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a b s t r a c t

Electric vehicles (EVs) are widely regarded as valuable assets in the smart grid as distributed energy
resources in addition to their primary transportation function. However, connecting EVs to the
distribution network and recharging the EV batteries without any control may overload the transformers
and cables during peak hours when the penetration of EVs is relatively high. In this study, a two level
hierarchical control method for integrating EVs into the distribution network is proposed to coordinate
the self-interests and operational constraints of two actors, the EV owner and Distribution system
operator (DSO), facilitated by the introduction of the fleet operator (FO) and the grid capacity market
operator (CMO). Unlike the typical hierarchical control system where the upper level controller
commands the low level unit to execute the actions, in this study, market based control are applied
both in the upper and low level of the hierarchical system. Specifically, in the upper level of the
hierarchy, distribution system operator uses market based control to coordinate the fleet operator's
power schedule. In the low level of the hierarchy, the fleet operator use market based control to allocate
the charging power to the individual EVs, by using market based control, the proposed method considers
the flexibility of EVs through the presence of the response-weighting factor to the shadow price sent out
by the FO. Furthermore, to fully demonstrate the coordination behavior of the proposed control strategy,
we built a multi-agent system (MAS) that is based on the co-simulation environment of JACK, Matlab
and Simulink. A use case of the MAS and the results of running the system are presented to intuitively
illustrate the effectiveness of the proposed solutions.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Impact of EVs on the distribution grids

EVs are widely advocated as a mean of personal transport and
urban delivery because they can contribute to the reduction of CO2

emission, especially when the recharging electricity is generated
by renewable resources. However, the electric utilities must
determine how to integrate the widely distributed EVs (especially
when used by a large amount of the ordinary population)
smoothly into the grid, i.e., manage the simultaneous charging of

a large number of EVs without overloading the grid. Typically, a
charging demand of 4 kW1 represents twice the daily demand of a
normal household. Several studies (Heydt, 1983; Lopes et al., 2011;
Clement-Nyns et al., 2010; Green et al., 2011) have indicated that
uncontrolled charging (also known as dumb charging) of EVs will
challenge the capacity of the distribution grid. To address this
challenge, the time-of-use tariffs or multiple tariffs charging
scheme are used in the early stage to relieve the congestions in
the peak hours (Shao et al., 2010). However, using tariffs solely is
not adequate to eliminate the congestion because they merely
shift the peak load to its neighboring period (Ma et al., 2013;
Karfopoulos and Hatziargyriou, 2013). Fortunately, there is much
flexibility in terms of EV charging that can be used to mitigate the
overloading problems. An example to illustrate this point is an EV
charging case in the Danish power systems. In (Wu et al., 2010), a
Danish driving pattern analysis was presented, which stated that
the average distance in Denmark is 42.7 km per day. With an
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assumption of 0.15 kWh/km for the energy used per km of electric
vehicles, one can deduce that the monthly energy requirement for
an electric vehicle will be approximately 192 kWh. Using the
Nissan Leaf (EV battery capacity of 24 kWh) as an example, this
monthly energy requirement implied that the Leaf user must
charge the EV approximately 8 times per month (192 kWh/
24 kWh). However, owners will rarely fully discharge their EV
before recharging it. Supposing the EV users charge the electric
vehicles 20 times per month, this means 9.6 kWh of energy will be
used each time. Considering the features of the charger2, three
hours are required for the charging. Normally, people leave home
at approximately 7 AM in the morning and get home at approxi-
mately 5 PM in the evening, which means the EV can be charged at
any three hours during the 14 h at home, in most cases.

1.2. Hierarchical control structures for EV integration management

Recently, much research has focused on the use of the EV charging
flexibilities to coordinate the objectives and the constraints of the
actors centrally as well as from market perspectives, e.g., to optimize
the charging cost of EVs as well as to respect the hard constraints
imposed by needs of the EV owner and the distribution grid
operation. Regardless, in both types of coordination strategies, usually,
the Fleet operator (FO) is proposed to manage the energy of EV
charging as well as to provide ancillary services to the power system
operator and these types of coordination forms a hierarchical control
system. In addition to FO's role in this hierarchy, the role of the
distribution system operator (DSO) is to operate, maintain and
develop an efficient electricity distribution system. The objective of
the EV owner is to minimize the charging cost given the condition
that his/her driving requirements are fulfilled.

In Sundstrom and Binding (2012), a complex scheduling
problem involving the EV owners, the FO and the DSO was
analyzed centrally. The approach requires a complex interaction
between the DSO and the FO in the upper level of the hierarchy.
In each interaction, the FO will receive a specific grid constraint
from the DSO and add it into the EV charging cost minimization
problem in the lower level of the hierarchy. The results indicated
that both the FO and the EV owners can achieve the objectives of
minimizing charging costs and fulfilling driving requirements
without violating the grid constraints. Lopes et al. (2009)
proposed a conceptual framework consisting of both a technical
grid operation strategy and a market environment to integrate
EVs into the distribution systems. In that study, FOs manage the
EVs, and the FOs prepare the buy/sell bids into the electricity
market. Having this defined, a prior interaction with the DSO in
the upper level of the hierarchical system must exist to prevent
the occurrence of congestion and voltage problems in the
distribution network. The smart charging algorithm was mainly
designed for the operation of the DSO that can maximize the
density of the EV deployment into the grid. It is also assumed
that the grid has sufficient capacity to provide all of the power
required by the EVs. With this assumption, the centrally smart
charging approach was found to be effective. In Yao et al. (2013),
the major objective of the upper-level of the hierarchy is to
minimize the total cost of system operation by jointly dispatch-
ing generators and electric vehicle aggregators. The lower-level
model aims at strictly following the dispatching instruction from
the upper-level decision-maker by designing appropriate

charging/discharging strategies for each individual EV in a
specified dispatching period. In Wang et al. (2012), the proposed
hierarchical large-scale EV charging management not only meets
the requirement of system dispatching but also considers the
customer satisfaction.

