grid-connected 20 kW photovoltaic system
based on neuro-fuzzy estimator. The developed neuro-fuzzy network
consists of two stages; the first one is a fuzzy rule-based classifier, the
second one is composed of three multi-layered feed forwarded ANNs
trained offline using experimental data from a real PV system installed
at the engineering campus of Tokyo University of Agriculture and
Technology. Maximum power operation was achieved by tracking the
reference voltage estimated by the neuro-fuzzy network through a DC–
DC converter. Simulation results under several rapid irradiance varia-
tions proved that the proposed MPPT method fulfilled the highest
efficiency comparing to a conventional single neural network and the
perturb and observe algorithm showing also a good to faithfully
emulate the dynamic and nonlinear behavior of a photovoltaic gen-
erator under a large wide of climatic conditions.

In Ref. [53], authors present a new MPPT method based on
artificial neural network. The new combined method is established
on the three-point comparing method and ANN-based PV model
method. The ANN is used to guide the reference operation point that
close to the MPP quickly; then the three-point comparing is used to
track the exact MPP. The simulations results obtained under Matlab
environment show that the proposed ANN-MPPT decreases the track-
ing time of the three-point comparing as well as proving the effective-
ness of the proposed algorithm.

In Ref. [54], authors propose a stand-alone solar and diesel–wind
hybrid generation system using an intelligent power controller to
effectively extract the maximum power from the wind and solar energy
sources. The intelligent controller consists of a radial basis function
network (RBFN) used for the solar system and an improved ELman
Neural Network (ELNN) is used to control the pitch angle of wind
turbine. The diesel generator is used to regulate the load frequency by
imposing the rotor currents with the slip frequency. The Matlab/
Simulink simulations results show more efficiency, a better transient
and more stability, even under disturbance.

In Ref. [58], the author presents the optimum photovoltaic water
pumping system using maximum power point tracking technique. In
this study, an adaptive controller with emphasis on Nonlinear
Autoregressive Moving Average (NARMA) based on artificial neural
networks approach is applied in order to optimize the duty ratio for PV
maximum power at any irradiation level. The model-based design of
neural network controller is realized using an indirect data-based
technique where a model of the plant is identified on the basis of
input–output data. The proposed controller has the advantages of fast
response and good performance. The considered system with the
proposed controller has been tested through a step change in irradia-
tion level. Simulation results of the proposed artificial neural network
(ANN) controller compared with a PID controller demonstrate the
effectiveness and superiority of the proposed approach. The results also
show that the MPPT techniques add about 38% more performance,
with zero steady state error and with settling time less than one second.

In Ref. [59], authors propose a novel MPPT algorithm using neural
network compensator based on the slope of power versus voltage. The
uncertainties of solar irradiation conditions, ambient temperature, and
the load electrical characteristics in PV systems are compensated by a

neural network. While the PI controller is used to determine the duty
cycle of dc/dc converter. The simulation and experimental results
prove the validity of the proposed MPPT controller under a certain
solar irradiation and a partially shaded condition, respectively.

In Ref. [60], authors propose an efficiency MPPT based on artificial
neural network suitable for solving non linear relation. The proposed
ANN-MPPT is compared to the conventional perturbation & observa-
tion algorithm. The comparison results show that ANN-MPPT outper-
forms the traditional P &O MPPT in term of efficiency and the
reduction of the output oscillations around the MPP.

In Ref. [61], authors propose a technique to adjust the changing
step size of Flyback converter to achieve both acceptable tracking time
and low power oscillation. The proposed technique uses an artificial
neural network to estimate the appropriate modulation step size. In
this ANN, the irradiance is adopted as the input. Simulation results
confirm that the proposed neural network based inverter can find the
appropriate changing step size adequate for any irradiance conditions.

