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This paper studies the effects of learning and risk aversion on generation company (GenCo) bidding
behavior in an oligopolistic electricity market. To this end, a flexible agent-based simulation model is
developed in which GenCo agents bid prices in each period. Taking transmission grid constraints into
account, the ISO solves a DC-OPF problem to determine locational prices and dispatch quantities. Our
simulations show how, due to competition and learning, the change in the risk aversion level of even
one GenCo can have a significant impact on all GenCo bids and profits. In particular, some level of risk
aversion is observed to be beneficial to GenCos, whereas excessive risk aversion degrades profits by caus-
ing intense price competition. Our comprehensive study on the effects of Q-learning parameters finds the
level of exploration to have a large impact on the outcome. The results of this paper can help GenCos
develop bidding strategies that consider their rivals’ as well as their own learning behavior and risk aver-
sion levels. Likewise, the results can help regulators in designing market rules that take realistic GenCo
behavior into account.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

In this work, we present a wholesale electricity market simula-
tion with learning agents. The agents are power generation compa-
nies (GenCos) that engage in repetitive hourly pool trading. We are
concerned with how the learning behavior and risk aversion of
competing GenCos will shape GenCo bid prices and profit levels.

Electricity markets are oligopolies, and electricity demand is
often considered inelastic in the short term with respect to price.
In addition, transmission line constraints, and the relative locations
of electricity demand and supply can provide market power to
individual GenCos. Due to all these reasons, GenCos can bid above
their marginal costs and obtain positive profit. This possibility, and
the importance of the power sector for the economy has triggered a
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Nomenclature

Indices
i; k; l GenCos or nodes
j bids
t simulation iterations

Sets
BR set of transmission lines
Bi set of available bids of GenCo-i
Hij history of all realized profits for submitting bid price

alternative bij

Parameters
n number of nodes in the network
Pmax
i the maximum generation capacity of GenCo-i (MW)

Ci production cost of GenCo-i ($/MW h)
Dk power demand at node-k (MW)
Fmax
kl thermal limit for real power flow on line kl

ykl negative of the susceptance value for line kl
bi risk aversion level of GenCo-i
ait recency rate of GenCo-i at iteration t
ai0 initial recency rate of GenCo-i
�it exploration parameter of GenCo-i at iteration t
�i0 initial exploration parameter of GenCo-i

maxt number of iterations

Variables
Hi voltage angle at node-i (radians)
LMPi locational marginal price at node-i ($/MW h)
Pi power injected by GenCo-i (MW)
bij jth bid price alternative of GenCo-i ($/MW h)
bi simplified notation for bij ($/MW h)
b�i the best identified bid price of GenCo-i ($/MW h)
bi average bid price submitted by GenCo-i over iterations

($/MW h)
rij realized profit of GenCo-i for submitting bij ($)
ri simplified notation for rij ($)
r�i profit of the best identified bid price of GenCo-i ($)
ri average realized profit of GenCo-i over iterations ($)
Qij Q-value of GenCo-i for submitting bij ($)
Qr

ij risk-modified Q-value ($)
Qi average Q-value of GenCo-i over different scenarios ($)
CPi cumulative profit of GenCo-i ($)
CPi average cumulative profit of GenCo-i over different sce-

narios ($)
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wave of research into the strategic bidding behavior of GenCos
(see, for example, [1–4]).

In this study, building on [5], we develop a flexible agent-based
simulation model (ABMS) to characterize the evolution of a
dynamic electricity market under transmission grid constraints.
ABMSmodels have gained popularity in electricity market research
because they offer advantages over game-theoretical models such
as the ability to model heterogeneous players and observe the
dynamic evolution of the market. The distinction of our ABMS
model is that it considers both the learning behavior and risk aver-
sion of GenCos.

In practice, GenCos often make bid decisions without proper
information on the characteristics (such as capacity, cost, and/or
financial situation) and bid history of competing GenCos. There
is, however, also the potential for learning due to the repetitive
nature of trading as GenCos interact with each other every day
and gain experience. Due to learning and adaptation, GenCos can
be expected to exhibit time-variant bidding policies. While learn-
ing individually, through its bids, each GenCo also has an impact
on all the prices and dispatch quantities in the market. In this
study, we are interested in observing how the collective learning
of the GenCos will change the market. For example, will a GenCo
discover its strategic advantage, such as low cost or a favorable
position in the network, and learn over time to take advantage of
it? We model GenCo learning using the Q-learning approach. In
particular, we extend the learning model of [5,6] by considering
time-dependent learning model parameters, similar to [7].

The literature that addresses GenCo behavior generally assumes
risk-neutral decision makers whose objective is to maximize only
the expected profit. In reality, however, GenCos may act risk-
averse because they are exposed to increased levels of risk due to
fluctuations in hourly prices and dispatched power quantities. To
study the effects of risk aversion, we adopt a model in which risk
is captured through the variance of past realized profits.