Although these proposed solutions are demonstrated to work
efficiently for a limited number of EVs, totally centralized manage-
ment in a hierarchical control system requires the acquisition and
processing of an enormous amount of information in the case of a
large penetration of EVs, such as (1) the battery model of each EV,
along with the initial state of charge (SOC) and the desired SOC of
each EV battery; (2) the driving pattern of each EV; (3) the grid
constraint information from the DSO; and 4) electricity market
information. This enormous amount of information would require
significant computational resources, communication overhead and
communication infrastructure cost. Research by Lyon et al. (2012)
indicated that the benefits for the entirely centralized charging
management might not justify the communication infrastructure
cost. Alternatively, several means of solving the congestion pro-
blem in the distribution grid have been suggested from the market
perspective. The paper by Andersen et al. (2012) conceptualizes
several approaches, e.g., the distribution grid capacity market and
the dynamic grid tariff (O’Connell et al., 2011), to address the
distribution grid congestion. The conceptualized strategies for
congestion management are evaluated in terms of their complex-
ity of implementation, the value and benefits they can offer, as
well as possible drawbacks and risks. Further on, the work by Hu
et al. (2014) analyzed the shadow price-based grid capacity market
scheme in which the FOs centrally schedule and control the
charging of EVs in the low level of the hierarchy, and they
negotiate with the market operator (distribution grid capacity
market) in the upper level of the hierarchy on the limited capacity
of the distribution grid if it is needed. The focus of the study by Hu
et al. (2014) was the mathematical proof of the proposed market
scheme. Some numerical case studies were presented to illustrate
the effectiveness of the proposed solution. Besides, the authors in
Qi et al. (2014) presented a hierarchical optimal control framework
to coordinate the charging of plug-in electric vehicles in multi-
family dwellings. The charging problems of a district, e.g., an area
below one primary transformer, is decomposed into several
subproblems that can be solved iteratively, locally, and in parallel,
with updated information of Lagrangian multipliers broadcast by
the centralized controller. In general, the concept of the market
based control is applied in the upper level of the hierarchy in this
study to solve the congestion problem of the primary transformer.
The simulation result demonstrated that the proposed hierarchical
charging strategy outperforms the centralized charging strategy
from the perspective of computational requirements.

1.3. Multi-agent application for EV integration management
in a hierarchical structure

To implement and assess both control strategies of the smart
charging of EVs, especially the market-based coordination method in
a hierarchical system, a multi-agent system (MAS)-based technology
is very suitable (Jennings and Bussmann, 2003), the use of which can
be justified by the following reasons:

� The increase in the complexity and size of the entire EV
charging network raises the need for both distributed intelli-
gence and local solutions, which fall into the scope of MAS-
based technology.

� The information flow, optimizations and the negotiations that
occur in the smart charging network of EVs can be well demon-
strated and integrated into a MAS.

2 Typically, in the European distribution network (residential area), three
charging rate scenarios are considered: one-phase connections of 2.3 kW (AC
10 A�230 V) and 3.7 kW (AC 16 A�230 V) and three-phase connection of 6.4 kW
(AC 16 A�400 V). Using 3.7 kW as an example, this implies a charging time of
approximately three hours (9.6 kWh/3.7 kW¼2.6 h). Note: the DC charging
method is usually used for fast charging stations.
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� The system can be pre-tested and pre-analyzed by using a MAS
before the actual implementation.

In addition to these general arguments, the use of a MAS has been
widely proposed in the context of power systems, such as for power
system restoration (Nagata and Sasaki, 2002) and for power system
operation and control (Rehtanz, 2003). More recently, the multi-
agent concept was proposed for distribution system operation
and control (Nordman and Lehtonen, 2005; Issicaba et al., 2012;
Pipattanasomporn et al., 2009; Ren et al., 2013), in particular con-
sidering the capacity management with a large population of electric
vehicles (Karfopoulos and Hatziargyriou, 2013; Miranda et al., 2011)
and the capacity management with more general loads (Greunsven
et al., 2012). The authors (Karfopoulos and Hatziargyriou, 2013)
proposed a hierarchical EV management structure in a distribution
network. In the proposed hierarchical management structure, four
types of agents were included in the study: EV supplier aggregator
agent, regional aggregation agent, microgrid aggregation agent and
cluster of vehicles controller agent, and vehicle controller agents. The
authors use Nash certainty equivalence principle to formulate and
solve the optimal charging problem considering the distribution
network's impacts. In the non-cooperative, dynamic game, all of the
vehicle controller agents decide the strategy that minimizes their own
objective functions. The up-level agents (regional aggregation agent)
coordinate vehicle controller agents' charging behavior by altering the
price signal. The price signal is a reflection of the congestion condi-
tions. The results indicated that the proposed approach allocates EV
energy requirements efficiently during off-peak hours, which effec-
tively achieves valley filling and also leads to maximization of the load
factor and minimization of the energy losses. In this paper, the
proposed hierarchical EV management structure in principle can be
adapted to solve EV integration problems such as grid congestions in a
big scale. However, the agents defined in the study cannot fully
represent the actors in the real word, e.g., the role of the distribution
system operator and the commercial actors are somehow mixed. The
authors in Miranda et al. (2011) used the MAS to design a distributed,
modular, coordinated and collaborative intelligent charging network,
with the objective of proactively scheduling the charging of up to 50
EVs as well as eliminating the grid overloading issue. The studymainly
considered how the electricity is distributed to the multiple charging
point agents under one local power manager agent, which is
performed by an auction mechanism. Each charging point agent
makes a bid for the energy in the next 15 min until it achieves the
desired state of charge of the battery, while the local power manager
agent analyzes the orders to determine which EV can be charged
during the time slot. The system layout of the study shows implicit
relations between the local power manager agent and the national
electricity system and the overall system structure is hierarchical. In
the study by Greunsven et al. (2012), an active distribution network
(ADN) was presented with its actors and their objectives. The multi-
agent technology was proposed for the normal operation of the AND.
In the proposed agent architectures, three agent named auctioneer
agent (placed at the MV/LV transformer), concentrator agent installed
at each feeder, and devices agents (represent DER devices) are
proposed. Through this hierarchical structure, the device agents
communicate with the concentrator agent to make the bids and the
concentrator agent will concentrates the market bids of the connected
device agents in one bid. Furthermore, the concentrator agent com-
municates the bid with the auctioneer agents. Then, the auctioneer
agent is responsible for searching the equilibrium prices and the
converged price will be sent back to the concentrator agents. The
concentrator agent passes the price to all the connected device agents.
By repeating the process, the system will be balanced. In addition,
capacity management was investigated by transforming the bid
curves of the device agents. The simulation results implemented in

Matlab/Simulink demonstrated the effectiveness of the proposed
agent-based solutions.

