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ABSTRACT 

This paper presents an integrated model for risk management of electricity traders. It 

integrates the Unit Commitment (UC) problem, which provides the power generation 

units’ dispatch and the electricity price forecasting of a power system, with artificial 

neural network (ANN) models, which provide electricity price forecasting of a 

neighbouring power system by incorporating a clustering algorithm. The integrated 

model is further extended to estimate the traders’ profitability and risk, incorporating 

risk provisions. The integrated model is applied in bi-directional trading between the 

Italian and Greek day-ahead electricity markets. The UC and neural network models 
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provide forecasts of the wholesale electricity price in Greece and Italy respectively. 

The model attributes a confidence level of the price forecasts, depending on the data 

clustering and the forecasting performance of each model. The integrated model 

identifies periods with high price margins for trading for each power flow, aligned 

with a forecasting confidence and a risk level. The integrated model can provide price 

signals on the profitability of traders and useful insights into the risk of traders.  

Keywords: Electricity trade; Electricity price forecasting; Risk; Unit commitment 

problem; Artificial neural networks; Day-ahead market  

 

1. Introduction 

A vital priority in European Union’s energy policy is the integration of its electricity 

markets. This will facilitate the use of interconnections among national power 

systems, increasing the power flows and identifying the bottlenecks among them. 

Investing in such interconnections is important, as in the long-term, they lead in the 

whole energy system cost reduction. Boffa et. al., [1], estimated that investments in 

the interconnections of the Italian power system can provide benefits, as even a small 

increase of the interconnections’ transmission capacity could considerable mitigate 

consumers’ costs.  

The electricity traders are very important market players towards enhancing market 

coupling and overall energy system cost minimization. The traders pursue economic 

benefits, identifying their strategy based on price signals from interconnected power 

markets. However, they face considerable risks. Dyner et. al. [2] concluded that the 

participation of traders in the Colombian market increases as its transparency 

increases and as long as traders are increasing their understating of the market risks. 
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Shakouri et. al. [3], developed a model for economically optimization of electricity 

trade between the Turkish and Iranian power systems, quantifying the supplementary 

benefits of peak shaving. Boroumand et. al. [4], analysed the electricity retailers’ 

risks. The paper compares different intra-day portfolios of hedging, using VaR and 

CVaR risk measures. It concludes that intra-day hedging is superior over daily 

hedging. Antweiler [5], developed a theoretical model of cross-country electricity 

trading, providing evidence from the power systems of Canada and USA. They 

concluded that identifying the bottlenecks and integrating North America's power 

systems into a continental “supergrid” can provide economic benefits. Another paper 

[6] has led to similar conclusions, applied to Europe, namely that cross-border 

electricity trade facilitated by privatization processes, can transform national markets 

into a continental “supergrid” for Europe. The paper focused on which are the main 

determinants of electricity trade among the European power systems, providing 

evidence that privatisation enhances power flows and transactions in most cases.  

The enhancement of electricity trade strongly depends on the interconnections 

capacity and on the capability to forecast wholesale electricity prices. However, the 

latter is a complex task, where different methodologies compete on their capability to 

provide robust price forecasts. The literature review on electricity price forecasting, 

especially for the Italian and Greek day-ahead markets is not extensive. A recent 

paper [7] explored the potential of Artificial Neural Network (ANN) based models on 

the day-ahead electricity price forecasting in the Italian market. It provided a 

comprehensive review in the literature and proposed ANN and hybrid ANN models, 

working with no pre-processed data and implementing a clustering algorithm, which 

separates historical data in well-separated and homogeneous groups. Gianfreda and 

Grossi, [8-9], examined the electricity prices of the Italian wholesale market, focusing 
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on providing evidence among the prices of the different zones. The authors 

implemented Reg-ARFIMA–GARCH models to examine the effect -on the Italian 

wholesale electricity market price- of critical variables, such as market shares of 

dominant players, power generation technology types and transmission systems 

congestions. Bosco et. al. [10], implemented an empirical analysis on the prices of the 

Italian electricity market. It developed periodic AR-GARCH models, providing 

evidence on their superior performance compared to more traditional approaches. 

Bollino and Polinori [11], examined the existence of contagion in electricity markets, 

focusing only on pure contagion relationship in the Italian Power Exchange (IPX) at 

the Italian regional level. Petrella and Sapio [12], applied SARMAX and EGARCH 

models to examine the influence of future products, market competition and white 

certificates on the evolution of the Italian day-ahead electricity prices. It provides 

evidence electricity price fluctuations are affected from forward and cfd products, as 

well as from white certificates’ products trading. Although, the ANN models as well 

as time series models are very useful, they are not robust enough for electricity price 

forecasting [7], as they usually do not consider critical techno-economic parameters, 

such as fuel and CO2 prices, merit order of generation plants, renewables and 

hydropower capacity, market participants’ strategies, network congestion and others. 

Those parameters are usually tackled with more detailed techno-economic models, 

such as those elaborating the Unit Commitment (UC) problem or those that focus on 

the strategy of market players [13], which provided an analysis of the Italian day-

ahead market, focusing on the role and bidding policy of the dominant market player, 

namely Enel or those that focus on the competitiveness of the different technology 

and fuel types for power generation, quantifying also the influence of renewables 

generation on the day-ahead electricity prices in the Italian day-ahead market [14].  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

5 

 

The UC problem identifies the power units’ dispatch considering their bidding 

strategy, their operational and maintenance costs, their ramping capacity, their 

capability to provide ancillary services and other techno-economic criteria. Liu and K. 

Tomsovic, [15] proposed a robust unit commitment model, incorporating the price 

elasticity uncertainty. Bakirtzis et. al., 2014 [16] present a unified unit commitment 

and economic dispatch model, applicable for a 24-hour time horizon, while 

Andrianesis et. al., 2011 [17]  present a medium-term unit commitment problem, 

applicable for a longer horizon of several days, aiming to capture the effects of 

techno-economic characteristics of the thermal units, such as the start-up times and 

costs. Biskas et. al. [18], examined the forthcoming market coupling/integration of the 

Greek with the Italian electricity market, implementing the integration of a power 

exchange (PX), namely the Italian wholesale market and a power pool, namely the 

Greek wholesale market. Koltsaklis et. al., 2014 [19] present a spatial multi-period 

long-term energy planning model, identifying the power generation technologies, the 

fuel types, the plant locations that optimally satisfy electricity demand and 

environmental constraints, while Koltsaklis et. al. [20] present a model that integrates 

a mid-term energy planning model, which implements annual generation and 

transmission system planning, with a unit commitment model, which performs the 

simulation of the day-ahead electricity market.  

