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ABSTRACT

This paper presents an integrated model for riskagament of electricity traders. It
integrates the Unit Commitment (UC) problem, whpgrbvides the power generation
units’ dispatch and the electricity price forecagtof a power system, with artificial
neural network (ANN) models, which provide eledtsicprice forecasting of a
neighbouring power system by incorporating a chiusgealgorithm.The integrated
model is further extended to estimate the trademsfitability and risk, incorporating
risk provisions. The integrated model is applieditdirectional trading between the

Italian and Greek day-ahead electricity markete UC and neural network models
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provide forecasts of the wholesale electricity @ric Greece and Italy respectively.
The model attributes a confidence level of thegfarecasts, depending on the data
clustering and the forecasting performance of eaddel. The integrated model
identifies periods with high price margins for tiragl for each power flow, aligned
with a forecasting confidence and a risk level. irttegrated model can provide price

signals on the profitability of traders and usefgights into the risk of traders.

Keywords. Electricity trade; Electricity price forecastinisk; Unit commitment

problem; Artificial neural networks; Day-ahead metrk

1. Introduction

A vital priority in European Union’s energy policy the integration of its electricity

markets. This will facilitate the use of intercontiens among national power
systems, increasing the power flows and identifyihg bottlenecks among them.
Investing in such interconnections is importantjrathe long-term, they lead in the
whole energy system cost reduction. Boffa et.[4],, estimated that investments in
the interconnections of the Italian power system mavide benefits, as even a small
increase of the interconnections’ transmission ciéypaould considerable mitigate

consumers’ costs.

The electricity traders are very important markketyprs towards enhancing market
coupling and overall energy system cost minimizatibhe traders pursue economic
benefits, identifying their strategy based on psamals from interconnected power
markets. However, they face considerable risks.eDwt. al. [2] concluded that the
participation of traders in the Colombian marketr@ases as its transparency

increases and as long as traders are increasimgutiderstating of the market risks.



Shakouri et. al. [3], developed a model for ecoruathy optimization of electricity
trade between the Turkish and Iranian power systgoemntifying the supplementary
benefits of peak shaving. Boroumand et. al. [4jalgsed the electricity retailers’
risks. The paper compares different intra-day pba$ of hedging, using VaR and
CVaR risk measures. It concludes that intra-daygimeg is superior over daily
hedging. Antweiler [5], developed a theoretical mlodf cross-country electricity
trading, providing evidence from the power systeofisCanada and USAThey
concluded that identifying the bottlenecks and graéing North America's power
systems into a continental “supergrid” can provegenomic benefits. Another paper
[6] has led to similar conclusions, applied to Eagp namely that cross-border
electricity trade facilitated by privatization pesses, can transform national markets
into a continental “supergrid” for Europe. The pafcused on which are the main
determinants of electricity trade among the Europpawer systems, providing

evidence that privatisation enhances power flovgsteansactions in most cases.

The enhancement of electricity trade strongly ddpenn the interconnections
capacity and on the capability to forecast wholesdéctricity prices. However, the
latter is a complex task, where different method@s compete on their capability to
provide robust price forecasts. The literature eevon electricity price forecasting,
especially for the Italian and Greek day-ahead etarks not extensive. A recent
paper [7] explored the potential of Artificial NeliNetwork (ANN) based models on
the day-ahead electricity price forecasting in ftkedian market. It provided a
comprehensive review in the literature and proposSEdl and hybrid ANN models,
working with no pre-processed data and implemendirgiustering algorithm, which
separates historical data in well-separated andolgeneous groups. Gianfreda and

Grossi, [8-9], examined the electricity pricesloéd ftalian wholesale market, focusing



on providing evidence among the prices of the cifié zones. The authors
implemented Reg-ARFIMA—GARCH models to examine #ffect -on the Italian
wholesale electricity market price- of critical iables, such as market shares of
dominant players, power generation technology typed transmission systems
congestions. Bosco et. al. [10], implemented aniecap analysis on the prices of the
Italian electricity market. It developed periodicRAGARCH models, providing
evidence on their superior performance comparedooe traditional approaches.
Bollino and Polinori [11], examined the existendecontagion in electricity markets,
focusing only on pure contagion relationship in ltadéian Power Exchange (IPX) at
the Italian regional level. Petrella and Sapio [1&#jplied SARMAX and EGARCH
models to examine the influence of future produntarket competition and white
certificates on the evolution of the Italian dayeall electricity prices. It provides
evidence electricity price fluctuations are affeicteom forward and cfd products, as
well as from white certificates’ products tradigthough, the ANN models as well
as time series models are very useful, they areaftst enough for electricity price
forecasting [7], as they usually do not considéical techno-economic parameters,
such as fuel and CO2 prices, merit order of geimgraplants, renewables and
hydropower capacity, market participants’ strategreetwork congestion and others.
Those parameters are usually tackled with moreilddtéechno-economic models,
such as those elaborating the Unit Commitment (p¥@blem or those that focus on
the strategy of market players [13], which provided analysis of the Italian day-
ahead market, focusing on the role and biddingcpalf the dominant market player,
namely Enel or those that focus on the competiggsrof the different technology
and fuel types for power generation, quantifyingoathe influence of renewables

generation on the day-ahead electricity pricebénltalian day-ahead market [14].