1.4. Contributions

This paper applies multi-agent technology for electric power
distribution system congestion management considering the inte-
gration of electric vehicles. The unique feature of this MAS lies in
its system architecture where the system is a hierarchical structure
and market based control method is applied entirely in such a
system, i.e., in both the upper and the lower level of the system.
Thus, the proposed system exploits strengths of both market based
control and hierarchical structure for application of MAS in
distribution congestion management.

Furthermore, the contribution lies in the system software
development where the software of JACK, MATALB, and Simulink
are integrated. The built MAS fully exploits each software's strength
such as JACK is a mature environment for demonstrating the
coordination schemes among the multi agents, MATLAB is good
for technical computation, and Simulink is good for grid modeling
and simulation. Specific advantages of the current contribution over
the existing work are described later in Section 6.

The remainder of this paper is organized as follows. In Section 2,
the assumptions and the control system architecture used in this
study are introduced. Section 3 presents the mathematical princi-
ples behind the methods of smart charging of EVs and distribution
grid congestion management. In Section 4, the MAS-based realiza-
tion of the congestion management scheme is presented. Case
studies are illustrated in Section 5 to facilitate the understanding.
Finally, discussion and conclusions are presented in Section 6.

2. Control system architecture

2.1. Main actors in the control system

Typically, the challenges in the distribution grid caused by the
increasing amount of electricity consumption from EVs and heat
pumps (Søndergren, 2011) are solved by expanding the grid to fit
the size and the pattern of demand. As an alternative, inspired by
the congestion management method at the transmission system
level, in this study, the capacity of the distribution network (scarce
resources) is allocated according to economic principles without
upgrading the grid.

Fig. 1(a) presents a sketch of a typical situation in a distribution
network, where the substation supports the electricity to the house-
holds connected to it. In this distribution network, it is assumed that
the consumers own controllable appliances, i.e., EVs, in addition to
some conventional loads. These EVs have contracts with the FOs, who
are new entities in a smart grid environment. The use of FOs has been
widely proposed to provide the charge services to EVs; here, it is
further assumed that the FOs are also responsible for managing the EV
charging infrastructures, i.e., the EV supply equipment (EVSE) (Bessa
and Matos, 2012; San Rom´an et al., 2011). As illustrated in Fig. 1(b),
the EVSE supports the smart charging functions. The decision can be
made on the EV level or on the FO level. These decisions are based on
the information communicated; for communication between the EVSE
and the EVs, the IEC 15118 standard is the most recommended
communication standard, as demonstrated in detail in Kabisch et al.
(2010), Schmutzler and Wietfeld (2010), by showing the sequence
diagram of a charging process between the EVSE and the EVs. For the
communication between the EVSE and the FOs, IEC 61850 is recom-
mended to fulfill the functions. We use EVi as an agent to represent
the EV owner's operation on EVs, which will communicate with the
FOs. In this study, it is assumed that the DSO will coordinate with
the FOs to alter the EV's charging profile to prevent/eliminate the
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overloading problem. The coordination between the DSO and the FOs
is facilitated by the grid capacity market operator. In the following
section, some market-based coordination methods will be discussed
for the interaction between the DSO and the FOs.

2.2. Coordination relationships between the actors in the control
system

2.2.1. Allocating the available power of DSO among the FOs
by standard price-oriented market protocols

As discussed in the literature (Akkermans et al., 2004; Wellman,
1993; Cheng andWellman, 1998), the market-based control method is
very efficient and applicable for handling the resource allocation
problem. The authors discussed the theoretical foundations of the
distributed large-scale control problem by unifying the microeco-
nomics and control engineering in an agent-based framework
(Akkermans et al., 2004). One of the main results of this study is that
computational economies with dynamic pricing mechanisms are able
to handle scarce resources using adaptive control in ways that are
optimal locally as well as globally. It is further recommended in the
study of Akkermans et al. (2004) that the standard price-oriented
market protocol, e.g., Wellman's WALRAs algorithm (Wellman, 1993;
Cheng and Wellman, 1998), is suitable for implementing the agent-
based microeconomic control. The algorithm presumes that an

auctioneer agent announces the market clearing price p and that the
control agents will submit their demand γα based on the price;
subsequently, the auctioneer agent updates the price until the
equilibrium value is found. The market-based approach has been
supported to be used in the power distribution system, such as in the
discussion in joint research center European Forum3 or in the research
literature (Nordentoft, 2013; Schlosser, 2010; Lorenz et al., 2009).

It should be pointed that Market based control is a paradigm
for controlling complex systems with conflicting resources. It
typically includes the features found in a market such as decen-
tralized decision making and interacting agents. From control's
perspective, there is a control inside this method, i.e., the upper
level control uses decentralized control strategy to control the low
level units. Frommarket's perspective, there is also a market inside
this method, i.e., the upper level controller negotiate with the low
level units to reach an agreement, for example, in this study, the
distribution system operator and the fleet operators are negotiat-
ing the transformer capacities that is facilitated by the grid
capacity market operator.

Grid  
Measurements

DSO
Distribution 
Operation

Conventional 
load

Information 
flow

Physical 
connection

FOs

EV
owner

EVSE

E.g., IEC 61850
E.g., IEC 15118

FOj

EVi

EVnEViEV1 EVk

FOi

Distribution 
system 

operator

Grid capacity 
market operation

Market 
operator

Public network

Fig. 1. Illustration of the distribution network with EVs. (a) Main actors in the control systems. and (b) Relevant ICT standard between FOs and EVs.