From the above analysis, it derives that the risk of traders from the participation in the 

cross-border electricity trade has not been extensively examined, especially in case of 

the Italian-Greek day-ahead markets, which have not yet been coupled, as the case of 

Italian-Slovenian markets [21]. Electricity trading in the Italian-Greek 

interconnection, as well to the other interconnections of Greece, is not related -for the 

time being- to the development of a coordinated model implementing the same market 
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algorithm among the interconnected systems, but to the capability to provide robust 

forecasts of electricity prices on the two day-ahead markets, Italy and Greece. The 

paper presents an integrated model, integrating ANN with UC models, providing and 

elaborating price forecasts towards identifying the risk of traders in the interconnected 

markets. The applicability of the integrated model concerns all physically 

interconnected power markets that are not market coupled, through a common market 

algorithm. In such a case, the development of a model applying the common market 

algorithm [22] would provide more robust results and price signals for market 

participants. 

This paper integrates a Unit Commitment (UC) model, which provides the power 

generation units’ dispatch and the electricity price forecasting of a power system with 

hybrid artificial neural network (ANN) models that incorporate a clustering algorithm, 

towards electricity price forecasting of a neighbouring power system. The integrated 

model is further extended to estimate the traders’ profitability and risk under different 

trading strategies. The integrated model is applied in bi-directional trading between 

the Italian and Greek day-ahead electricity markets. The highlights of the paper are: 

(i) integration of Unit-Commitment problem with ANN based models, (ii) clustering 

of the data to identifying periods with increased certainty on the day-ahead electricity 

price forecasting, (iii) identification of periods with high price margins for electricity 

trade iv) provision of price signals on the profitability of traders (iv) provision of 

useful insights into the risk of traders. Section 2 presents the methodology applied in 

this work, while Section 3 provides the main data of the case study. The main results 

of our study are given in Section 4, and Section 5 discusses upon some concluding 

remarks 
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2. Methodology 

Methodologically, this work is an integrated approach which combines a unit 

commitment model for day-ahead price forecasting of a power system with ANNs 

based models for day-ahead price forecasting of a neighbouring power system. This 

approach is based on previous works [19-20, 23], concerning the unit commitment 

problem, and a previous work [7] concerning the artificial neural network models. 

The integrated model is further extended to estimate how the traders’ profitability is 

affected from the cross-border electricity trade.  

2.1 Unit Commitment model for a power system 

The UC model concerns the optimum operation of a power system at a daily period. 

Therefore, the model’s objective function is represented by Equation (1).  
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The UC problem considers the energy offers and demand declaration of market 

participants, towards identifying the System Marginal Price HD83,� for subsystem 

� ∈ H and time period � ∈ S. Those offers are restricted by the techno-economic 

characteristics of each unit. Figure 1 presents the energy supply offer for a thermal 

unit u, compared to its incremental cost and its minimum variable cost, for different 

power outputs, among unit’s technical minimum 81��. and technical maximum 81�
B. 

Insert Figure 1 

The minimization of the objective function provides the System’s Marginal Price 

(SMP), namely the system’s wholesale electricity price. Figure 2 represents the 

determination of the SMP, as the crossroad of aggregate supply and demand curves. 

The problem is modelled as a mixed-integer linear programming (MILP) problem, 

subject to constraints defined in a recent paper [23]. 

Insert Figure 2 

2.2. ANN for day-ahead price forecasting of a neighbouring power system 

The ANN models are applied for electricity price forecasting of a neighboring 

system T ∈ U. The ANN model incorporates clustering techniques for organizing 

time periods in different clusters. The implementation of clustering techniques aims at 

identifying the time periods with high certainty of forecasting. The confidence level 
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tcmnCONF ,,, of price forecasting HD8V.,�, is estimated considering the historical 

forecasting errors AOOV.,�,2,� for interconnected system Nn ∈ , model Mm ∈ , 

cluster Cc ∈ and period Tt ∈ . The same logic is applied for the UC model price 

forecasts HD8V3,�,, concerning the subsystem Ss ∈ , introducing variables 

tcmnCONF ,,, and AOOV.,�,2,�. 

A basic advantage of the applied ANN models, is that they use raw data, including 

many price spikes and null values. Therefore, it concerns a realistic operation of a 

power market. A Feed-Forward Neural Network was implemented, trained by the 

Levenberg-Marquard algorithm [24]. The number of hidden layers is 1 and the 

neurons in the hidden layer is 10. Both hidden and output layers use hyperbolic 

tangent sigmoid transfer function. The maximum number of training epochs was set 

to 100.  

The implementation of clustering techniques as mentioned below, aims at 

identifying the time periods with high certainty of forecasting. A hybrid ANN mode is 

chosen [7] incorporating a topology of two general stages, as shown in Figure 3. The 

first stage concerns the elaboration of data and implementation of the clustering 

algorithm, while the second stage concerns the application of the neural networks for 

each cluster, by using K-means, the most common algorithm in demand patterns’ 

problems [25]. The aim of the first stage is to formulate the data set into the suitable 

form for the clustering, towards obtaining meaningful and exploitable results from the 

clustering operation. This preprocessing stage aims at identifying similarities and 

trends of the daily price curves, by comparing their shapes. Through an iterative 

process, the algorithm tends to minimize the sum of squared errors and it terminates 

when there are no transpositions of patterns from cluster to cluster during the 
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successive iterations. K-means partitions the training set matrix into k clusters. Hence, 

k ANNs are trained separately with the data of the corresponding clusters. The final 

forecasting error is calculated by considering the errors generated from each ANN. 

Insert Figure 3 

2.3. Traders profitability  

We assume that the trader Rr ∈  is participating in the interconnection between 

subsystem Ss ∈  and the interconnected system Nn ∈ .  

Critical issues for trader’s profitability is the price tsSMP , , in system Ss ∈  and period 

Tt ∈ , the price tnSMP , , in interconnected system Nn ∈  and period Tt ∈ , the price

tnsTRA ,, , in the transmission rights explicit auctions for the interconnection between 

system Ss ∈  and interconnected system Nn ∈ for period Tt ∈ , and the volume of 

electricity they trade trnsTRQ ,,, , trsnTRQ ,,, . from the system Ss ∈ to interconnected 

system Nn ∈ for period Tt ∈ and vice versa respectively/ 

Moreover, critical issues for trader’s profitability are the robustness of the day-ahead 

price forecasts in the interconnected systems and the margin levels that satisfies the 

trader in order to participate. 