The UC problem identifies the power units’ dispatcbnsidering their bidding
strategy, their operational and maintenance cdsisir ramping capacity, their
capability to provide ancillary services and ottemthno-economic criteria. Liu and K.
Tomsovic, [15] proposed a robust unit commitmentdetpincorporating the price
elasticity uncertainty. Bakirtzis et. al., 2014 [I8esent a unified unit commitment
and economic dispatch model, applicable for a 24-htme horizon, while
Andrianesis et. al., 2011 [17]present a medium-term unit commitment problem,
applicable for a longer horizon of several dagsning to capture the effects of
techno-economic characteristics of the thermalsyrsitich as the start-up times and
costs. Biskas et. al. [18], examined the forthcgmmarket coupling/integration of the
Greek with the Italian electricity market, implentieg the integration of a power
exchange (PX), namely the lItalian wholesale maget a power pool, namely the
Greek wholesale market. Koltsaklis et. al., 2014] [airesent a spatial multi-period
long-term energy planning model, identifying themeo generation technologies, the
fuel types, the plant locations that optimally sfti electricity demand and
environmental constraints, while Koltsaklis et.[@D] present a model that integrates
a mid-term energy planning model, which implemeatshual generation and
transmission system planning, with a unit committ@adel, which performs the

simulation of the day-ahead electricity market.

From the above analysis, it derives that the riskamlers from the participation in the
cross-border electricity trade has not been extehsexamined, especially in case of
the Italian-Greek day-ahead markets, which haveyabbeen coupled, as the case of
Italian-Slovenian markets [21]. Electricity tradingn the Italian-Greek
interconnection, as well to the other interconreiof Greece, is not related -for the

time being- to the development of a coordinated ehodplementing the same market



algorithm among the interconnected systems, buihe¢ocapability to provide robust
forecasts of electricity prices on the two day-ahezarkets, Italy and Greece. The
paper presents an integrated model, integrating ANN UC models, providing and
elaborating price forecasts towards identifyingtilsk of traders in the interconnected
markets. The applicability of the integrated modsbdncerns all physically
interconnected power markets that are not markgpled, through a common market
algorithm. In such a case, the development of aeinapplying the common market
algorithm [22] would provide more robust resultsdaprice signals for market

participants.

This paper integrates a Unit Commitment (UC) modéijch provides the power
generation units’ dispatch and the electricity @ricrecasting of a power system with
hybrid artificial neural network (ANN) models thatorporate a clustering algorithm,
towards electricity price forecasting of a neightwog power system. The integrated
model is further extended to estimate the tradenfitability and risk under different
trading strategies. The integrated model is appheti-directional trading between
the ltalian and Greek day-ahead electricity markébte highlights of the paper are:
() integration of Unit-Commitment problem with ANBased models, (ii) clustering
of the data to identifying periods with increasedtainty on the day-ahead electricity
price forecasting, (iii) identification of periodgth high price margins for electricity
trade iv) provision of price signals on the prdfitay of traders (iv) provision of
useful insights into the risk of traders. Sectiopr@sents the methodology applied in
this work, while Section 3 provides the main datéhe case study. The main results
of our study are given in Section 4, and Secticisgusses upon some concluding

remarks



2. Methodology

Methodologically, this work is an integrated apmioawhich combines a unit
commitment model for day-ahead price forecasting gfower system with ANNs
based models for day-ahead price forecasting aighbouring power system. This
approach is based on previous works [19-20, 23jceming the unit commitment
problem, and a previous work [7] concerning thefieidl neural network models.
The integrated model is further extended to esenhaiw the traders’ profitability is

affected from the cross-border electricity trade.
2.1 Unit Commitment model for a power system

The UC model concerns the optimum operation of \agpsystem at a daily period.
Therefore, the model’s objective function is repréed by Equation (1).

Min Cost9aily =

Marginal production cost
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The UC problem considers the energy offers and ddndeclaration of market
participants, towards identifying the System MaafjiPrice SMP;, for subsystem
s €S and time periodt € T. Those offers are restricted by the techno-ecooomi
characteristics of each unit. Figure 1 presentsetiergy supply offer for a thermal
unit u, compared to its incremental cost and iteimiim variable cost, for different

power outputs, among unit's technical minim@f™ and technical maximuml**.
Insert Figurel

The minimization of the objective function providdse System’s Marginal Price
(SMP), namely the system’s wholesale electriciticorFigure 2 represents the
determination of the SMP, as the crossroad of aggeesupply and demand curves.
The problem is modelled as a mixed-integer lineagmamming (MILP) problem,

subject to constraints defined in a recent pap&: [2
Insert Figure 2
2.2. ANN for day-ahead price forecasting of a neighbouring power system

The ANN models are applied for electricity pricerdcasting of a neighboring
systemn € N. The ANN model incorporates clustering technigéms organizing
time periods in different clusters. The implemeotabf clustering techniques aims at

identifying the time periods with high certainty fafrecasting. The confidence level



CONF, ... of price forecastingSMPF, ., is estimated considering the historical

nme.t
forecasting errorERRF, .. for interconnected system UN , model mUM ,
cluster c U C and periodt U T . The same logic is applied for the UC model price
forecasts SMPF,,, concerning the subsystensUS, introducing variables

CONF, andERRF, 1 c.t-

nm.c,t

A basic advantage of the applied ANN models, i$ thay use raw data, including
many price spikes and null values. Therefore, rceons a realistic operation of a
power market. A Feed-Forward Neural Network waslém@nted, trained by the
Levenberg-Marquard algorithm [24]. The number ofld@n layers is 1 and the
neurons in the hidden layer is 10. Both hidden antput layers use hyperbolic
tangent sigmoid transfer function. The maximum namdf training epochs was set

to 100.

The implementation of clustering techniques as meatl below, aims at
identifying the time periods with high certaintyfofecasting. A hybrid ANN mode is
chosen [7] incorporating a topology of two genestalges, as shown in Figure 3. The
first stage concerns the elaboration of data anplementation of the clustering
algorithm, while the second stage concerns theiGgimn of the neural networks for
each cluster, by using K-means, the most commoaritign in demand patterns’
problems [25]The aim of the first stage is to formulate the dsgtinto the suitable
form for the clustering, towards obtaining meaningind exploitable results from the
clustering operation. This preprocessing stage am&lentifying similarities and
trends of the daily price curves, by comparing rttefiapes. Through an iterative
process, the algorithm tends to minimize the suragofared errors and it terminates

when there are no transpositions of patterns frduster to cluster during the



successive iterations. K-means partitions theitrgiset matrix into k clusters. Hence,
k ANNSs are trained separately with the data ofdbeesponding clusters. The final

forecasting error is calculated by consideringdtrers generated from each ANN.
Insert Figure 3
2.3. Traders profitability

We assume that the traderl] R is participating in the interconnection between

subsystems U S and the interconnected systeny] N .