3 European commission joint research centre, scientific support to capacity
markets and the integration of renewables, Brussels (BE)-22/07/13.
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2.2.2. Coordination method between FOs and EV owners
The control method between the FO and the EVs developed in

(Sundstrom and Binding, 2012; Lopes et al., 2009; Hu et al., 2014)
follows the centralized control strategy, while the one developed
in Ma et al., (2013), Karfopoulos and Hatziargyriou (2013) follows
the decentralized control strategy. The studies of Karfopoulos and
Hatziargyriou (2013) and Richardson et al. (2012) compared the
centralized control and decentralized control method when utiliz-
ing them to make an optimal plan that can optimally deliver
energy to EVs as well as avoid grid congestion. These studies
outlined the advantages and disadvantages of both strategies. In
this study, the market based control method is used by the FO to
coordinate the EVs' charging schedule.

2.3. Integrated two-level hierarchical control method for distribution
grid congestion management with EV integration

Shadow price protocols are proposed for the coordination
between the DSO and the FOs agent in Hu et al. (2014) in which
the shadow price used as a market clearing price is updated in
each bidding round by the grid capacity market operator
(serving the DSO). The bids are coming from the FOs that
represent the EVs and directly schedule and control the char-
ging of EVs. In this study, we modify the coordination method
between the FOs and the EVs by distributing the charging
decision to the EV agent. A response weighting factor to the
shadow price is introduced to the individual EV agent. In this
manner, the EV agent can show their willingness to charge or
not during the higher price time slot.

In the following section, a detailed logic of the two-level
hierarchical coordination is proposed for integrating the EVs into
the power distribution systems. Fig. 2 shows the steps of the
proposed methods:

1. The EV owner selects the desired charging requirements, and
the EV controller generates the charging schedule based on, e.g.,
the charging least cost strategy, the dumb charging strategy, etc.

2. The EV owner sends the charging schedule to the FO to which
they have been subscribed.

3. The FOs aggregate the charging schedule from their contracted
EV owners and submit the aggregated charging schedule to
the DSO.

4. The DSO verifies the charging schedule of the FOs by running
load flow calculation and sends the results to all of the FOs.

5. The FOs submit the charging schedule to the market operator if
congestion exists; otherwise, the FOs could bid the energy
schedule to the energy spot market and the procedure stops in
this step.

6. The Market operator sends the shadow price to the FOs, and
then the FOs re-submit the charging schedule to the Market
operator until the shadow price is converged.

7. The FOs send the shadow price to all of the EV controllers.
8. Repeat steps 1 to step 7 until the congestion is totally

eliminated in the planning period.
9. Bid the final energy/power schedule to the electricity spot

market.

The key concept is that the energy schedules of the FOs/EVs are
coordinated by the DSO/Market operator before they are sent to
the energy market.

2.4. Further discussion on the proposed method

With the purpose of further illustrating the proposed distribu-
tion grid capacity market, we provide a basic introduction to the
congestion management method and the markets, i.e., Spot
market and Regulating power market, operated at the transmis-
sion system level. Three very different methods of managing the
congestion of the transmission system in the deregulated environ-
ment were presented by Christie et al. (2000). The three methods
are the optimal power flow model used in the United Kingdom,
Australia, New Zealand, and some parts of the United States; the
price area based model used in the NordPool market area in
Nordic countries; and the transaction-based model used in the
United States. In the Spot market, the Power Balance Responsible
parties (PBRs) make the power and energy bids into the market,
which consists of conventional power and wind power. With the
trading, the PBRs can balance the power systems in the deregu-
lated environment. Because electricity production and consump-
tion always have to be in equilibrium, deviations in the operating
hours are left for the transmission system operator (TSO) to
balance, which is achieved via the regulating power market. Note
that the dispatch currently is set based only on the spot market,
without consideration of the operational state of the distribution
grid. Briefly, the proposed solution of this study can enable the
distribution congestion management before the operation of the
dispatch. Additionally, the capacity market we proposed only

1. EV driver selects charging 
requirements and EV 

controller make the charging 
schedule

FOs
2. Charging schedule request 

from EV to FO

Public network

Distribution 
system 

operator

Market
operator

7. FO sends the shadow price 
to EV controller

3. FO submits the aggregated 
charge schedule to DSO

4. DSO verifies charging 
schedule of Fos.

5. DO submits the charge 
schedule to market operator

6. Market operator sends the 
shadow price to Fo

EV owner

Fig. 2. Scheme of the proposed solutions.
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occurs when it is required, i.e., in the situation of possible
congestion predicted by the DSO.

In addition, we assumed that FOs fully cooperate in the grid
capacity market to avoid the congestion issue. This assumption is
made based on the previous discussion (McCalley et al., 2003; Raiffa,
1982) in which three types of negotiations were characterized as
either strident antagonist, cooperative antagonist, or fully cooperative.
The strident antagonist negotiation involves agents that completely
distrust each other. The cooperative antagonist negotiation involves
agents that are entirely self-interested but are ones that recognize and
abide by whatever rules exist. The fully cooperative negotiation
involves agents that do not perform strategic posturing and consider
themselves as a cohesive entity, with the intention to arrive at the
best decision for the entity, although they have different needs,
values, etc. By being fully cooperative in our context, FOs will honestly
submit the bids based on their marginal cost functions, and the
impartial market operator will update the market clearing price only
reflecting the constrained resources (distribution grid capacity).

Finally, in this shadow price mechanism-based method, the EV
owner needs to pay the higher shadow price if they charge the
batteries of the EVs in the time slot where congestion occurs and
the DSO seems cost nothing when seeking to eliminate the grid
congestion. However, in actual practice, it is the DSO's responsi-
bility to upgrade the network to address the challenges. It is
therefore assumed that the shadow price can be modified when it
is sent to the FOs or the FOs may receive compensation from the
DSO. In addition, the DSO must support the operation of the
market operator and can investigate means of reducing cost based
on the implementation of information and communication infra-
structures in the distribution grid.

3. Problem formulation and development of the control
algorithms for EV charging schedule generation and grid
congestion management

In this section, we first introduce the newly defined method for
the EV charging schedule generation and then summarize the key
elements of the mathematical formula development of our pre-
vious work (Hu et al., 2014), i.e., the algorithm for shadow price-
based coordination.