The profitability of the traders is given from the following equations: 

( ) trnstnstntstrns TRQTRASMPSMPREVENUE ,,,,,,,,,, ⋅−−=                 (2) 

( ) trsntsntstntrsn TRQTRASMPSMPREVENUE ,,,,,,,,,, ⋅−−=                 (3) 

 ( )∑∑
∈ ∈

+=
Ss Nn

trsntrnstr REVENUEREVENUEREVENUE ,,,,,,,                  (4) 
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for each trader N ∈ O, for the interconnection between system Ss ∈  and 

interconnected system Nn ∈ for period Tt ∈ . Equation 2 refers to the case where 

traders export electricity from system Ss ∈  to interconnected system Nn ∈ , while 

equation 3 when the trader imports electricity in the same interconnection. In the 

above equations, we assumed that the system marginal prices incorporate all other 

costs, e.g. export and participation fees. So they represent the total cost in each 

border.  

However, the actual profitability cannot be estimated ex-ante. In fact, the traders do 

not participate in all interconnections and do not trade the same volumes in each 

interconnection in all time periods. The trader evaluates its price forecasts ⋅tsSMPF ,

and ⋅tnSMPF , for the system marginal price in system Ss ∈  and the interconnected 

system Nn ∈ for period Tt ∈  respectively. For those forecasts, the trader has a 

confidence tcmsCONF ,,,  and tcmnCONF ,,, respectively. Considering the confidence level, 

which differentiates based on the model Mm ∈ (UC or ANN) as well as on the 

cluster Cc ∈ , the trader readjusts its price forecasts, based on a price adjustment 

factor tsPADJ , , according to the following equations: 

tststststs PADJSMPForPADJSMPFSMPF ,,,,, /' ⋅=                  (5) 

tntntntntn PADJSMPForPADJSMPFSMPF ,,,,, /' ⋅=                  (6) 

for each system Ss ∈  or interconnected system, model Mm ∈ and cluster Cc ∈ for 

period Tt ∈ . The price adjustment factor tsPADJ ,  , tnPADJ , depends on the 

confidence level tcmsCONF ,,,  , tcmnCONF ,,, of the price forecasts. 
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The confidence levels are given by the historical errors in forecasting for each system 

Ss ∈  or interconnected system, model Mm ∈ and cluster Cc ∈ for similar periods 

Tt ∈ . Therefore, confidence are linked to the forecasting errors, as shown: 

tcmstcms ERRFCONF ,,,,,, 100−=                    (7) 

tcmntcmn ERRFCONF ,,,,,, 100−=                    (8) 

The equations (9-10) have two values, in order to decrease risk as describe below. The 

actual condition for participation depends on the estimated margin for the traders. The 

model incorporates a more conservative approach, concerning risk exposure, 

estimating this margin based on the following equation: 

( )tnstntstns TRASMPFSMPFMINMARGIN ,,,,., '' −−=                   (9) 

( )tsntstntsn TRASMPFSMPFMINMARGIN ,,,,., '' −−=                   (10) 

Which practically means that the model uses the lowest margin for all four cases, two 

for the price of tsSMPF ,'  and two for the price of tnSMPF ,' . If this margin is higher 

than an acceptable tolerance trTOLMARG ,_ , different for each trader Rr ∈ , then the 

trader decides to participate in the day-ahead cross-border trade. This is depicted in 

the model with the activation of a flag, tSFLAG ,  

0_,1 ,,,,,, >−= trtnstrns TOLMARGMARGINifFLAG                  (11) 

0_,1 ,,,,,, >−= trtsntrsn TOLMARGMARGINifFLAG                  (12) 

The robustness of the price forecasts affects also the quantities traded. Therefore, 

based on the confidence level of the price forecasts, the trader readjusts its quantities, 
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based on a volume/quantity adjustment factor tnsQADJ ,, , tsnQADJ ,, , according to the 

following equations: 

tnstrnstrns QADJTRQTRQ ,,,,,,,,' ⋅=                     (13) 

tsntrsntrsn QADJTRQTRQ ,,,,,,,,' ⋅=                     (14) 

Therefore, the trader’s revenue is estimated from the following equations, which 

consider the actual and not the forecasted day-ahead prices: 

trnstrnstnstntstrns FLAGTRQTRASMPSMPREVENUE ,,,,,,,,,,,,, ')(' ⋅⋅−−=               (15) 

trsntrsntsntstntrsn FLAGTRQTRASMPSMPREVENUE ,,,,,,,,,,,,, ')(' ⋅⋅−−=               (16) 

 ( )∑∑
∈ ∈

+=
Ss Nn

trsntrnstr REVENUEREVENUEREVENUE ,,,,,,, '''                 (17) 

The difference between the estimated trREVENUE ,' , which considers the risk 

management provisions, and the trREVENUE , , where no provisions are taken into 

account, depicts the performance of the above mentioned risk strategy for the trader. 

( )
tr

trtr
tr REVENUE

REVENUEREVENUE
PERRISK

,

,,
,

'
_

−
=                (18) 

Similarly, a volume/quantity performance indicator is estimated, showing the change 

in quantities traded: 

( )
tr

trtr
tr QUANTITY

QUANTITYQUANTITY
PERFQUAN

,

,,
,

'
_

−
=                (19) 

The forecasted prices in practice might deviate from the actual prices or might have 

different forecasting error from the historical forecasting errors, used as assumption in 

the model. The consideration of the actual day-ahead prices, as well the traded 
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volumes, provides the actual revenue margin. Considering that, the traded volumes 

have been estimated in equations 13-14 based on historical forecasting errors, the 

actual revenue margin inherits the risk of the deviation between the actual and 

historical forecasting errors. The actual revenue margin is being estimated in the 

following equations:  

( )
( )∑∑

∈ ∈

−−
=

Ss Nn trns

trnstnstnts
trns TRQ

TRQTRASMPSMP
MARGREV

,,,

,,,,,,,
,,, '

')(
'_                (20) 

( )
( )∑∑

∈ ∈

−−
=

Ss Nn trsn

trsntsntstn
trsn TRQ

TRQTRASMPSMP
MARGREV

,,,

,,,,,,,
,,, '

')(
'_                (21) 

3. Case study 

The paper examines the trade among two neighboring systems, namely the Southern 

Italian zone (SUD) and the interconnected Greek power system. The interconnected 

Greek power system, simulated with the UC model, considers the data published in 

the monthly energy report of LAGIE of June 2016 [26]. The main operational and 

economic characteristics of the installed units of the Greek power system are available 

in our previous contributions [19-20].  