In Ref. [62], authors present a neural network based incremental
conductance IC algorithm for maximum power point tracking in PV
system. The ANN is used to supply the voltage Vref to the modified IC
method. The ANN is trained in off-line using experimental data under
various atmospheric conditions. The trained ANN is used for online
estimation of reference voltage for the feed-forward loop. The PV
system along with the proposed MPPT algorithm was simulated using
Matlab/Simulink Simscape toolbox. The simulated system was eval-
uated under uniform and non-uniform irradiation conditions and
compared to perturb and observe and fuzzy based modified hill
climbing algorithms showing that the proposed approach is effective
in tracking the MPP under partial shading conditions with less
response time than other two methods. The simulation results have
been validated by hardware implementation using FPGA.

In Ref. [63], authors suggest a photovoltaic/thermal (PV/T) control
algorithm based on artificial neural network to detect the optimal
power operating point by considering PV/T model behavior. The
optimal power operating point computes the optimum mass flow rate
of PV/T for a considered irradiation and ambient temperature. The
simulations results of the proposed control demonstrate great con-
cordance between optimal power operating point model based calcula-
tion and ANN outputs.

In Ref. [64], the author proposes a novel method to determine the
characteristics of silicon solar cell, module and plastic solar cell. In this
method, a feed-forward artificial neural network with Lambert W
function are used to determine the I-V and P-V characteristics. Five
model parameters of the solar cell and module are calculated using the
proposed technique which compares the Lambert W function repre-
sentation of the I–V characteristic with the learned feed-forward neural
network model of the I–V relation. Simulation results show a very good
agreement between the calculated characteristic curves and experi-
mental data as well as its superiority compared with other related
methods in term of current and power errors even at the Maximum
Power Point.

In Ref. [65], authors propose two fast and accurate digital MPPT
methods for fast changing environments using piecewise line segments
or cubic equation to approximate the maximum power point locus. In
this study, a neural network-based program which can be used to
calculate the parameters of the estimated MPP locus is also developed
and embedded into the proposed digital MPPT system. Simulation and
experimental tests are conducted to validate the effectiveness and
correctness of the proposed methods. The results prove the advantages
of the proposed system in term of low computation requirement, fast
tracking speed and high static/dynamic tracking efficiencies.

In Ref. [66], authors analyze the performance of ANN, P &O–
ANFIS and PSO–ANFIS MPPT algorithms by stand-alone PV system.
The configuration for the proposed system is designed and simulated
using Matlab/Simulink and implemented in 16F877A microcontroller.
In this study, a combination of an interleaved soft switched boost
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converter (ISSBC) run by a set of two photovoltaic panel with a
distributed MPPT managed by an adaptive neuro-fuzzy inference
system trained by the training data derived from a particle swarm
optimization. The ISSBC is followed by a single phase cascaded H
bridge five-level inverter driven by the individual DC outputs of the
ISSBC, with selective harmonic elimination scheme to eliminate
typically the seventh order harmonics. The use of the ISSBC guarantees
mitigation of ripple and it is meant to handle higher currents with
minimal switching losses. Simulation and experimental results prove
that the PSO–ANFIS model of distributed MPPT scheme of control
outperforms other schemes of control for MPPT.

In Ref. [67], authors analyses a monitoring system of two different
solar modules technologies, a mono-crystalline 55 W silicon and a
flexible organic solar module of 12.4 W, were the temperature, relative
humidity, and irradiance were monitored during the observation
period under outdoor exposure. These records have been used to train,
validate and testing of an artificial neural network model where the
electrical power of the modules is considered as output. The reliability
of the ANN models were evaluated through the standard deviation and
dispersion of the errors between the experimental data recorded and
the results of the ANN, obtaining an error of about 1.6 W and 0.29 W
for each model with a 50% confidence in the results. These ANN
models were subjected to a sensitivity analysis with respect to the input
variables. From these analyses was observed a remarkable performance
of the organic module at lower irradiance values, highlighting the
increased power generated for relative humidity below 80%. On the
other hand the organic module showed important performances for
irradiance less than 400 W/m2 where the silicon module failed to show
adequate performance effectively. This tool allows prediction of the
performance of the two photovoltaic technologies evaluated here at
different environmental conditions.