3.1. EV charging schedule generation

Linear programming is used and modified to model the charging
process of EVs (Hu et al., 2014, 2011). The objective is to minimize the
charging cost as well as to fulfill the driving requirement of the EV
owner. The scheduling period is divided into NT time slots, where
each time slot could be hourly based or fifteen/ten minutes depend-
ing on the modeling requirements. The objective function is defined
as the product of the virtual price (predicted electricity price and the
weighted shadow price in which the shadow price reflects the
congestion cost of the distribution grid) and a decision variable Pj;i,
where j ¼ 1; 2; :::;NE is the index for the number of EVs under one
FO, and NE denotes the number of EVs under FO k. i ¼ 1; 2; :::;NT is
the index for the time slot in the scheduling period. The physical
meaning of the decision variable Pj;i is to make a decision to
distribute/charge the power on the certain time slots, with the goal
of minimizing the charging cost. The predicted electricity price is
assumed to be known in each time slot. With the defined objective
function and the constraints of (1) the available energy in the battery
should be greater than or equal to the energy requirement for the

FOi agent

DSO agent
EV agent-n
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Multi Agents 
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next trip/time slot, (2) the available energy in the battery should be
less than or equal to the power capacity of the battery, and (3) the
charging rate should be less than or equal to its maximum power
rate of the charger, the mathematical model of the solution is
presented as follows:

Minimize ∑
NT

i ¼ 1
Φj;iþεinΛ ið Þ� �

Pj;it; ¼ 1;…;NE
k

Subject to

SOC0;jþ ∑
NT

i ¼ 1
Pj;itj;iZSOCMin;jþ ∑

NT � 1

i ¼ 0
Edrive;iþ1

SOC0;jþ ∑
NT

i ¼ 1
Pj;itj;irωnEcap;jþ ∑

NT þ 1

i ¼ 2
Edrive;i�1

0rPj;itj;irEmax ;j; i¼ 1;…;NT

8>>>>>>><
>>>>>>>:

ð1Þ

where Φj;i denotes the predicted day-ahead electricity market
price vector, Λ ið Þ represents the shadow price, εi denotes the
responding weighting factor of the shadow price, and t denotes
the length of each time slot. SOC0;j denotes the initial SOC of an
individual EV battery. SOCMin;j denotes the recommended mini-
mum SOC of the EV battery. Edrive denotes the predicted individual
EV owner's driving requirement. Emax ;j denotes the charge rate in
terms of the energy of an individual EV battery. ωnEcap;j denotes
the recommended maximum SOC of the EV, where ω is the
parameter that indicates that the charging behavior of the battery
of the EV is a linear process, and Ecap;j is the capacity of the battery
of the EV.

With the above optimization problem, each EV agent can gen-
erate a unique energy schedule; the sum of the individual EV energy

schedules in one FO will be denoted as PE
k;i and

PE
k;i ¼ ∑

NE
k

j ¼ 1
Pj;i; k¼ 1;…;NB; i¼ 1;…;NT

where NB represents the number of the FOs, and k denotes the index
for the number of FOs, k¼ 1;…;NB. This scheduling is the key
computation method that is used in this study for step 1, which is
described in Section 2.3. In steps 2 and 3, there are no issues that
must be clarified. In step 4, the distribution system operator previews
and analyzes the distribution network by running the load flow
calculation in Simulink, where a 10-kV distribution network is
modeled. The math behind steps 5, 6, and 7 will be explained in
the following subsection.

3.2. Market based control for distribution grid congestion
management

To describe the market based control method, we start with a
proposed cost function, which represents the cost of the power
preference difference of an FO in each time slot, e.g.,

μk ¼ Ck;i
~Pk;i�PE

k;i

� �2
ð2Þ

where i; k; Pk;i remain the same with the above notation, ~Pk;i

denotes the control variable, and Ck;i denotes the weighting factor
that is associated with the power difference; a larger value of Ck;i

implies a smaller difference. The objective is to minimize the cost
functions of all of the FOs as well as to address the constraint from
the DSO:

minimize ∑
NB

k ¼ 1
∑
NT

i ¼ 1
Ck;i

~Pk;i�PE
k;i

� �2
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Fig. 4. Diagram of the JACK implementation reflecting the interactions between the FO agent and the EV agent.
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subject to

∑
NB

k ¼ 1

~Pk;irPCap ið Þ; i¼ 1;…;NT ; ð3Þ

where PCap ið Þ is the power capacity specifically for all of the FOs,
for example, it can be estimated by the DSO after deducting the
conventional loads. This problem is a convex optimization pro-
blem, and relevant research (Boyd and Vandenberghe, 2004; Boyd
et al., 2007) indicates that by introducing Lagrange multipliers or
shadow price Λ ið Þ, problem (3) can be transferred into the follow-
ing partial Lagrangian problem:

L¼ ∑
NB

k ¼ 1
∑
NT

i ¼ 1
Ck;i

~Pk;i�PE
k;i

� �2
þ ∑

NT

i ¼ 1
Λ ið Þð ∑

NB

k ¼ 1

~Pk;i�PCap ið ÞÞ ð4Þ

The centralized optimization problem (3) is transferred into a
decentralized one with an associated shadow price Λ ið Þ in each time
slot, with the purpose of emulating the market behavior. In the
starting point, the shadow price is assumed to be zero, and then the
optimal solution for Eq. (4) is PE

k;i. As a result, in step 5, the FOs first
directly submit their power schedule to the market operator and the
market operator will determine the shadow price. Because the
market operator's interest is in alliance with the DSO, i.e., eliminating
the grid congestion, as further explained in the studies by Hu et al.
(2014) and Boyd et al. (2003), the shadow price can be updated
according to Λ ið Þωþ1 ¼ Λ ið Þωþαω:ðΣNB

k ¼ 1P
n

k;iðΛnÞ�PCap ið ÞÞ until the
price converges, where Pn

k;iðΛnÞ is the optimal solution of Eq. (4) with
the given Λn, i.e., the newly Λ ið Þωþ1, where ω is the number of
convergence steps required, αωA R denotes the step size and can be
chosen as αω ¼ α, which is a positive constant; with such a choice,
the convergence is guaranteed. This process represents step 6.