Critical issues for trader’s profitability is theige SMP,, in systems U S and period

tUT, the priceSMP,,, in interconnected systemU N and periodt U T , the price

t’

TRA,,,;, in the transmission rights explicit auctions foe timterconnection between

systems U S and interconnected systemU N for periodt U T , and the volume of

electricity they tradeTRQ

s,n,rt’

TRQ, from the systemsU Sto interconnected

St

systemn U N for periodt U T and vice versa respectively/

Moreover, critical issues for trader’s profitahjliare the robustness of the day-ahead
price forecasts in the interconnected systems l@drargin levels that satisfies the

trader in order to participate.

The profitability of the traders is given from tf@dlowing equations:

REVENUE, , , = (SVI P, —SMR,, _TRAs,n,t)ErRQs,n,r,t (2)
REVENUE, ., , =(SMP, - SVIP, -TRA, ., )TRQ, ., (3)
REVENUE,, =Y 3" (REVENUE,,, + REVENUE, ., ) 4)

<0JS nON
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for each traderr € R, for the interconnection between systesiJS and
interconnected system U N for period t U'T . Equation 2 refers to the case where
traders export electricity from systeml! S to interconnected systermU N | while
equation 3 when the trader imports electricity lie tsame interconnection. In the
above equations, we assumed that the system mipyinas incorporate all other
costs, e.g. export and participation fees. So tlegyresent the total cost in each

border.

However, the actual profitability cannot be estieshex-ante. In fact, the traders do
not participate in all interconnections and do tratde the same volumes in each

interconnection in all time periods. The traderleates its price forecastSMPF_, []
and SMPF, [for the system marginal price in systes! S and the interconnected

system n U N for period t UT respectively. For those forecasts, the trader das

confidenceCONF andCONF respectively. Considering the confidence level,

s,m,c,t nm.c,t
which differentiates based on the modselU M (UC or ANN) as well as on the
cluster cC | the trader readjusts its price forecasts, based price adjustment

factor PADJ,, , according to the following equations:

SMPF',, = SMPF,, [PADJ, or SMPF,, / PADJ,, (5)

SMPF' = SMPF_ [PADJ , or SMPF . /PADJ (6)

for each systens U S or interconnected system, modslJ M and clusterc U C for

period tOT . The price adjustment factoPADJ,, , PADJ , depends on the

confidence levelCONF CONF of the price forecasts.

s,mgc,t 7 n,m_ct
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The confidence levels are given by the historicadrs in forecasting for each system
s S or interconnected system, mod®ll M and clusterc U C for similar periods

t OT . Therefore, confidence are linked to the foreogséirrors, as shown:

CONF,

s,m,ct

=100- ERRF,,, ., (7)

CONF,

nm.c,t

=100- ERRF, .., (8)

The equations (9-10) have two values, in ordertrehse risk as describe below. The
actual condition for participation depends on teeneated margin for the traders. The
model incorporates a more conservative approacimcerning risk exposure,

estimating this margin based on the following etumat

MARGIN,,, = MIN(SMPF'_, -SMPF"_ -TRA,,,,) (9)
MARGIN, ., = MIN(SMPF', ~SMPF'_,-TRA, _, ) (10)

Which practically means that the model uses theegtwnargin for all four cases, two

for the price of SMPF',, and two for the price oBMPF' .. If this margin is higher

st
than an acceptable toleranb#ARG_TOL, |, different for each trader U R, then the

trader decides to participate in the day-aheadsdoosder trade. This is depicted in

the model with the activation of a flagLAG,

FLAG,,,, =1if MARGIN,, ~MARG_TOL, >0 (11)

snrt

FLAG, ., =1if MARGIN, ., ~MARG_TOL,, >0 (12)

nsrt

The robustness of the price forecasts affects #lsoquantities traded. Therefore,

based on the confidence level of the price forecdle trader readjusts its quantities,

12



based on a volume/quantity adjustment fac@®DJ QADJ, ,, , according to the

s,nt 2

following equations:
TRQ'S,n,I’,l = TRQS,n,I’,I [QAD‘]s,n,t (13)
TRQ'n,S,I’,l = TRQn,S,I’,I [QAD‘]n,s,t (14)

Therefore, the trader's revenue is estimated frbm following equations, which

consider the actual and not the forecasted daydgheces:

REVENUE'S,H,Y t = (S\/”:)S,t - S\/”:)T'I,t _TRA%,n,t) ErRle,n,r t [E:LAGS,H,Y t (15)
REVENUEIH,S,Y t = (SVIPﬂ,t - S\/”:)S,t _TRA’I,S,t) ErRQIrI,S,f,t |:E:LAGT'I,S,F t (16)

REVENUE,, =" (REVENUE

<S nON

+REVENUE', _ ) (17)

snrt

The difference between the estimat®®EVENUE', ,, which considers the risk
management provisions, and tiREVENUE, ,, where no provisions are taken into

accountdepicts the performance of the above mentionedstisitegy for the trader.

(REVENUE', . ~REVENUE, )
[REVENUE, ,

RISK _PER , = (18)

Similarly, a volume/quantity performance indicatorestimated, showing the change

in quantities traded:

UANTITY'  —QUANTITY
QUAN _ PERFr . - (Q rt Q r,t)
' QUANTITY,,

(19)

The forecasted prices in practice might deviatenftbe actual prices or might have
different forecasting error from the historicaldoasting errors, used as assumption in

the model. The consideration of the actual day-@heaéces, as well the traded

13



volumes, provides the actual revenue margin. Cenisig that, the traded volumes
have been estimated in equations 13-14 based t¢orib@d forecasting errors, the
actual revenue margin inherits the risk of the degon between the actual and
historical forecasting errors. The actual revenusrgim is being estimated in the

following equations:

(sviP, -swP, -TRA, )TRQ.,,.)