In Ref. [68], authors present a comparison between four intelligent
methods used in tracking the maximum power point and their possible
implementation into a reconfigurable field programmable gate array
(FPGA) platform. The investigated methods are neural networks, fuzzy
logic, genetic algorithm and hybrid systems (e.g. neuro-fuzzy or ANFIS
and fuzzy logic optimized by genetic algorithm). In this study, a
complete simulation of the photovoltaic system with intelligent MPP
tracking controllers using MATLAB/Simulink and ModelSim environ-
ment is given as well as the different steps to design and implement the
controllers into the FPGA. The best controller is tested in real-time co-
simulation using FPGA Virtex 5. The comparative study has been
carried out to show the effectiveness of the developed methods in terms
of accuracy, rapidity, flexibility, power consumption and simplicity of
implementation. The results confirm the good tracking efficiency and
rapid response of the different methods under variable temperature
and solar irradiance conditions.

In Ref. [69], author proposes an ANN-MPPT based on hysteresis
current controlled converter developed with three level techniques with
fixed band and load variation value determined with output current
THD lower than 5%. In this system, an ANN is used as maximum
power tracking controller. System performance is measured in terms of
the efficiency of the MPPT controller with very satisfactory (efficiency
of 99%).

In Ref. [70], authors investigate two intelligent techniques (artificial
neural network and fuzzy logic control) used in MPPT controllers. Both
MPPT techniques are implemented and their performance analyzed
Matlab/Simulink environment. The results show that both the techni-
ques were able to track the maximum power point effectively, but ANN
based MPPT has a better response with negligible oscillations than
FLC.

In Ref. [71], authors investigates the voltage prediction of a PV
module as a function of current, temperature, and solar irradiance by
using two artificial neural networks: back propagation and radial basis
function networks. The performance of the back propagation network
is studied by using three types of data set. Then, the model accuracy is

investigated by varying the number of hidden layers and training
algorithms. Simulation results indicate that the back propagation
network with one hidden layer with normalized data and trained by
Levenberg–Marquardt algorithm outperforms the other the other
studied networks. The performance of the best back propagation
network is compared against the RBF network concluding to the
superiority of the BP network.

In Ref. [72], authors present an intelligent maximum power point
tracking method for stand-alone PV systems using artificial neural
networks estimator and a fuzzy logic controller. The ANN estimate the
MPP under any weather condition of solar irradiance and temperature.
Then, the FLC uses the estimated MPP voltage as a reference to
generate the desired PWM signal for the DC-DC converter. The
obtained results using Matlab/Simulink environment proved that the
performances of the proposed ANN based fuzzy MPPT technique are
much better than those of the conventional IC method in terms of MPP
precision and tracking speed.

In Ref. [73], authors propose a neural network maximum power
point tracking algorithm. The proposed ANN-MPPT is compared to
perturb and observe (P &O), incremental conductance (IC) MPPT. The
simulation results carried out on Matlab/Simulink environment show
the efficiency improvement as well as the oscillations reduction of the
proposed ANN-MPPT compared to the P &O and IC algorithms.

In Ref. [74], authors present a novel direct adaptive neural control
method for maximum power point tracking of photovoltaic systems
using a DC/DC buck converter to regulate the output power. The direct
adaptive neural control scheme operates on MPP and improves the
performance of solar energy conversion efficiency. The online adapta-
tion procedure is based on learning law of the delta rule where only the
system output error is required. The simulation results confirm the
feasibility and effectiveness of the proposed direct adaptive neural
control method in transient operations and dynamic performance due
to environmental conditions change. The MPP is reached very rapidly,
the time response in the transient states is extremely short and the
fluctuations in the steady state are considerably reduced. The results
also show a great improvement of dynamic performance of the
proposed method compared to the conventional perturbation and
observation method.