In step 7, the FO sends the shadow price to all of the EV
controllers. Then, each EV controller restarts at step 1; the only
difference is that a shadow price is added on the top of the
predicted spot energy prices, and the modification compared to
the study by Hu et al. (2014) lies in the response weighting factor γ
to the shadow price. The EV owners can show their will by
assigning the appropriate values to the response weighting factors.
For example, if γ is zero, it represents that the EV owner is fully

insensitive to the shadow price and will keep the original power
schedule; otherwise, a new power schedule will be generated and
submitted to the FOs. By repeating the steps, the proposed
solution can ensure the safety of the grid in the planning period.

4. Multi-agent model for control system demonstration

To demonstrate the operation of the control systems, a multi-
agent system is developed and built in this study. In this section,
first, the multi-agent system architecture is described. Next, we
briefly introduce the features of the JACK software. Finally, we
present the use case and its multi-agent system implementation.

4.1. Multi-agent system architecture

Fig. 3 depicts the MAS system architecture in which all of the
agents are built in JACK, which is an agent-oriented development
environment built on top of and fully integrated with the Java
programming language (Howden et al., 2001). JACK offers the
environment and facilities message sending/receiving between the
agents. Matlab-based functions enable a declarative implementa-
tion of the decision module that supports the operations of the
agents built in JACK. Simulink is used to model the distribution
grid and functions for the power flow calculation that supports the
operation of the DSO agent. The Java application programming
interface matlabcontrol4 is used for JACK to interact with Matlab.
Through this interface, the agents in the JACK can access the
functions, e.g., built in the Matlab.

4.2. Introduction on the features of JACK

The agents used in JACK are modeled according to the theore-
tical Belief Desire Intention (BDI) model of artificial intelligence
(Wooldridge, 2008). Within the environment, a JACK agent is a
software component that can exhibit reasoning behavior under
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ion

sends

handles

handles

sends

sends

sends

uses Agent

Plan

Event

ResponseCongesti
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1
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Fig. 5. Diagram of the JACK implementation reflecting the interactions between the FO agent and the DSO agent.

4 https://code.google.com/p/matlabcontrol/.
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both proactive (goal directed) and reactive (event driven) stimuli.
As key components of JACK, the JACK agent language introduces
five main class-level constructs:

� Agent: models the main reasoning entities in JACK.
� Event: models the occurrences and messages to which these

agents must be able to respond.
� Plan: models procedural descriptions of what an agent does to

handle a given event; an agent's plans are analogous to
functions.

� Capability: aggregates the functional components (events,
plans, belief sets, and other capabilities) for agents to use.

� Belief set: models an agent's knowledge about the world.

In this study, we mainly use the three class levels: the agent
class, the event class, and the plan class.

4.3. Use case and the MAS implementation

4.3.1. Agent class and its instantiation
In our use case described in chapter 2, four types of actors exist

in the control systems, where the roles of the actors and the
coordination relationships between the actors have been clearly

addressed. Because one of the important features of the multi-
agents system is to model the capabilities of agents and their
interactions, it is therefore decided that four types of agents are
designed for the system's MAS implementation, i.e., EV agent, FO
agent, DSO agent and Market operator agent. Each agent's role is
briefly introduced in the following section. Considering the fea-
tures of JACK and the requirements of our desired systems, we use
the agent class in the design views that make the instantiation of
an agent flexible. In addition, each agent has several plans that are
used to handle the events.

� EV agent: An EV agent class is responsible for generating the
charging schedule of the individual EVs. They communicate
with the subscribed FOs.

� FO agent: An FO agent class is responsible for aggregating the
charging schedule of their contracted EV agents and modifying
the power schedule when negotiating with the market opera-
tor agent. The FO agent communicates with EV agents, the DSO
agent, and the market operator agent.

� DSO agent: A DSO agent is responsible for the grid safety by
performing a load flow calculation after obtaining the power
schedules of the FOs. The DSO agent communicates with the FO
agents and the market operator agent.
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Fig. 6. Diagram of the JACK implementation reflecting the interactions between the FO agent and the market operator agent.

J. Hu et al. / Engineering Applications of Artificial Intelligence 38 (2015) 45–58 53



� Market operator agent: A market operator agent is responsible
for setting the shadow price. The market operator agent
communicates with the DSO agent and the FO agent.

4.3.2. Multiagents built on JACK
The entire design diagram for the desired multi-agent systems

based on JACK has been built according to the proposed solutions
in this study, i.e., the eight steps presented in Section 2.3. To
present the implementations in detail, we will explain this
diagram according to the sequence of the steps and logically
divide it into three parts. The three parts are named as (1)
interaction between the FO agents and the EV agents, (2) interac-
tion between the FO agents and the DSO agent, and (3) interaction
between the FO agents and the market operator agent.

4.3.3. The interaction between the FO agent and the EV agent
In the implementation, the FO provides the calculation center

to the EV agents to facilitate the computation, although it is
assumed that the EV agent sets the charging schedule by him-
self/herself. With this implementation, the programming time can
be significantly reduced.

As illustrated in Fig. 4, each EV agent first posts an Event named
SelfPostInformation to trigger the plan EVSelfInformation. With this
plan, the EV agent reads the information, including the initial SOC,
the driving requirement of the EVs in the scheduling period, the bus
information5 and the response weighting factor to the shadow price.
After obtaining the personal information, the EV agent sends an
event named AskingPowerCalculation to the FO agent, and the event
will be handled by the plan FO_CalculationCenter. In the plan, a

Matlab-based program will be called and used to generate the
charging power schedule. The power schedule will be sent back
again to the EV agent by the event ChargingSchedule. The Event is
handled by the plan named EV_ChargingSchedulePreparing. With
the plan, the EV agent sends the power schedule and the corre-
sponding bus information to the FO agent by the event named
EV_SendChargingSchedule; this event will be handled by the plan
FO_PowerScheduleAggregation. Using this plan, all of the contracted
EV's power schedule will be summed according to which bus they
are connected.