The data used for the Italian day-ahead market is described in a recent work [7]. The 

ANN models are used for price forecasting of the Southern Italy zone (SUD), based 

on data from the Italian power exchange [27]. The available data set used, cover the 

period between 2012-2014, as training period and 2015 as test period for validating 

the model. The latter set determines the optimal ANN configuration. The clustering is 

used to partition the initial training set to training subsets (clusters). Each subset 

contains training patterns with more similar characteristics compared to the patterns 

of the rest clusters. Using this approach, we involve 4 FFNN, 1 for each cluster. This 
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leads to better training, since each FFNN is trained with most correlated patterns, i.e. 

the patterns of each cluster are more similar than those of the other clusters. We 

selected 4 clusters via a trial-and-error process. With 4 clusters, the overall Mean 

Absolute Percentage Error (MAPE) is minimal. Table 1 provides the decomposition 

of clusters of the selected ANN model. Clusters 1-4 represent 26%, 35%, 26% and 

13% of all test patterns (initial test data set) respectively. Clusters 1 and 2, with lower 

historical forecasting error as will be shown in the following section, concern mainly 

central weekdays (Tuesday-Thursday) and some of the rest weekdays (Fridays and 

Mondays), while cluster 4 concern Sundays, except for the last Sunday which is 

grouped with Saturdays and some weekdays (Mondays and Fridays) in Cluster 3. 

Insert Table 1 

The explicit auctions for the transmission rights for the Italian-Greek interconnection 

is implemented at the Joint Allocation Office [28], which is a joint service company 

of twenty Transmission System Operators from seventeen countries. for implementing 

auction. For the needs of our study, we used the published data for the daily auctions 

of July 2016. Therefore, in our model we assume that the trader knew the auction 

results of that day. 

4. Results and discussion 

This section provides the results from applying the integrated model. As mentioned 

above, the price forecasts are readjusted based on the confidence level for each 

forecast. Table 2 presents the Price (PADJ) and volume/quantity (QADJ) adjustment 

factors used in this study, which are applied to adjust the price forecasts and the 

quantities to be traded respectively, depending on the confidence level (CONF) of the 

day-ahead price forecasts. For the needs of our study we used data of July 2016. For 
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the Greek system, where the UC model is implemented we estimate, based on the 

validation of the model, that the forecast errors are less than 5% for all examined time 

periods and therefore they do not lead to price forecast readjustments. For the Italian 

system, the time periods are organized in four clusters. The different clusters have 

different price forecasting errors, namely 10.78%, 12.43%, 37.09% and 37.89% 

respectively, based on their evaluation. The overall forecast error is 21.75%, high 

relevant to the UC model. Those forecasting errors, per time period are represented in 

Table 3. For simplicity reasons, the time periods for the UC model are organized in 

one cluster, compared to four for the ANN model of the Italian market. Table 4 

includes the average hourly values of the main assumption used in the integrated 

model, namely the day-ahead forecast prices in the Greek and Italian SUD zones, the 

prices of the transmission rights in both directions of electricity trade between Greece 

and Italy, the margin which satisfy the trader, as well as the quantity traded in each 

direction, in case the trader does not consider any risk provision.  

Insert Tables 2, 3 & 4 

Figure 4 presents typical System Marginal Prices in Italy (SMPIT) and Greece 

(SMPGR), as well as the Transmission Rights prices from the daily auctions for trade 

from Italy to Greece (TRAIT,GR) and vice versa (TRAGR,IT). The power flow of the 

cable is mainly from Italy to Greece, which leads to some considerable price of the 

transmission rights for this direction. Although the Italian wholesale market has 

higher prices for some hours compared to the prices of the Greek wholesale market, 

the transmission rights for exports from Greece to Italy have usually zero values. This 

creates some profitability cases for traders, considering that they follow a risk 

strategy, as described in this paper. 
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Insert Figure 4 

For the needs of our study, we consider that the trader is participating in cross-border 

trade with an average volume of 10 MWh per each hour. This leads to relevant 

profitability (REVENUEIT,GR, REVENUEGR,IT), per each direction when no risk 

provisions are considered, estimated by the equations (7-8). In case of considering the 

risk strategy, described in equations (10-19), an updated profitability is estimated 

from equations (20-21). Figure 5 presents the average trader’s profitability with risk 

provisions (REVENUÉIT,GR, REVENUÉGR,IT) compared to this without risk 

provisions (REVENUEIT,GR, REVENUEGR,IT), per each direction in trade among Italy 

& Greece.  

Insert Figure 5 

The consideration of risk provisions is not affected only the profitability, but also the 

quantities traded, which are estimated by equations (18-19), considering the quantity 

adjusting factors but also the flag, from equations (16-17) for deciding the trader’s 

participation based on the comparison of the estimated margin and the margin 

tolerance that satisfies the trader. For simplicity reasons, in our study we consider that 

value of MARG_TOL is zero. Figure 6 presents the average volume/quantity traded 

with risk provisions (QUANTITÝIT,GR, QUANTITY´GR,IT) compared to this without 

risk provisions (QUANTITYIT,GR, QUANTITYGR,IT), per each direction in trade 

among Italy & Greece. The graph shows, that the trader, adopting a more conservative 

approach, is eliminating the chance for losses. At the same time, the trader has 

profitability in selected hours in both directions. There are time periods, that a more 

aggressive trading approach, namely without risk provisions, could lead to higher 

margin in one of the two directions. However, the overall performance of the trader 
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for each direction, is more profitable when the trader incorporates the above described 

risk strategy. 