In Ref. [75], authors investigate a detailed dynamic modeling of
microgrid including PV and wind systems. The PV MPPT is realized
using artificial neural network. While the control of turbine output
power in high wind speeds is realized using pitch angle control
technique by fuzzy logic. The PV ANN-MPPT is trained by data that
are optimized by GA. The simulation results under Matlab/Simulink
show that the ANN-MPPT can track the MPP under different insolation
conditions and meet the load demand with less fluctuation around the
MPP.

The main points of this review of application of neural networks in
maximum power point tracking techniques are summarized in Table 1.

As mentioned previously, among the various proposed MPPT
methods, the P &O remain one of the most used in PV systems due
to its advantages compared to other methods [76–82].

3. Modeling of photovoltaic cell

Photovoltaic is the direct conversion of light into electricity. It uses
materials which absorb photons of lights and release electrons charges.
It can be used for making electric generators. The equivalent model of a
PV cell is shown in Fig. 1 [2,11]..

The solar cell terminal current can be expressed as a function of
photo-generated current, diode current and shunt current.

I I I I= − −o ph d sh (1)

where

Iph is the current generated by the incident light (proportional to the
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Sun irradiation);
Id is the current through the diode;
Ish is the current through the parallel resistor Rsh.

The output current of a PV array is given by following equation:

⎡
⎣⎢

⎤
⎦⎥I N I N I e N q V R I

N R
= − − 1 − ( + )

p ph p rs

q V R I
AkTN p

s o

s sh
0

( + )s o
s

(2)

where
Irs is cell reverse saturation current;
q is the electron charge (1.60217646×10−19 C);
k is the Boltzmann constant (1.3806503×10−23 J/K);
n is the diode ideality constant;
Tis reference cell operating temperature (20 °C);
Vis cell output voltage (V);
A is the diode ideality constant;
Np is the number of PV cells connected parallel;
Ns is the number of PV cells connected in series;
Rs and Rp are the series and shunt resistors of the cell, respectively.

The generated photocurrent Iph is related to the solar irradiation by
the following equation:

I G I k T T=
1000

( + ( − ))ph sc i r (3)

where
Isc is cell short circuit current at reference temperature and

irradiation;.
ki is short-circuit current temperature coefficient;.
Tr is cell reference temperature;.
G is solar irradiation in W/m2.

4. Conventional Perturb and Observe method

As mentioned previously, photovoltaic has characterized by low
efficiency and nonlinear P-V characteristics, which it presents a unique
maximum power point. Therefore, tracking the maximum power point
of a photovoltaic array is an essential part of a PV system. In this
regards, various MPPT techniques have been developed. These meth-
ods include Perturb and observe method [7–9], incremental conduc-
tance [10–12], hill climbing [13–15], etc. In this paper, the P &O
method is selected to provide the training patterns rules (data
generation) required to the artificial neural network MPPT controller.
The flowchart of the perturbation and observation method is illustrated
in Fig. 2..

5. Proposed fixed step neural networks MPPT algorithm

Over the last few decades, artificial neural networks techniques
have been considered as one of the best candidates for computational
system due to the several advantages they offer compared to the
conventional computational systems. Improvement in PV system
performances can be achieved by adequate MPPT controllers. The
emerging artificial neural networks controllers are considered to be
suitable for this purpose in many papers, since they solve certain
complex and ill-defined problems without accurate mathematical

model where the conventional techniques have not achieved the
desired speed, accuracy, or efficiency. A neural network is an informa-
tion processing system [83–87]. It consists of a number of simple
highly interconnected processors known as neurons similar to biologi-
cal cells of the brain. These neurons are interconnected by a large
number of weighted links, over which signals can pass. Each neuron
receives many signals over its incoming connections, and produces a
single outgoing response. Such networks have exceptional pattern
recognition and learning capabilities. Recent applications of ANN have
shown that they have considerable potential in overcoming the difficult
tasks of data processing and interpretation. The use of ANN can be
summarized by the following steps: [83–87]:

• Training patterns generation: This step constitutes an off-line
computation. It consists on obtaining a set of training patterns that
covers the possible operating conditions;

• Selection of inputs: This step constitutes the most important factor
in the successful use of ANN and therefore needs a special attention.
The state variables candidates for ANN inputs should be indepen-
dent variables which have significant influence on the ANN
response;

• Selection of ANN architecture: Multilayered feedforward backpro-
pagation ANN is the most popular type used by many applications.
It consists of an input layer, one or more hidden layers, and an
output layer;

• Training the ANN and testing: Training is the process of determin-
ing the weights which are the key elements of an ANN. The training
algorithm is used to find the weights that minimize some overall
error measure such as the sum of squared errors (SSE) or mean
squared errors (MSE) [83,87].

5.1. Model and training of ANN tracker

To extract the maximum power from the PV module, an ANN
model with three layer feed-forward ANN is selected as shown in
Fig. 3..

Fig. 1. Simplified equivalent circuit of a photovoltaic cell.

Fig. 2. Flowchart of the conventional P &O algorithm.
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The ANN inputs variables are PV array output power derivative
(dP) and voltage derivate (dV) corresponding to a given solar radiation
and operating cell temperature conditions. The output variable of ANN
is the corresponding normalized increasing or decreasing duty cycle
(+1 or −1).

In this work, a feed-forward backpropagation ANN is used with
three hidden layers having a logsig, purelin and purelin activation
functions, respectively. The first layer has four neurons, the second one
has ten neurons and the third layer has four neurons. The output layer
consists of one output neuron (Fig. 3). The optimum number of
neurons in hidden layer and the number of hidden layer is determined
on a heuristic basis so that the prediction accuracy is acceptable. The
ANN training was performed in off-line step using back propagation
algorithm. The proposed artificial neural network MPPT controller is
based on the same principle of perturbation and observation method,
where the decrease or increase of duty cycle depends on the sign of dP/
dV. The basic principle of neural network MPPT controller is summar-
ized in the Table 2:

The system operates in two modes:

1) The offline mode: required for the training of different set of
neural network parameters to find the optimal neural network
controller in term of structure, activation function and training
algorithm;

2) The online mode: uses the found optimal ANN-MPPT controller
to track the MPP.

5.2. Variable step size ANN-MPPT algorithms

As mentioned previously, the conventional MPPT methods based
on fixed step-size have a good performance. However, they are
characterized by major drawbacks like slow convergence, oscillations
around the MPP and failing to track the MPP under rapidly changing
atmospheric conditions. Speedy tracking can be achieved with larger
step size but excessive steady state oscillations is unavoidable. While
smaller step size can reduces the oscillations with slower dynamics.
Solving these dilemmas, many contributions have been introduced
using variable step size and significant progress has been made, where
the algorithm changes the step size automatically according to the PV
array characteristics. Depending on each operational condition, step
size should make a satisfactory tradeoff between the dynamics and
oscillations. Therefore, from the basic principle of MPPT, this study
proposes a new variable step size MPPT algorithm characterized by
more simplicity, faster response time and less oscillations. Fig. 4 shows
the ANN-MPPT controllers developed using Simulink. The variable
step-size method proposed is given as follows:

D k D k fixed Step M dP( ) = ( − 1) ± ( + * ) (4)

where.
D(k) and D(k−1) are the duty cycle for instants k and k-1,

respectively;.
M is the scaling factor adjusted at the sampling period to regulate

the step size;.
dP is the PV array output power derivate defined by dP(k)

=P(k)−P(k−1).