4.3.4. The interaction between the FO agent and the DSO agent
In this diagram (Fig. 5), each FO agent sends the aggregated

power schedule to the DSO agent by the event named SendPo-
werSchedule. The event will be handled by the DSO agent with the
plan VerifyGridCongestion. With this plan, the DSO agent will call
the grid model built in Simulink with the newly developed power
schedule of the FOs and the conventional loads and perform the
power flow calculation. The DSO agent can fetch the value from
Simulink and compare it with the capacity of the distribution grid,
such as the transformers. Then, the DSO agent will send the result
to all of the FO agents through the event named NotifyCongestion.
The event will be handled by the plan ReponseCongestion. With
the plan ReponseCongestion, all of the FO agents obtain the result
and check whether congestion exists. If it is congested, all of the
FO agents will resort to the market operator agent to negotiate
the power capacity. Otherwise, the FO agents are allowed to bid
the energy schedule into the energy spot market.

4.3.5. The interaction between the FO agent and the market operator
agent

In the interaction illustrated in Fig. 6, the FO agent sends the
power schedule to the market operator agent by the event

T1
Potential overloading area.  

Fig. 7. A 10 kV distribution network.

5 Buses of the modeled distribution system are implemented in Simulink in
which several load buses are defined for connecting the EVs.
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FO_PowerSchedule, and the event will be handled by the
market operator agent with the plan MarketOperation. Within
the plan, the market operator agent calls the Matlab-based
price determination program and determines whether the price
is converged in each iteration loop. If the price is not converged,
the market operator agent will send the updated shadow price
to the FO agent by the event ShadowPricetoFO. Accordingly,
this event will be handled by the agent with the plan FO_Sche-
duleAD. Within this plan, the FO agent will reschedule the
power based on the predefined cost functions and the updated
shadow price and resend the power schedule to the market
operator agent by the event named FO_PowerSchedule. If the
price is converged, the market operator agent will send the final
shadow price to the FO agent by the event FinalShadowPrice.
The event will be handled by the FO agent with the plan
PriceCenterToEV. In this plan, the FO agent does not send the
shadow price to the EV agent directly because the calculation
center is placed on the FO agent level. Instead, the FO agent
sends a normal message through the event SelfPostInformation
to simulate the entire interactions between the agents again.

Note that when the price is converged, a complete sequence of
the operation required for grid congestion has been performed.
However, the newly acceptable power schedule of the FOs might
deviate from the original plan. Therefore, we provide an opportu-
nity for the FOs and the EV owners to make a new schedule based
on the information of the first round. This is why the final shadow
price is sent to the FO agent by using the event FinalShadowPrice.
To run the complete sequence again, the EV agents require a signal
to stimulate the corresponding plans; this signal is stimulated by
the event SelfPostInformation sent out by the market operator
agent using the plan PriceCenterToEV.

5. Simulation and demonstration results

5.1. Case study specification

A 10 kV radial network is considered in this case study; the one-
line diagram/topology of the network is shown in Fig. 7. The
network is modified from Østergaard and Nielsen (2008) and Han
(2012), which can represent the typical features of a Danish

distribution system. The network consists of two voltage levels, 11
buses, 9 distribution lines, and 7 load buses; the network is modeled
in Simulink. A total of 1400 households are connected in this
distribution system, and 20% of the households are assumed to
have EVs. Considering the similarities of the driving patterns of the
EV users and the simulation requirements of the multi-agent
systems, we divide the 280 EVs into 14 groups, which are repre-
sented by 14 EV agents. Three FOs are assumed to provide services
to these 14 EV agents. FO1 is responsible for EV agents EV1 to EV5.
EV6 to EV9 are assigned to FO2. The remaining EV agents subscribe
to FO3. If all of the EVs are connected to the grid at the same time,
this will bring an additional load of 644 kW to the network the
maximum individual EV charging rate is limited to 2.3 kW, which
corresponds to the Danish case (10 A, 230 V connection). In our case
study, the available power capacity for all of the EVs is 600 kW
(available capacity of the primary transformer for EVs). The weight-
ing factor rate C1;i; C2;i; C3;i is set to 0.5, 0.1, and 0.2, respectively.
The value of αω is chosen as 0.1 in this case.

For the EV charging schedule, the information of the hourly
electricity spot price of the Nordic power market6 is assumed to be
perfectly known by the EVs, and the price data are identical with
the data of a previous study (Hu et al., 2014). The artificial driving
data of the 14 EV agents were generated based on the 2003 AKTA
Survey (Christensen, 2011) in which 360 cars in Copenhagen were
tracked using GPS from 14 to 100 days. Each data file includes a
starting and finishing time, and the corresponding duration and
distance. The original data are transferred into 15-minute interval
driving energy requirements based on the assumption of 11 kWh/
100 km. The 15-minute interval is changeable rather than abso-
lute. The energy driving requirement of EV1 to EV14 is illustrated
in Fig. 8. Most EVs are observed to exhibit a regular pattern, i.e.,
they leave home in the morning time and come back in the
evening time, while some EVs have higher energy driving require-
ments, such as EV agent EV13, which is shown by the green curve
of the bottom figure. For the other parameters:

� The battery capacity of each of the EV agents is set to 20 kWh.
� The initial SOC of each of the EV agents is set to 0.2 of the

battery capacity.
� The minimum SOC of each of the EV agents is set to 0.2 of the

battery capacity.
� The maximum SOC of each of the EV agents is set to 0.85 of the

battery capacity, and the minimum and maximum SOC set up is
to ensure that the EV charging process is linear.

� The responding weighting factors to the shadow price of the EV
agents are assumed to be (0.01, 0.01, 0.01, 0, 0, 0.01, 0.01, 0, 0,
0.01, 0.01, 0.01, 0, and 0), correspondingly.