Insert Figure 6 

When considering that the trader is participating in both directions, then an overall 

profitability is estimated by equation (8), when risk provisions are not taken into 

account and equation (22), when they are considered. Figure 7 presents the average 

trader’s overall profitability with risk provisions (REVENUÉ IT,GR, REVENUÉGR,IT) 

compared to this without risk provisions (REVENUEIT,GR, REVENUEGR,IT) for cross-

border trade among Italy & Greece. The overall performance of the trader, concerning 

its profitability, is that the trader has increased profitability compared to a trader with 

no risk provisions. The graph shows that trader, with risk provisions, decides to 

participate with reduced quantities in different hour blocks, hours 1-6 for exports from 

Italy to Greece and hours 8-13 for exports from Greece to Italy. This shows that the 

trader has a higher flexibility in trading, compared to the results of the daily auctions 

of transmission rights, which depicted that traders are strongly interested for trading 

only in one direction, exports from Italy to Greece.  

Insert Figure 7 

The implementation of the risk management strategy, leads to an increase in 

profitability performance. This is depicted in the evolution of the indicator, estimated 

in equation (23). Figure 8 presents the evolution of the risk performance indicator, per 

direction of trading (RISK_PERFIT,GR, RISK_PERFGR,IT) and in total (RISK_PERF), 

for cross-border trade among Italy & Greece, when risk provisions are considered. 

The graph shows that the risk performance indicator has been increased by 147.3% in 

total, having fluctuations from -59.3% to +736.8% in the evolution of the relevant 
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indicators for each direction. The participation of traders in cross-border trading 

without risk provisions, inherits considerable risks for significant losses. 

As mentioned above, the incorporation of risk provisions, leads to significant decrease 

in traded quantities. Figure 9 presents the evolution of the volume/quantity 

performance indicator, per direction of trading (QUAN_PERFIT,GR, 

QUAN_PERFGR,IT) and in total (QUAN_PERF), for cross-border trade among Italy & 

Greece, when risk provisions are considered. The decrease is -77.4% on average, 

fluctuating between -69.3% and -87.3%. The fact that the model decides a reduction 

for all time periods is related to the fact that forecasting errors of the ANN are above 

the confidence level of 5%, which would lead to zero quantity adjustment. Therefore, 

the incorporation of risk provisions leads to considerable decrease in trading volumes 

and consequently decreases the liquidity needs for the traders. 

Insert Figures 8 & 9 

As mentioned in section 3, the actual revenue margin of the traders depends on the 

actual prices and the traded volumes, as decided to participate in the markets, through 

the implementation of the risk provisions. Figures 10-11 present the hourly average 

revenue margin for each direction and in total, when considering the risk provisions or 

not. Although, there exist at a daily level several time periods where the strategy with 

no risk provisions provide higher revenues, Figures 10-11 show that the risk strategy 

provides a higher margin for all time periods on average for the examined month.  

Insert Figures 10 & 11 

This derives mainly from the fact, that the integrated model assumed a perfect 

forecasting performance for the UC model. Although this can actually happen by 

traders in daily operations, as the UC model enables the actual representation of the 
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real solution in the Greek day-ahead market, we provided a sensitivity analysis on the 

forecasting error of the UC model. Figure 12, provide the actual revenue margin, for 

the strategy with risk provisions, when the actual forecasting error of the UC model, 

deviates from the forecasting error of 0%, considered in the integrated model to 

decide the traded volumes. It derives that even for significant actual forecasting errors 

of the UC model, at the range of 20%, the risk strategy provides positive average 

revenue margins. Negative average revenue margins are estimated when the average 

forecasting error of the UC model exceeds 35%. The main reason behind this 

conclusion, is that the integrated model already considered high forecasting errors for 

the ANN models, which has led to conservative behaviour in the traded quantities. 

The consideration of “raw” data by the ANN model, by not excluding outliers in the 

historical training and test periods, has led to high forecasting errors on one hand but 

to enhanced risk performance on the other hand.  

Insert Figure 12 

To sum up, the traders have a risk of participating in the two markets, resulting from 

the uncertainty of several factors but as well the robustness of the price forecasting. 

The proposed integrated modelling approach provides insights on the trade-offs 

between price forecasts confidence, the adjustment factors, the accepted margins of 

the traders and the transmission rights. In total, it is a useful tool for the identification 

of the profitability of the traders, as well the eliminating the risk form the fluctuations 

of both markets.  

5. Conclusions 

This paper presents a model that integrates the Unit Commitment (UC) problem, 

which provides the power generation units’ dispatch and the electricity price 
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forecasting of a power system with hybrid artificial neural network (ANN) models 

that incorporate a clustering algorithm, towards electricity price forecasting of a 

neighbouring power system. The integrated model is further extended to estimate the 

traders’ profitability and risk, incorporating risk provisions.  

The paper contributes to the literature examining the risk of traders from the 

participation in the cross-border electricity trade, resulting from the uncertainty of 

price forecasting. The applicability of the model concerns all physically 

interconnected power markets that are not market coupled, through a common market 

algorithm. The traders participate in explicit transmission rights’ auctions and day-

ahead markets, aiming at increasing their profitability. The integrated model is 

applied in bi-directional trading between the Italian and Greek day-ahead electricity 

markets. The UC model provides a robust forecast of the wholesale electricity price in 

Greece, while the ANN models cluster the data in homogenous groups, towards 

identifying periods with increased certainty on the Italian wholesale electricity price 

forecasting. The implementation of clustering techniques aims at identifying the time 

periods with high certainty of forecasting. The integrated model identifies periods 

with high price margins for trading for each power flow, aligned with a forecasting 

confidence and a risk level. Such cases are strongly related to the cases where 

transmission rights’ prices have negligible values.  

The confidence level of price forecasting, is estimated considering the historical price 

forecasting errors for each cluster. Based on the confidence level of the price 

forecasts, the trader adjusts its strategy both in the assumed prices but also the traded 

volumes. The paper examines how the incorporation of risk provisions, affects 

trader’s profitability and the volumes traded. There are time periods, that a more 

aggressive trading approach, namely without risk strategy, could lead to higher 
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margin for trade in one of the two directions. However, the overall performance of the 

trader for each direction, is more profitable when the trader incorporates the risk 

provisions. Moreover, the incorporation of risk provisions creates higher flexibility in 

trading, compared to the actual trading, as depicted in the results of the daily auctions 

of transmission rights, which show that traders are usually interested for trading only 

in one direction. The proposed integrated modelling approach provides insights on the 

trade-offs between price forecasts confidence, the adjustment factors, the accepted 

margins of the traders and the transmission rights’ prices. The results of the model 

show that the consideration of risk provisions, based on “raw” data which include 

outliers, enhance risk performance and eliminate the risk for negative revenue 

margins. In total, it is a useful tool for the identification of the profitability of the 

traders, as well the eliminating the risk form the fluctuations of both markets.  