REV _MARG,,, = 2
-MARGni= 22 (TRQ.i) (20)
REV_MARG,, =YY (SVIR, - SVIR, ~TRA,,)TRQ,, ) e

7S nON (TRQIn,s,r,t )

3. Case study

The paper examines the trade among two neighbsgatgms, namely the Southern
Italian zone (SUD) and the interconnected Greekguasystem. The interconnected
Greek power system, simulated with the UC modehsimters the data published in
the monthly energy report of LAGIE of June 2016][ZBhe main operational and

economic characteristics of the installed unitthefGreek power system are available

in our previous contributions [19-20].

The data used for the Italian day-ahead markegssribed in a recent work [7]. The
ANN models are used for price forecasting of thetBern Italy zone (SUD), based
on data from the Italian power exchange [27]. Thailable data set used, cover the
period between 2012-2014, as training period arih 28 test period for validating
the model. The latter set determines the optimaNAf@nfiguration. The clustering is
used to partition the initial training set to triaigp subsets (clusters). Each subset
contains training patterns with more similar chéegstics compared to the patterns

of the rest clusters. Using this approach, we @ FFNN, 1 for each cluster. This

14



leads to better training, since each FFNN is tchwéh most correlated patterns, i.e.
the patterns of each cluster are more similar tiase of the other clusters. We
selected 4 clusters via a trial-and-error proc®¥ggh 4 clusters, the overall Mean
Absolute Percentage Error (MAPE) is minimal. Tablprovides the decomposition
of clusters of the selected ANN model. Clusters regresent 26%, 35%, 26% and
13% of all test patterns (initial test data segpestively. Clusters 1 and 2, with lower
historical forecasting error as will be shown ie fiollowing section, concern mainly
central weekdays (Tuesday-Thursday) and some ofdsieweekdays (Fridays and
Mondays), while cluster 4 concern Sundays, exceptttie last Sunday which is

grouped with Saturdays and some weekdays (Monday&adays) in Cluster 3.
Insert Table 1

The explicit auctions for the transmission righas the Italian-Greek interconnection
is implemented at the Joint Allocation Office [28]hich is a joint service company
of twenty Transmission System Operators from se@eantountries. for implementing
auction. For the needs of our study, we used tidighed data for the daily auctions
of July 2016. Therefore, in our model we assume thea trader knew the auction

results of that day.
4. Resultsand discussion

This section provides the results from applyingititegrated model. As mentioned
above, the price forecasts are readjusted basetheortonfidence level for each
forecast. Table 2 presents the Price (PADJ) andmvelquantity (QADJ) adjustment
factors used in this study, which are applied tustdthe price forecasts and the
guantities to be traded respectively, dependintherconfidence level (CONF) of the

day-ahead price forecasts. For the needs of ody ste used data of July 2016. For

15



the Greek system, where the UC model is implementecestimate, based on the
validation of the model, that the forecast erraeslass than 5% for all examined time
periods and therefore they do not lead to pricedast readjustments. For the Italian
system, the time periods are organized in fourtetss The different clusters have
different price forecasting errors, namely 10.7892,43%, 37.09% and 37.89%
respectively, based on their evaluation. The oldamkcast error is 21.75%, high

relevant to the UC model. Those forecasting erqges time period are represented in
Table 3. For simplicity reasons, the time periooisthe UC model are organized in
one cluster, compared to four for the ANN modeltloé Italian market. Table 4

includes the average hourly values of the main rapion used in the integrated

model, namely the day-ahead forecast prices irGiieek and Italian SUD zones, the
prices of the transmission rights in both directian electricity trade between Greece
and ltaly, the margin which satisfy the traderwadl as the quantity traded in each

direction, in case the trader does not considerrigkyprovision.

Insert Tables2,3& 4

Figure 4 presents typical System Marginal Prices in ltalyMBx) and Greece
(SMPgR), as well as the Transmission Rights prices fraendaily auctions for trade
from ltaly to Greece (TRAGr) and vice versa (TR#kr). The power flow of the
cable is mainly from ltaly to Greece, which leadssbme considerable price of the
transmission rights for this direction. Althoughethitalian wholesale market has
higher prices for some hours compared to the puaéebe Greek wholesale market,
the transmission rights for exports from Greechély have usually zero values. This
creates some profitability cases for traders, awmisig that they follow a risk

strategy, as described in this paper.

16



Insert Figure4

For the needs of our study, we consider that theetris participating in cross-border
trade with an average volume of 10 MWh per eachr.hdhis leads to relevant
profitability (REVENUErcr, REVENUEsR,7), per each direction when no risk
provisions are considered, estimated by the equa(io-8). In case of considering the
risk strategy, described in equations (10-19), pdated profitability is estimated
from equations (20-21). Figure 5 presents the a@ecteader’s profitability with risk
provisions (REVENUErcr, REVENUEGgr ;) compared to this without risk
provisions (REVENUR cr, REVENUEsR 1), per each direction in trade among lItaly

& Greece.

Insert Figure5

The consideration of risk provisions is not affelctaly the profitability, but also the
guantities traded, which are estimated by equat{®8sl9), considering the quantity
adjusting factors but also the flag, from equati¢b&-17) for deciding the trader’s
participation based on the comparison of the es@ichanargin and the margin
tolerance that satisfies the trader. For simplis#gsons, in our study we consider that
value of MARG_TOL is zero. Figure 6 presents therage volume/quantity traded
with risk provisions (QUANTITYrcr, QUANTITY ‘gr 1) cOmpared to this without
risk provisions (QUANTITYrcr, QUANTITYgr 1), per each direction in trade
among ltaly & Greece. The graph shows, that theetraadopting a more conservative
approach, is eliminating the chance for losses.th&t same time, the trader has
profitability in selected hours in both directiofihere are time periods, that a more
aggressive trading approach, namely without riskvigions, could lead to higher

margin in one of the two directions. However, thverall performance of the trader

17



for each direction, is more profitable when theléraincorporates the above described

risk strategy.