6. Simulation results

The simulation software Matlab/Simulink is used to simulate
complete simulation system architecture of our solar PV system. The
Simulink model consists of the MSX-60 module connected to DC-DC
boost converter drived using the ANN-MPPT controller (Fig. 5)..

Table 3 summarizes the MSX-60 module characteristics. While
Fig. 6 shows the I-V and P-V characteristics..

The simulations have been carried out under fast changing irradia-
tion. The irradiation is changed every 0.5 s from 600 W/m2 to 1000 W/
m2 and from 1000 W/m2 to 600 W/m2.

Aiming to compare and adjust appropriately each algorithm
according to the application, it becomes necessary to provide perfor-
mance measures that can be used as comparison criteria. In this study,
Beyond the typical measures of dynamic responses, we use four
criteria:

• MPPT tracking accuracy;

• Response time;

• Overshoot;

• and Ripple.

6.1. Offline mode tests

As mentioned previously, this mode is required for the training of
different set of neural network parameters to find the optimal ANN
controller in term of structure, activation function and training
algorithm. Fig. 7 shows the ANN performance in training offline mode..

6.2. Online mode tests

This mode uses the optimal ANN-MPPT controller to track the MPP
using both fixed step size and variable step size ANN-MPPT controller.
The simulation results for the both methods using the defined
performance criteria are shown below.

Fig. 3. The developed ANN configuration used to determine duty cycle at MPP.

Table 2
Basic principle of ANN-MPPT controller.

dPpv dVpv dPpv/ dVpv Duty cycle

+1 +1 +1 D(k)= D(k−1)+step
+1 −1 −1 D(k)= D(k−1)−step
−1 +1 −1 D(k)= D(k−1)−step
−1 −1 +1 D(k)= D(k−1)+step
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6.2.1. ANN-MPPT tracking accuracy
As shown in Fig. 8, both fixed and variable step size MPPT

algorithms have an acceptable accuracy. The power values in both
cases are very close to the theorical value corresponding to irradiation
levels..

6.2.2. ANN-MPPT Response time
From Fig. 9, we can observe that response time in case of fixed step

size neural network MPPT controller is 1.3x (1.3 times) the response
time needed by the variable step size MPPT controller. The proposed
variable step size ANN-MPPT controller takes 0.43 ms to respond to
irradiation changing while the fixed step size version takes 0.56 ms.
Therefore, regardless of whether the irradiation is increased or

Fig. 4. ANN controller Simulink models: (a) fixed step size ANN controller, (b) variable step size ANN controller.

Fig. 5. Simulink model of built architecture.
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decreased, the dynamic response and steady-state power of the system
are both good when using the proposed method. Between the two
algorithms, the proposed variable step ANN algorithm has a good

tracking rapidity especially around the MPP..

6.2.3. ANN-MPPT overshoot
The overshoot in case of suddenly changing atmospheric conditions

is more important with the fixed step size neural network MPPT
controller compared to overshoot using the proposed variable step size
neural network MPPT controller ((2.24x, 3.23 W instead of 1.44 W)
Fig. 10)..

6.2.4. ANN-MPPT ripple
From Fig. 11, the improvement of variable step ANN-MPPT

method regarding ripple is undeniably clear (divided per 2). It can be
observed that the quality of the output power PPV (regarding ripple)
with variable step size neural network MPPT algorithm are obviously

Table 3
Electrical characteristics of Solarex MSX −60 (1 kW/m2, 25 °C).

Description MSX-60

Maximum Power (Pm) 60 W
Voltage Pmax (Vm) 17.1 V
Current at Pmax (Im) 3.5 A
Short Circuit current (Isc) 3.8 A
Open Circuit voltage (Voc) 21.1 V
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Fig. 6. I-V and P-V characteristics under various insolation levels.

Fig. 7. Training performance of ANN-MPPT controller.

Fig. 8. ANN-MPPT tracking accuracy.
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better than this with fixed step size neural network MPPT algorithm..