The main contribution of this work is to provide a novel methodological framework 

which could reduce traders' risk, enhance the decision-making of energy traders in 

day-ahead energy markets, as well as help policy makers in the design of future 

energy markets. 
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Acronyms 

ADMIE: 
Independent Power Transmission 

System Operator 

LAGIE Hellenic Electricity Market Operator 

GAMS: General Algebraic Modelling System 

MILP: Mixed Integer Linear Programming 

RAE Regulatory Authority of Energy 

RES: Renewable Energy Sources 

SMP: System Marginal Price 

UCP: Unit Commitment Problem 

PUN 
National Single Price in the Italian 

Power Exchange 

IPX Italian Power Exchange 

GME 
Gestore dei Mercati Energetici S.p.A, 

the Italian Power Exchange 

SUD Southern Italy zone 

TERNA 
Italian Transmission System Operator 

S.p.A. 

ANN Artificial Neural Network 

Nomenclature 

Sets 

� ∈ H set of subsystems 

� ∈ S set of hours 
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� ∈ � 
set of blocks of the energy offer function (bids) of each 

hydrothermal unit 

? ∈ A� set of pumped storage units	? ∈ A interconnected with zone 	W ∈ X 

F ∈ YK�K set of hydrothermal units 

F ∈ Y� set of units  F ∈ Y that are (or can be) installed in zone W ∈ X 

W ∈ X set of zones 

T ∈ U� set of interconnected power systems 	T ∈ U with zone 	W ∈ X 

T ∈ U set of interconnected power systems 

N ∈ O set of traders 

Z ∈ � set of clusters, where time periods � ∈ S are organized 

6 ∈ D set of models for day-ahead price forecasting 

Parameters 

���,�,� 
Marginal cost of block � ∈ � of the energy offer function of each 

unit 	
F ∈ YK�K in hour � ∈ S (€/MW) 

�A8.,�,� 

Marginal export bid of block � ∈ � to interconnection T ∈ U in 

hour � ∈ S (€/MW) 

�78.,�,� 

Marginal cost of block � ∈ � of the imported energy offer 

function from interconnection T ∈ U, in hour � ∈ S (€/MW) 

�8D<,�,� Marginal bid of block � ∈ � of pumped storage unit ℎ ∈ \ in 
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hour � ∈ S (€/MW) 

��,� Injection losses coefficient in zone W ∈ X and hour � ∈ S (p.u.) 

8���. Technical minimum of each unit F ∈ YK�K (MW) 

8��
B  Maximum power output of each unit F ∈ YK�K (MW) 

O�1�,� 
Price of the primary energy offer of each unit F ∈ YK�K, in hour 

� ∈ S (€/MW) 

O�2�,� 
Price of the secondary range energy offer of each unit F ∈ YK�K, 

in hour � ∈ S (€/MW) 

HI�� Shut-down cost of each unit F ∈ YK�K (€) 

tsCAP ,  

Maximum allowed price for priced energy offers in subsystem 

� ∈ H and hour � ∈ S 

trTOLMARG ,_  
Margin that satisfies the trader N ∈ O to participate in cross-

border trade in hour � ∈ S 

tsSMP ,  

System Marginal Price in subsystem � ∈ H and hour � ∈ S 

(Euro/MWh) 

tnSMP ,  

System Marginal Price in interconnected system T ∈ U and hour 

� ∈ S (Euro/MWh) 

tnsTRA ,,  

Transmission Right price, based on explicit Auction for the 

power flow from subsystem � ∈ H to interconnected system 

T ∈ U in hour � ∈ S (Euro/MWh) 
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tsnTRA ,,  

Transmission Right price, based on explicit Auction for the 

power flow from interconnected system T ∈ U to subsystem 

� ∈ H in hour � ∈ S (Euro/MWh) 

trnsTRQ ,,,  
Quantity traded by trader Rr ∈ from subsystem Ss ∈ to 

interconnected system Nn ∈ in hour Tt ∈ (MWh) 

trsnTRQ ,,,  
Quantity traded by trader Rr ∈ from interconnected system 

Nn ∈ to subsystem Ss ∈ in hour Tt ∈ (MWh) 

Continuous Variables 

?@�.,�,� 
Cleared quantity of power capacity block � ∈ � exported to 

interconnected system T ∈ U in hour � ∈ S (MW) 

56�.,�,� 

Cleared quantity of power capacity block � ∈ � imported 

from interconnected system T ∈ U in hour � ∈ S (MW) 

���,�,� 
Quantity of power capacity block � ∈ � of unit F ∈ YK�K, 

dispatched in hour � ∈ S (MW) 

�6�<,�,�/1�
 

Cleared quantity of block � ∈ � of pumping unit ℎ ∈ \ in 

hour � ∈ S (MW) 

N1,�,�1/  

Contribution of unit F ∈ YK�K in primary-up reserve in hour 

� ∈ S (MW) 

N2�,�	0;. 

Contribution of unit F ∈ YK�K in secondary-down reserve in 

hour � ∈ S (MW) 

N2�,�1/ Contribution of unit F ∈ YK�K in secondary-up reserve in hour 
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� ∈ S (MW) 

tnsMARGIN ,,  
Margin from cross-border trade between subsystem � ∈ H and 

interconnected system T ∈ U in hour � ∈ S 

tsnMARGIN ,,  
Margin from cross-border trade between interconnected 

system T ∈ U and subsystem � ∈ H in hour � ∈ S 

tcmsSMPF ,,,  

System Marginal Price Forecast in subsystem � ∈ H and hour 

� ∈ S , for model Mm ∈ and cluster Cc ∈  (Euro/MWh) 

tcmnSMPF ,,,  

System Marginal Price Forecast in interconnected system 

T ∈ U and hour � ∈ S , for model Mm ∈ and cluster Cc ∈  

(Euro/MWh) 

tcmsSMPF ,,,'  

System Marginal Price Forecast in subsystem � ∈ H and hour 

� ∈ S , for model Mm ∈ and cluster Cc ∈ , updated by a 

price adjustment factor based on the confidence level of price 

forecasts (Euro/MWh) 

tcmnSMPF ,,,'  