Insert Figure 6

When considering that the trader is participatingooth directions, then an overall
profitability is estimated by equation (8), wheskriprovisions are not taken into
account and equation (22), when they are considéiigdre 7 presents the average
trader’s overall profitability with risk provisiofllREVENUE |t cr, REVENUE GRr 1)
compared to this without risk provisions (REVENWER, REVENUEzR 1) for cross-
border trade among ltaly & Greece. The overallgrenbince of the trader, concerning
its profitability, is that the trader has increagedfitability compared to a trader with
no risk provisions. The graph shows that tradeth wisk provisions, decides to
participate with reduced quantities in differentihblocks, hours 1-6 for exports from
Italy to Greece and hours 8-13 for exports frome@eeto Italy. This shows that the
trader has a higher flexibility in trading, compaute the results of the daily auctions
of transmission rights, which depicted that tradmes strongly interested for trading

only in one direction, exports from Italy to Greece

Insert Figure7

The implementation of the risk management stratdggds to an increase in
profitability performance. This is depicted in teeolution of the indicator, estimated
in equation (23). Figure 8 presents the evolutibtine risk performance indicator, per
direction of trading (RISK_PERfFcr, RISK_PERFERg 1) and in total (RISK_PERF),
for cross-border trade among lItaly & Greece, wheh provisions are considered.
The graph shows that the risk performance indidaésrbeen increased by 147.3% in

total, having fluctuations from -59.3% to +736.8%0the evolution of the relevant

18



indicators for each direction. The participation todders in cross-border trading

without risk provisions, inherits considerable sdkr significant losses.

As mentioned above, the incorporation of risk psans, leads to significant decrease
in traded quantities. Figure 9 presents the ewmtutof the volume/quantity
performance indicator, per direction of trading (@WU PERFrGR,
QUAN_PERFR 1) and in total (QUAN_PERF), for cross-border traseong Italy &
Greece, when risk provisions are considered. Theedse is -77.4% on average,
fluctuating between -69.3% and -87.3%. The fact tha model decides a reduction
for all time periods is related to the fact thateftasting errors of the ANN are above
the confidence level of 5%, which would lead toazquantity adjustment. Therefore,
the incorporation of risk provisions leads to cdesable decrease in trading volumes

and consequently decreases the liquidity need$éotraders.

Insert Figures8& 9

As mentioned in section 3, the actual revenue manfjithe traders depends on the
actual prices and the traded volumes, as decidpdrtipate in the markets, through
the implementation of the risk provisions. Figulés11 present the hourly average
revenue margin for each direction and in total, nvbensidering the risk provisions or
not. Although, there exist at a daily level seveiralke periods where the strategy with
no risk provisions provide higher revenues, Figur@sl1 show that the risk strategy

provides a higher margin for all time periods oerage for the examined month.

Insert Figures10 & 11

This derives mainly from the fact, that the integda model assumed a perfect
forecasting performance for the UC model. Althoupls can actually happen by

traders in daily operations, as the UC model emsathle actual representation of the
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real solution in the Greek day-ahead market, weigeal a sensitivity analysis on the
forecasting error of the UC model. Figure 12, pdevihe actual revenue margin, for
the strategy with risk provisions, when the actfoatcasting error of the UC model,
deviates from the forecasting error of 0%, con&dein the integrated model to
decide the traded volumes. It derives that evesifyificant actual forecasting errors
of the UC model, at the range of 20%, the risktsta provides positive average
revenue margins. Negative average revenue margineséimated when the average
forecasting error of the UC model exceeds 35%. Man reason behind this
conclusion, is that the integrated model alreadymered high forecasting errors for
the ANN models, which has led to conservative behavin the traded quantities.
The consideration of “raw” data by the ANN mode}, it excluding outliers in the
historical training and test periods, has led ghhfiorecasting errors on one hand but

to enhanced risk performance on the other hand.

Insert Figure 12

To sum up, the traders have a risk of participaimthe two markets, resulting from
the uncertainty of several factors but as well ibleustness of the price forecasting.
The proposed integrated modelling approach provideghts on the trade-offs
between price forecasts confidence, the adjustriaenbrs, the accepted margins of
the traders and the transmission rights. In tdtéd, a useful tool for the identification
of the profitability of the traders, as well thénghating the risk form the fluctuations

of both markets.

5. Conclusions

This paper presents a model that integrates thé Commitment (UC) problem,

which provides the power generation units’ dispatoid the electricity price
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forecasting of a power system with hybrid artifiareeural network (ANN) models
that incorporate a clustering algorithm, towardscelcity price forecasting of a
neighbouring power system. The integrated modalriher extended to estimate the

traders’ profitability and risk, incorporating rigkovisions.

The paper contributes to the literature examinihg tisk of traders from the
participation in the cross-border electricity tradesulting from the uncertainty of
price forecasting. The applicability of the modebncerns all physically
interconnected power markets that are not markgled, through a common market
algorithm. The traders participate in explicit sarssion rights’ auctions and day-
ahead markets, aiming at increasing their profitsgbiThe integrated model is
applied in bi-directional trading between the Haliand Greek day-ahead electricity
markets. The UC model provides a robust forecaiiefvholesale electricity price in
Greece, while the ANN models cluster the data imbgenous groups, towards
identifying periods with increased certainty on tteian wholesale electricity price
forecasting. The implementation of clustering taghas aims at identifying the time
periods with high certainty of forecasting. Theemrated model identifies periods
with high price margins for trading for each povilew, aligned with a forecasting
confidence and a risk level. Such cases are strorajated to the cases where

transmission rights’ prices have negligible values.