7. Experimental results

To validate the simulations results, we implement an experimental
system prototype. as shown in Fig. 12..

The experimental implemented system architecture was built using:

• four solar panels MSX-60 connected in series,

• Flyback chopper converter,

• control circuit using the dsPIC30F4011,

• several lamps as load,

• Hall-effect sensors LA100 and LV-25,

• Oscilloscope,

• and Personal computer.

The dsPIC30F4011 was used to provide the control signals for the
Flyback converter. The two Hall-effect sensors LA100 and LV-25 have
been used to detect the PV output current and the PV output voltage.
The detailed architecture of the proposed experimental system is given
in Fig. 13..

The digital controller uses the dsPIC30F4011 to execute the MPPT
algorithm and output the PWM signal. The program of the proposed
variable step size neural network as well as P &O algorithms were
written using the C language and were compiled by the MATLAB
environment. After compiling, the program was downloaded to the
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Fig. 10. ANN-MPPT power overshoot.

Fig. 11. ANN-MPPT power ripple.

Fig. 12. Experimental PV system architecture.

Fig. 13. Detailed experimental PV system architecture.

Table 4
Experimental setup parameters.

Parameter Value

Sampling period: Ts 0.001 s
The fixed step size: step 0.005
The scaling factor: M 0.001

Fig. 14. PV array output performance (current, voltage and power) with fixed step size
ANN-MPPT under constant insolation 800 W/m2.
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dsPIC evaluation board to execute the MPPT algorithms. The analog
voltage and current values of the solar PV array are fed to the 10-bit
ADC module of the dsPIC to be converted into the digital values using
current and voltage sensors. The PWM module of the dsPIC outputs
the driving signal to the switch of the boost converter to perform the
MPPT. Table 4 summarize the experimental setup parameters used in
our tests.

Fig. 14 shows the MPP tracking using conventional fixed step size P
&O MPPT controller. While Fig. 15 shows the MPP tracking using the
proposed variable step ANN-MPPT controller...

From Figs. 14 and 15, we can see clearly the main drawback of the
P &O fixed step-size method on Fig. 14. The oscillations around the
MPP are visible. The improvement using the proposed algorithm are
undeniably clear in Fig. 15. We have no oscillation at steady state.
Moreover, the power ripple is less using the proposed variable step size
algorithm compared to conventional fixed step size P &O algorithm.
Therefore, the proposed ANN-MPPT controller reduce the wasting
power. We can say that experimental results confirm the simulations
results showing that the proposed variable step size ANN-MPPT
controller outperforms the P &O fixed step size improving all perfor-
mance measures.

8. Conclusions

In this paper, two new neural network MPPT controllers have been
proposed, where the MPPT controllers are designed in two modes: The
offline mode used for testing and optimization of neural network
parameters in term of structure, number of neural layer, activation
function and training algorithm; while the online mode uses the
optimal ANN-MPPT controller to track the MPP. The detailed archi-
tecture and tracking method of the proposed method were discussed in
simulation and real experimental environments used to verify the
feasibility and functionality of the proposed method. The simulation
and experimental results show that the proposed artificial neural
network MPPT controller can track the MPPs quickly and accurately
under different and suddenly changing atmospheric conditions. The
simulations results demonstrate the high performances of variable step
size neural network MPPT controller especially in term of tracking
accuracy, response time, overshoot and ripple compared to the fixed
step size version having the same drawbacks of P &O trainer algorithm.
The experimental results confirm the simulations results showing that
the proposed variable step size ANN controller outperforms the P &O
fixed step size improving the convergence by eliminating the oscilla-
tions around the MPP in steady state and by the fact reducing the

wasting power.
From these results, the major contribution of this work can be

summarized as follows: the MPP is reached very rapidly especially in
fast changing environment conditions, the response time in the
transient states is improved, the overshoot and the oscillations in the
steady state are extremely reduced and consequently energy losses are
reduced.
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