System Marginal Price Forecast in interconnected system 

T ∈ U and hour � ∈ S , for model Mm ∈ and cluster Cc ∈ , 

updated by a price adjustment factor based on the confidence 

level of price forecasts (Euro/MWh) 

tcmsCONF ,,,  
Confidence level for price forecasting in subsystem � ∈ H and 

hour � ∈ S , for model Mm ∈ and cluster Cc ∈  (%) 

tcmnCONF ,,,  
Confidence level for price forecasting in interconnected 

system T ∈ U and hour � ∈ S , for model Mm ∈ and cluster 
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Cc ∈  (%) 

tcmsERRF ,,,  

Error of price forecasting for model Mm ∈ , cluster Cc ∈  in 

subsystem � ∈ H and hour � ∈ S (%) 

tcmnERRF ,,,  

Error of price forecasting for model Mm ∈ , cluster Cc ∈  in 

system T ∈ U and hour � ∈ S (%) 

tsPADJ ,  
Price Adjustment factor in subsystem � ∈ H and hour � ∈ S , 

based in the confidence level for price forecasting (%) 

tnPADJ ,  

Price Adjustment factor in interconnected system T ∈ U and 

hour � ∈ S , based in the confidence level for price 

forecasting (%) 

tnsQADJ ,,  

Quantity Adjustment factor for trade from subsystem � ∈ H to 

interconnected system T ∈ U in hour � ∈ S, based in the 

confidence level for price forecasting (%) 

tsnQADJ ,,  

Quantity Adjustment factor for trade from interconnected 

system T ∈ U to subsystem � ∈ H in hour � ∈ S , based in the 

confidence level for price forecasting (%) 

trnsTRQ ,,,'  

Quantity traded by trader Rr ∈ from subsystem Ss ∈ to 

interconnected system Nn ∈ in hour Tt ∈ , updated by a 

quantity adjustment factor based on the confidence level of 

price forecasts (MWh) 

trsnTRQ ,,,'  
Quantity traded by trader Rr ∈ from interconnected system 

Nn ∈ to subsystem Ss ∈ in hour Tt ∈ , updated by a 
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quantity adjustment factor based on the confidence level of 

price forecasts (MWh) 

trnsREVENUE ,,,  

Profitability for trader Rr ∈ for participating in cross-border 

trade from subsystem Ss ∈ to interconnected system Nn ∈

in hour Tt ∈  

trsnREVENUE ,,,  

Profitability for trader Rr ∈ for participating in cross-border 

trade from interconnected system Nn ∈ to subsystem Ss ∈

in hour Tt ∈  

trnsREVENUE ,,,'  

Profitability for trader Rr ∈ for participating in cross-border 

trade from subsystem Ss ∈ to interconnected system Nn ∈

in hour Tt ∈ , updated by risk management provisions 

trsnREVENUE ,,,'  

Profitability for trader Rr ∈ for participating in cross-border 

trade from interconnected system Nn ∈ to subsystem Ss ∈

in hour Tt ∈ , updated by risk management provisions 

trnsMARGREV ,,,'_

 

Actual revenue margin for trader Rr ∈ for participating in 

cross-border trade from subsystem Ss ∈ to interconnected 

system Nn ∈ in hour Tt ∈ , implementing risk management 

provisions 

trsnMARGREV ,,,'_

 

Actual revenue margin for trader Rr ∈ for participating in 

cross-border trade from interconnected system Nn ∈ to 

subsystem Ss ∈ in hour Tt ∈ , implementing risk 

management provisions 
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trREVENUE ,  

Profitability for trader Rr ∈ for participating in cross-border 

trade in hour Tt ∈  

trREVENUE ,'  

Profitability for trader Rr ∈ for participating in cross-border 

trade in hour Tt ∈ , updated by risk management provisions 

trMARGREV ,'_  

Actual revenue margin for trader Rr ∈ for participating in 

cross-border trade in hour Tt ∈ , implementing risk 

management provisions 

trMARGREV ,_  

Actual revenue margin for trader Rr ∈ for participating in 

cross-border trade in hour Tt ∈  with no risk management 

provisions  

trPERFRISK ,_  

Performance of the risk management strategy for the trader 

Rr ∈ for participating in cross-border trade in hour Tt ∈  

trQUANTITY ,  

Quantity traded by trader Rr ∈  in cross-border trade in hour 

Tt ∈  

trQUANTITY ,'  

Quantity traded by trader Rr ∈  in cross-border trade in hour 

Tt ∈ , updated by risk management provisions 

trPERFQUAN ,_  

Performance of the risk management strategy for the trader 

Rr ∈ in the quantities traded in cross-border trade in hour 

Tt ∈  

Binary Variables 

@�,�3	   1, if unit F ∈ YK�K is shut-down in hour � ∈ S 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

35 

 

trnsFLAG ,,,  

Flag for activating participation of trader Rr ∈ in cross-border trade 

from subsystem Ss ∈ to interconnected system Nn ∈ in hour Tt ∈ ,   

trsnFLAG ,,,  

Flag for activating participation of trader Rr ∈ in cross-border trade 

from interconnected system Nn ∈ to subsystem Ss ∈ in hour Tt ∈ ,   
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Tables 

1. Decomposition of the clusters of the selected ANN model for the examined 
period 

2. The confidence level (CONF) of the day-ahead price forecasts, lead to 
adjustments of the price forecasts and the quantities to be traded, through 
adjustment factors for Price (PADJ) and Quantity (QADJ) respectively. 

3. Average price (in €/MWh) forecasting errors, for a 24h time period, for each 
cluster of the ANN model. 

4. Average hourly forecasted prices (in €/MWh) for the Greek and Italian SUD 
market (SMP_GR and SMP_IT respectively), average hourly prices of the 
transmission rights in both directions between the Greek and Italian SUD 
zones (TRA_IT_GR and TRA_GR_IT), hourly margin (in €/MWh) that 
satisfies the trader (MARG_TOL) and average hourly quantities (in MWh) 
traded in both directions (for the scenario where no risk strategy is 
implemented) (TRQ_imp and TRQ_exp respectively). 