The confidence level of price forecasting, is eated considering the historical price
forecasting errors for each cluster. Based on thefidence level of the price
forecasts, the trader adjusts its strategy bothenassumed prices but also the traded
volumes. The paper examines how the incorporatibrrisk provisions, affects
trader’s profitability and the volumes traded. Therre time periods, that a more
aggressive trading approach, namely without riglategy, could lead to higher
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margin for trade in one of the two directions. Hoemw the overall performance of the
trader for each direction, is more profitable whbe trader incorporates the risk
provisions. Moreover, the incorporation of risk yigsons creates higher flexibility in

trading, compared to the actual trading, as deghictehe results of the daily auctions
of transmission rights, which show that tradersumeally interested for trading only
in one direction. The proposed integrated modeklipgroach provides insights on the
trade-offs between price forecasts confidence,atjestment factors, the accepted
margins of the traders and the transmission righti€es. The results of the model
show that the consideration of risk provisions,eoasn “raw” data which include

outliers, enhance risk performance and eliminate tisk for negative revenue
margins. In total, it is a useful tool for the idiéication of the profitability of the

traders, as well the eliminating the risk form tlhuetuations of both markets.

The main contribution of this work is to providenavel methodological framework
which could reduce traders' risk, enhance the mecimaking of energy traders in
day-ahead energy markets, as well as help polickersain the design of future

energy markets.
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Acronyms

ADMIE:

LAGIE
GAMS:
MILP:
RAE
RES:
SMP:

UCP:

PUN

IPX

GME

SuUD

TERNA

ANN

Nomenclature

Sets
SES set of subsystems
teT set of hours

Independent Power Transmission
System Operator

Hellenic Electricity Market Operator
General Algebraic Modelling System
Mixed Integer Linear Programming
Regulatory Authority of Energy
Renewable Energy Sources

System Marginal Price

Unit Commitment Problem

National Single Price in the Italian
Power Exchange

Italian Power Exchange

Gestore dei Mercati Energetici S.p.A,
the Italian Power Exchange
Southern Italy zone

Italian Transmission System Operator
S.p.A.

Artificial Neural Network
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set of blocks of the energy offer function (bidsj each

beB
hydrothermal unit

e € E? set of pumped storage un#€ E interconnected with zone € Z
g € GMh set of hydrothermal units
g € G* set of unitsg € ¢ that are (or can be) installed in zone Z
Z€Z set of zones
n € N? set of interconnected power system& N with zonez € Z
ne€N set of interconnected power systems
rE€R set of traders
cecC set of clusters, where time periads T are organized
meM set of models for day-ahead price forecasting
Parameters

Marginal cost of bloclb € B of the energy offer function of each
CBy b, unit

g € G™ in hourt € T (E/IMW)

Marginal export bid of blocl € B to interconnectiom € N in
CEP, ¢

hourt € T (€/MW)

Marginal cost of blockb € B of the imported energy offer
CIP,p+

function from interconnection € N, in hourt € T (€E/MW)
CPMe Marginal bid of blockb € B of pumped storage unit € H in
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min
Fy

max
Fg

RC1,,

RC2,,

SDC

CAP.

st

MARG_TOL,

TRA

hourt € T (€E/MW)

Injection losses coefficient in zomaes Z andhourt € T (p.u.)
Technical minimum of each unjte G"" (MW)

Maximum power output of each ugjte G"" (MW)

Price of the primary energy offer of each upie G"", in hour

t € T (EIMW)

Price of the secondary range energy offer of eadhgue G"",

in hourt € T (E/MW)
Shut-down cost of each ugjte G (€)

Maximum allowed price for priced energy offers inbsystem

seSandhout €T

Margin that satisfies the tradere R to participate in cross-

border trade in houwre T

System Marginal Price in subsysteme S and hourt €T

(Euro/MWh)

System Marginal Price in interconnected system N and hour

t € T (Euro/MWh)

Transmission Right price, based on explicit Auctifor the
power flow from subsystens € S to interconnected system

n € N in hourt € T (Euro/MWh)
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TRA,,

TRQS,T'I,Y |t

TRQ

nsrt

Transmission Right price, based on explicit Auctifor the
power flow from interconnected systeme N to subsystem

s € Sin hourt € T (Euro/MWh)

Quantity traded by traderr ORfrom subsystem sUSto

interconnected systermU N in hour t T (MWh)

Quantity traded by trader U Rfrom interconnected system

n O N to subsystens U Sin hourt UT (MWh)

Continuous Variables

exby p+

imbn'b,t

pbg,b,t

pum
pmbe,b,t

up
rl,g’t

down
T2t

up
r2 gt

Cleared quantity of power capacity bloske B exported to

interconnected systeme N in hourt € T (MW)

Cleared quantity of power capacity blogke B imported

from interconnected systeme N in hourt € T (MW)

Quantity of power capacity block € B of unit g € G*",

dispatched in houre T (MW)

Cleared quantity of bloclkh € B of pumping unith € H in

hourt € T (MW)

Contribution of unitg € G"" in primary-up reserve in hour

t € T (MW)

Contribution of unitg € G™" in secondary-down reserve in

hourt € T (MW)

Contribution of unitg € ™" in secondary-up reserve in hour
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MARGIN, ,,

MARGIN, .,

SVIPF

smc,t

SVIPF

n,m,c,t

SMIPF'

smct

SMIPF'

nm,ct

CONF,

sm,c;t

CONF

n,mgct

t e T (MW)

Margin from cross-border trade between subsysten$ and

interconnected systeme N in hourt € T

Margin from cross-border trade between intercoretect

systern € N and subsystem e S in hourt € T

System Marginal Price Forecast in subsysteenS and hour

t €T, formodelmUM and clusterc UC (Euro/MWh)

System Marginal Price Forecast in interconnectestesy
n € N and hourt € T , for modelmU M and clusterc U C

(Euro/MWh)