5.2. Simulation results in MATLAB

In this simulation section, we compared the result of two cases
where the DSOs both use the price-oriented market protocols to
interact with the FOs; however, the coordination methods between
the FOs and the EVs are different. In the first case, we assume that
three FOs centrally schedule and control the EV charging, which is the
scenario described in the previous work (Hu et al., 2014), while in the
second case, it is assumed that three FOs only aggregate the charging
schedules that are made by the EV controllers, which is the scenario
in this study. As illustrated in Fig. 9, the congestion problems are
solved after 5 steps in the first case, while only 2 steps are required in
the second case. The reason for this difference is described as follows.
The EVs in the first case are always responding to the shadow price

Fig. 8. EV energy driving requirement per EV agent per FO.

6 http://www.nordpoolspot.com/.
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and trying to avoid charging during the higher price period; as a
result, the EVs will be scheduled to charge at a lower price period
where congestion can occur as well. In the second case, only some
EVs are assumed to respond to the shadow price, which means that
only part of the charging plan is rescheduled to the other lower price
period, thereby reducing the possibility of causing a new congestion
period. Note that in the beginning, the shadow price is zero, so the
blue curves in the left part of Fig. 9 represent the spot electricity price.
For the remaining price curves, the spikes represent the shadow
prices.

5.3. Demonstration result of the MAS

When setting up the demonstration of the multi-agent system,
the Simulink part is not included in this case study because the
capacity limit is only considered for the transformer. The following
two assumptions are used in this case study: (1) there are no
power losses in the distribution network, i.e., we do not consider
losses, and (2) the overhead lines and underground cables are
capable of handling the increasing loads. Based on these assump-
tions, the power information below the transformer can be simply

obtained by summing up the power schedule of the FOs instead of
fetching it from Simulink. For the rest of the system, the process is
the same as that presented in Figs. 4–6. In JACK, there are a
number of tools available to assist a detailed trace of the system
execution, which range from graphical tracing tools to logging
tools. In this study, we run the program with the interaction
diagram. As we have one DSO agent, one market operator agent,
three FO agents, and 14 EV agents, the interaction diagram that
shows the communication message among these agents is quite
large. It is not wise to show the entire interaction diagram in this
paper; instead, we only show part of the interaction diagram
where the message sequence occurs between the DSO agent, the
market operator agent named CMO, the FO agent FO1, and one EV
agent EV1, as shown in Fig. 10. The sequence diagram starts from
agent EV1 (which holds for the other 13 EV agents) with a request
of schedule calculation. Next, the schedule information is aggre-
gated by the FO agent and is sent to the DSO agent. The
rectangular box marked with iteration represents the interactions
between the market operator agent and the FO1 agent. This box
emulates the negotiation behavior inside a capacity market. When
the shadow price is converged, the shadow price is sent to the EV

Fig. 9. Case study for centralized control between the FOs and EVs: (a) The sum of the spot price and the shadow price in each iteration step and (b) The comparisons of the
FO's power schedule in each step with the power capacity. Case study for decentralized control between FOs and EVs: (c) The sum of the spot price and shadow price in each
iteration step and (d) the comparisons of the FO's power schedule in each step with the power capacity.
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agent. With the new schedule, the DSO agent confirms that there
will be no congestion for the grid in the planning phase, i.e., the
program stops.

6. Discussion and conclusion

A multi-agent system was developed to demonstrate the dis-
tributed implementation of the grid congestion management scheme
of a distribution network with a large scale deployment of EVs. It is
learned from the experience that the distribution grid congestion can
be eliminated according to economic principles and that a MAS-
based distributed implementation provides significant advantages.

In this study, we develop and utilize an integrated environment
consisting of JACK agent software and Matlab to analyze the cyber-
physical aspects of the environment; JACK is good for demonstrat-
ing the coordination schemes among the actors, and Matlab is
good for technical computation of optimization problems. This is a
unique contribution of this submission. For a general case, various
simulation platforms can be utilized in a distribution grid conges-
tion demonstration. For example, besides JACK, JADE is also widely
used for multi-agent simulation. We used JACK because of its
capability and support for the explicit modeling of the typical MAS
entities, such as agent, plan, event and capabilities. Moreover, in
JACK, it is easier to design and analyze interactions and depen-
dencies among such entities. In terms of solving an optimization
problem, GAMS also has good performance; however, Matlab is
more widely used in the academic field. Finally, the grid modeling
tool is also an important part, with the currently existing grid
modeling tools including Simulink, MatPower, PowerFactory,

ARISTO, and NEPLAN. Providing these listings is not for a compar-
ison of the various platforms; instead, we want to emphasize that
the various tools can be integrated with the MAS settings. There
are several highlights in this study compared to the previous
studies (Karfopoulos and Hatziargyriou, 2013; Miranda et al., 2011;
Greunsven et al., 2012) in term of multi-agent software system
development:

1). The developed MAS explicitly presents the relevant agents, the
plan, and the event inside a market frame. The modeling
approach serves as an example for other similar problems.

2). The developed MAS demonstrates a simulation platform that is
based on the integration of JACK, Matlab and Simulink. The
platform can integrate the advanced optimization and control
and the interactions, which can vary from simple information
passing to rich social interactions, such as coordination and
negotiation.

3). The developed MAS provides a modeling environment that
enables the study of the important characteristics of the
proposed distribution grid capacity market, which is not
presently available. By implementing and assessing the two
level hierarchical control strategy, it is shown that the grid
congestion problem can be eliminated in a few steps.

Besides, in this study, market based control method is applied
entirely in the hierarchical multi-agents system. The proposed
system has the following advantages:

1) The individual EV user's price response behavior is considered
which make the study more practical since people's behavior is
different.

2) The market based control methods can efficiently allocate the
power resources of the transformer and the computational
burden is light for the distribution system operator.

3) The simulation result presented in Fig. 9 shows that the
proposed method can mitigate the adverse impact of price
control where all the EV owners try to charging the EVs in the
low price period.

In addition to EVs, some other new loads, such as heat pumps
and the increasing electrification of the loads in the home, will
also bring challenges to the distribution grid. We believe that this
multi-agent framework can be used to address these similar
challenges because the use of FOs (You, 2010) (alternative names
used for an FO are virtual power plant and aggregator) is also
widely proposed for aggregating other distributed energy reso-
urces. As expected, the FOs will represent the DERs and interact
with the market operator and the DSO similarly to the one in
this study.
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