 

Table 1: Decomposition of clusters of the selected ANN model for the examined 

period 

Cluster Days of July 2016 Share (%) 

1 4, 7, 8, 11, 15, 22, 28 and 29  25.81% 

2 1, 5, 6, 12, 13, 14, 19, 20, 21, 26 and 27 35.48% 

3 2, 9, 16, 18, 23, 25, 30 and 31  25.81% 

4 3, 10, 17 and 24 12.90% 

Table 2: The confidence level (CONF) of the day-ahead price forecasts, lead to 

adjustments of the price forecasts and the quantities to be traded, through adjustment 

factors for Price (PADJ) and Quantity (QADJ) respectively. 

CONF PADJ QADJ 

≥95% 100% or 1/100% 100% 100%  

≥85% 95% or 1/95% 95% 85% 

≥70% 85% or 1/85% 85% 70% 

≥0% 70% or 1/70% 70% 35% 
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Table 3: Average price forecasting errors (in %), for a 24h time period, for each cluster of the ANN model. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

Cluster1 12.2 10.7 11.7 12.5 11.3 11.6 11.6 11.6 12.2 13.0 9.9 11.6 9.8 11.3 9.9 9.0 8.8 10.6 11.4 11.3 9.7 7.8 8.8 10.3 

Cluster2 8.8 7.7 8.4 9.5 9.8 10.0 7.7 6.5 8.7 11.3 11.0 12.9 14.9 19.1 71.9 12.1 11.9 7.9 9.3 9.4 8.4 7.6 6.5 6.9 

Cluster3 14.1 19.2 20.5 27.4 28.5 34.3 24.9 24.2 32.4 99.4 89.2 88.3 31.1 80.2 116.7 29.3 19.6 16.6 17.2 15.3 20.8 15.2 14.2 15.5 

Cluster4 16.8 14.8 15.3 19.1 24.5 18.5 20.1 35.6 40.0 50.2 22.8 32.8 29.3 91.4 53.7 161.9 50.6 44.7 31.9 36.3 36.9 30.5 26.0 17.7 

 

Table 4: Average hourly forecasted prices (in €/MWh) for the Greek and Italian SUD market (SMP_GR and SMP_IT respectively), average 

hourly prices of the transmission rights in both directions between the Greek and Italian SUD zones (TRA_IT_GR and TRA_GR_IT), hourly 

margin (in €/MWh) that satisfies the trader (MARG_TOL) and average hourly quantities (in MWh) traded in both directions (for the scenario 

where no risk strategy is implemented) (TRQ_imp and TRQ_exp respectively). 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

SMP_GR 
43.17 42.98 41.68 41.00 40.06 39.40 40.47 42.41 42.21 42.69 42.56 42.80 43.27 42.42 42.51 42.77 43.05 43.14 43.31 43.28 45.08 43.87 43.70 44.45 

SMP_IT 
42.57 40.02 37.08 36.08 35.35 35.35 36.83 40.33 43.26 42.00 40.50 39.78 38.23 36.71 36.53 37.44 40.06 41.21 44.62 46.73 48.98 50.80 46.66 42.49 

TRA_IT_GR 
1.60 2.77 3.79 3.68 3.61 3.04 2.67 1.80 1.38 2.11 2.88 3.53 4.74 5.34 5.38 4.87 3.32 2.15 0.69 0.19 0.16 0.13 0.44 1.22 

TRA_GR_IT 
0.68 0.20 0.06 0.03 0.03 0.04 0.04 0.37 1.40 1.16 0.60 0.35 0.05 0.03 0.06 0.08 0.38 0.60 2.20 3.55 4.67 5.67 2.78 0.49 

TRQ_imp 
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 

TRQ_exp 
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 

MARG_TOL 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Figures 

1. Energy Supply offer for a thermal unit u, compared to its incremental cost and 

its minimum variable cost, for different power outputs, among unit’s technical 

minimum 81��. and technical maximum 81�
B. (Euro/MWh) 

2. Determination of System Marginal Price (SMP), as the crossroad of aggregate 

Supply and Demand curves (Euro/MWh)  

3. The configuration of the applied ANN model.  

4. Typical System Marginal Prices in Italy (SMP_IT) and Greece (SMP_GR), as 

well as the Transmission Rights prices from the daily auctions for trade from 

Italy to Greece (TRA_IT_GR) and vice versa (TRA_GR_IT) in Euro/MWh  

5. Average trader’s profitability with risk provisions (REVENUÉ IT,GR, 

REVENUÉ GR,IT) compared to this without risk provisions 

(REVENUEIT,GR, REVENUEGR,IT), per each direction in trade among 

Italy & Greece (Euro) 

6.  Average quantity traded with risk provisions (QUANTITY ´IT,GR, 

QUANTITY ´GR,IT) compared to this without risk provisions 

(QUANTITYIT,GR, QUANTITYGR,IT), per each direction in trade among 

Italy & Greece (Euro) 

7.  Average trader’s overall profitability with risk provisions (REVENUÉIT,GR, 

REVENUÉ GR,IT) compared to this without risk provisions 

(REVENUEIT,GR, REVENUEGR,IT) for cross-border trade among Italy & 

Greece (Euro) 

8.  Risk performance indicator evolution per direction of trading 

(RISK_PERFIT,GR, RISK_PERFGR,IT) and in total (RISK_PERF), for 

cross-border trade among Italy & Greece, when risk provisions are considered 

(%) 

9. Evolution of the quantity performance indicator per direction of trading 

(QUAN_PERFIT,GR, QUAN_PERFGR,IT) and in total (QUAN_PERF), for 
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cross-border trade among Italy & Greece, when risk provisions are considered 

(%) 

10. Average trader’s revenue margin with risk provisions (REV_MARǴIT,GR, 

REV_MARG´GR,IT) compared to this without risk provisions 

(REV_MARGIT,GR, REV_MARGGR,IT), per direction of trade, for cross-

border trade among Italy & Greece (Euro/MWh) 

11. Average trader’s revenue margin with risk provisions (REV_MARǴ) 

compared to this without risk provisions (REV_MARG) for cross-border trade 

among Italy & Greece (Euro/MWh) 

12. Average trader’s revenue margin with risk provisions (REV_MARǴ), per 

different forecasting error of the Unit Commitment model, for cross-border 

trade among Italy & Greece (Euro/MWh) 
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Highlights 

• integration of Unit-Commitment problem with ANN based models, 

• clustering of the data to identifying periods with increased certainty on the day-ahead electricity 

price forecasting  

• identification of periods with high price margins for electricity trade  

• provision of price signals on the profitability of traders and 

• provision of useful insights into the risk of traders  