System Marginal Price Forecast in subsysteenS and hour
teT , for model mUM and clustercUC | updated by a
price adjustment factor based on the confidencel lefvprice

forecasts (Euro/MWh)

System Marginal Price Forecast in interconnectestesy
n € N and hourt € T , for model mU M and clusterc L C |
updated by a price adjustment factor based ondh&dence

level of price forecasts (Euro/MWh)

Confidence level for price forecasting in subsysteenS and

hourt € T , for modelmU M and clusterc U C (%)

Confidence level for price forecasting in interceoted

systemn € N and hourt € T , for model mU M and cluster
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ERRF

smct

ERRF

nm.c;t

PADJ,,

PADJ,,

QADJ,

QADJ, .,

TRQ'

snrt

TRQ'T'I St

cOC (%)

Error of price forecasting for modeh U M | clusterc U C in

subsystens € S and houtt € T (%)

Error of price forecasting for modeh U M | clusterc L C in

systerm € N and hourt € T (%)

Price Adjustment factor in subsystene S and hourt € T,

based in the confidence level for price forecasiby

Price Adjustment factor in interconnected system N and
hour t e T , based in the confidence level for price

forecasting (%)

Quantity Adjustment factor for trade from subsystem S to
interconnected system € N in hourt € T, based in the

confidence level for price forecasting (%)

Quantity Adjustment factor for trade from intercewcted
systemn € N to subsysters € S in hourt € T , based in the

confidence level for price forecasting (%)

Quantity traded by trader O Rfrom subsystemsU Sto
interconnected systemm U N in hour t UT | updated by a
guantity adjustment factor based on the confiddagel of

price forecasts (MWh)

Quantity traded by trader U Rfrom interconnected system

nUNto subsystemsUSin hour tUT , updated by a
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REVENUE

s,n,r ot

REVENUE, .

REVENUE'

s,nrt

REVENUE'

ns,rt

REV _MARG'

s,n,rt

REV _MARG'

nsrt

guantity adjustment factor based on the confiddacel of

price forecasts (MWh)

Profitability for traderr O Rfor participating in cross-border
trade from subsystens U S to interconnected systemmU N

inhourtdT

Profitability for traderr O Rfor participating in cross-border
trade from interconnected system! N to subsystems U S

inhourtdT

Profitability for traderr O Rfor participating in cross-border
trade from subsystens U S to interconnected systemmU N

in hourt T | updated by risk management provisions

Profitability for traderr O Rfor participating in cross-border
trade from interconnected system! N to subsystems U S

in hourt UT | updated by risk management provisions

Actual revenue margin for trader U Rfor participating in
cross-border trade from subsystesri] Sto interconnected
systemn U N in hour t UT | implementing risk management

provisions

Actual revenue margin for trader U Rfor participating in
cross-border trade from interconnected systemd N to
subsystem sUSin hour tUOT, implementing risk

management provisions
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Profitability for trader r O Rfor participating in cross-border

REVENUE, ,
trade in hourt O’ T
Profitability for traderr O Rfor participating in cross-border
REVENUE'
trade in hourt U T | updated by risk management provisions
Actual revenue margin for trader U Rfor participating in
REV _MARG' . cross-border trade in hourt 0T, implementing risk
management provisions
Actual revenue margin for trader U Rfor participating in
REV _MARG, cross-border trade in hourd T with no risk management
provisions
Performance of the risk management strategy fortriduder
RISK _PERF,
r U Rfor participating in cross-border trade in haue T
Quantity traded by trader U R in cross-border trade in hour
QUANTITY,,
toT
Quantity traded by trader [ R in cross-border trade in hour
QUANTITY'
t 0T, updated by risk management provisions
Performance of the risk management strategy fortriduder
QUAN _ PERF, r URin the quantities traded in cross-border trade onrh
toT
Binary Variables
x5% 1, if unitg € G"™" is shut-down in hour € T
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FLAG

s,n,rt

FLAG

nsr;t

Flag for activating participation of traderl] Rin cross-border trade

from subsystens U S to interconnected systemU N in hourt OT |

Flag for activating participation of traderl] Rin cross-border trade

from interconnected systemU N to subsystens U Sin hourt UT |
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Tables

1. Decomposition of the clusters of the selected ANbBdet for the examined
period

2. The confidence level (CONF) of the day-ahead pfioeecasts, lead to
adjustments of the price forecasts and the questiib be traded, through
adjustment factors for Price (PADJ) and QuantitplpQ) respectively.

3. Average price (in €/ MWh) forecasting errors, foR4h time period, for each
cluster of the ANN model.

4. Average hourly forecasted prices (in € MWh) for tAeeek and Italian SUD
market (SMP_GR and SMP_IT respectively), averagerlipgorices of the
transmission rights in both directions between @reek and lItalian SUD
zones (TRA_IT_GR and TRA_GR_IT), hourly margin #&MWh) that
satisfies the trader (MARG_TOL) and average hogpantities (in MWh)
traded in both directions (for the scenario whem nisk strategy is
implemented) (TRQ_imp and TRQ_exp respectively).

Table 1. Decomposition of clusters of the selected ANN eloldr the examined

period
Cluster Days of July 2016 Share (%)
1 4,7,8,11, 15, 22, 28 and 29 25.81%
2 1,5,6,12,13, 14, 19, 20, 21, 26 and R7 35.48%
3 2,9, 16, 18, 23, 25, 30 and 31 25.81%
4 3,10,17 and 24 12.90%

Table 2. The confidence level (CONF) of the day-ahead epffiorecasts, lead to
adjustments of the price forecasts and the questit be traded, through adjustment
factors for Price (PADJ) and Quantity (QADJ) respety.

CONF PADJ QADJ
>95% 100% or 1/100% 100% 100%
>85% 95% or 1/95% 95% 85%
>70% 85% or 1/85% 85% 70%
>0% 70% or 1/70% 70% 35%
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Table 3: Average price forecasting errors (in %), for & 24ne period, for each cluster of the ANN model.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Clusterl | 12.2 | 10.7 | 11.7 | 125 | 11.3 | 11.6 | 11.6 | 11.6 | 12.2 | 13.0 9.9 | 11.6 9.8 | 11.3 9.9 9.0 8.8 | 106 | 114 | 113 9.7 7.8 8.8 | 10.3

Cluster2 8.8 7.7 8.4 9.5 9.8 | 10.0 7.7 6.5 8.7 | 113 | 11.0 | 129 | 149 | 191 71.9 12.1 | 11.9 7.9 9.3 9.4 8.4 7.6 6.5 6.9

Cluster3 | 14.1 | 19.2 | 205 | 27.4 | 285 | 343 | 249 | 24.2 | 324 | 994 | 89.2 | 838.3 | 31.1 | 80.2 | 116.7 293 | 196 | 16.6 | 17.2 | 153 | 20.8 | 15.2 | 14.2 | 155

Cluster4 | 16.8 | 14.8 | 153 | 19.1 | 245 | 185 | 20.1 | 35.6 | 40.0 | 50.2 | 22.8 | 32.8 | 29.3 | 91.4 53.7 | 161.9 | 50.6 | 44.7 | 31.9 | 363 | 36.9 | 305 | 26.0 | 17.7

Table 4: Average hourly forecasted prices (in €/ MWh) fbe tGreek and Italian SUD market (SMP_GR and SMRe§pectively), average
hourly prices of the transmission rights in botrediions between the Greek and Italian SUD zon&A(TT_GR and TRA_GR_IT), hourly

margin (in €/ MWh) that satisfies the trader (MARGDI) and average hourly quantities (in MWh) tradedoth directions (for the scenario
where no risk strategy is implemented) (TRQ_imp @R _exp respectively).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2 23 2

SMP_GR 4317 | 4298 | 41.68 | 41.00 | 40.06 | 39.40 | 40.47 | 42.41 | 4221 | 42.69 | 42.56 | 42.80 | 43.27 | 42.42 | 4251 | 42.77 | 43.05 | 43.14 | 4331 | 4328 | 45.08 | 43.87 | 43.70 | 44.45
SMP_IT 42.57 | 40.02 | 37.08 | 36.08 | 3535 | 3535 | 36.83 | 40.33 | 43.26 | 42.00 | 40.50 | 39.78 | 38.23 | 36.71 | 36.53 | 37.44 | 40.06 | 4121 | 44.62 | 46.73 | 48.98 | 50.80 | 46.66 | 42.49
TRAITGR | 160 | 277 | 379 | 368 | 361 | 304 | 267 | 180 | 138 | 211 | 288 | 353 | 474 | 534 | 538 | a87| 332| 215| o069 | 019 | 016 | 013 | o044 | 122
TRAGRIT | 68 | 020 | 006 | 003 | 003 | 004 | 004 | 037 | 140 | 116 | o060 | 035 | 005 | 003 | 006 | 008 | 038 | o060 | 220| 355 | 467 | 567 | 278 | 049
TRO_imp 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
TRQ_exp 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
MARG_TOL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Figures

1. Energy Supply offer for a thermal unit u, compatedas incremental cost and
its minimum variable cost, for different power out, among unit’s technical

minimum P™" and technical maximu®™**. (Euro/MWh)

2. Determination of System Marginal Price (SMP), as ¢hossroad of aggregate

Supply and Demand curves (Euro/MWh)
3. The configuration of the applied ANN model.

4. Typical System Marginal Prices in Italy (SMP_IT)da@reece (SMP_GR), as
well as the Transmission Rights prices from théydaictions for trade from
Italy to Greece (TRA_IT_GR) and vice versa (TRA_GR_in Euro/MWh

5. Average trader’s profitability with risk provisiondREVENUEIT,GR,
REVENUEGR,IT) compared to this without risk provisions
(REVENUEIT,GR, REVENUEGR,IT), per each direction irade among
Italy & Greece (Euro)

6. Average quantity traded with risk provisions (QUANY 'IT,GR,
QUANTITY 'GR,IT) compared to this without risk provisions
(QUANTITYIT,GR, QUANTITYGR,IT), per each directiom trade among
Italy & Greece (Euro)

7. Average trader’s overall profitability with riskgvisions (REVENUET,GR,
REVENUEGR,IT) compared to this without risk provisions
(REVENUEIT,GR, REVENUEGR,IT) for cross-border tradmong lItaly &
Greece (Euro)

8. Risk performance indicator evolution per directioof trading
(RISK_PERFIT,GR, RISK_PERFGR,IT) and in total (RISKERF), for
cross-border trade among Italy & Greece, whenpiskisions are considered
(%)

9. Evolution of the quantity performance indicator pairection of trading
(QUAN_PERFIT,GR, QUAN_PERFGR,IT) and in total (QUARERF), for
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cross-border trade among Italy & Greece, whenpiskisions are considered
(%)

10. Average trader’s revenue margin with risk provisiqREV_MARGIT,GR,
REV_MARG'GR,IT) compared to this without risk provisions
(REV_MARGIT,GR, REV_MARGGR,IT), per direction ofade, for cross-
border trade among Italy & Greece (Euro/MWh)

11.Average trader’s revenue margin with risk provisio(REV_MARG)
compared to this without risk provisions (REV_MARf®8} cross-border trade

among ltaly & Greece (Euro/MWh)

12.Average trader’'s revenue margin with risk provisigiREV_MARG), per
different forecasting error of the Unit Commitmenbdel, for cross-border
trade among Italy & Greece (Euro/MWh)
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Highlights

* integration of Unit-Commitment problem with ANN based models,

* clustering of the data to identifying periods with increased certainty on the day-ahead electricity
price forecasting

* identification of periods with high price margins for electricity trade

e provision of price signals on the profitability of traders and

e provision of useful insights into the risk of traders