The major contributions of this paper can be summarized as fol-
lows: First, this is the first ABMS paper that studies the joint effects
of learning behavior and risk aversion on GenCo bid prices and
profits. Second, we present a flexible simulation model that can
characterize the evolution of a dynamic electricity market under
transmission constraints and time-dependent learning parameters.
Third, we show that a certain level of risk aversion can improve
GenCos’ profits, whereas excessive risk aversion decreases profits
due to intense price competition. Finally, we present a comprehen-
sive study on the effects of Q-learning parameters, in which we
find the level of exploration to have a large impact on results.

The remainder of the paper is organized as follows: In Section 2
we summarize the related literature. In Section 3, we present the
model with risk-neutral GenCos, discussing the network and mar-
ket structures as well as our learning model. In Section 4, we illus-
trate the learning model and simulation algorithm through two
case studies. In Sections 5 and 6, we discuss the model with risk-
averse GenCos and the related simulation study, respectively. Sec-
tion 7 presents the simulation study regarding the effects of Q-
learning parameters. Finally, we discuss the implications of our
results in Section 8, and conclude in Section 9.

2. Literature survey

Ventosa et al. [8] provide a review of electricity market model-
ing approaches, classifying the literature into optimization, equi-
librium and simulation models. Among these, game-theoretical
models aim to characterize the equilibrium when players compete
in quantity (Cournot competition [9]), in price (Bertrand competi-
tion [10]), or by submitting supply functions (supply function equi-
librium [2,11]). There are also the more general conjectural
variation type models [12–14].

Game-theoretical models have been extensively used because
they offer insights into the strategic behavior of players and allow
an easy derivation of equilibrium results. However, they are too
stylized to reflect the realities of complex electricity markets [1].
Almost all game-theoretical models assume players to be rational,
which often does not hold in practice, and implicitly assume GenCo
behavior not to change over time. In addition, transmission grid
constraints are ignored in most game-theoretic electricity market
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studies [2,15,16], despite the fact that physical network character-
istics can lead to important differences in results [17].

Due to these shortcomings of game-theoretical models, Agent-
Based Modeling and Simulation has become a popular choice in
the modeling of electricity markets [18–21]. ABMS offers a flexible
computational approach to model GenCo agents that are heteroge-
neous in parameters such as generation cost and capacity, location
in the network, and possessed information. Moreover, ABMS
imposes minimal information requirements and avoids the multi-
ple equilibrium issues of the game-theoretical models. ABMS
allows the modeling of the two-way interaction between agents
and the market. The evolution of the resulting models can be
observed in detail, even for dynamic systems that are not in equi-
librium. Agent-based approach also assists in modeling learning
and adaptation in a dynamic environment.

In the ABMS electricity market literature, different types of rein-
forcement learning methods have been used to simulate the intel-
ligence of the players [21]. The most popular of these include Erev-
Roth reinforcement learning [22], Q-learning [23], and the tempo-
ral difference algorithm [24]. In [25,26], modified versions of the
Erev-Roth reinforcement approach has been applied to electricity
markets.

Q-learning is a model-free and state-dependent algorithm that
was originally designed to be used with a Markov Decision Process.
Q-learning algorithms have been extensively used in many appli-
cations such as industrial control, time sequence prediction and
robot soccer competition [27]. In [28], GenCos learn through a Q-
learning algorithm, yet when bidding for capacity, they also con-
sider their competitors’ actions through a conjectural-variation
based strategy. In [29], the effect of market power mitigation
strategies is analyzed through an agent-based study with Q-
learning. In the current paper, we apply the Q-learning model used
in [7], which extends the learning model of [5] by considering
time-decaying parameters. The use of time-decaying parameters
is akin to the Metropolis criterion in simulated annealing (i.e.,
the SA-Q-learning algorithm in [30,28]). Similar to [6], we assume
a state-independent version of the method in which Q-values are
expressed as functions of actions only.

Dahlgren et al. [31] provide an early review of risk assessment
methods in energy trading. In [32], the contract quantity determi-
nation problem is considered under uncertain generation and
imbalance prices. A number of researchers have formulated
stochastic programming models to develop bidding strategies
under supply and price risks [33–36]. Zheng et al. [37] provide a
recent review of the stochastic optimization literature that address
the unit commitment problem. GenCos’ self-scheduling problem is
also widely studied [38–44].

The aforementioned papers assume price-taking GenCos oper-
ating under perfect competition. Ventosa et al. [8]’s survey cites
[45] as the only work that addresses the risk management problem
of GenCos under imperfect competition, in which case GenCos
become price-makers. In [45], a Monte Carlo simulation model is
developed to capture hydro production and demand risks in elec-
tricity markets under Cournot competition. The authors use risk
measures such as value-at-risk (VaR) and profit-at-risk (PaR). In
[46], similar to our study, a competitive market with network con-
straints is considered. The authors solve a bi-level optimization
problem in which competing GenCos submit linear supply func-
tions at the first stage, and the ISO determines the dispatch at
the second stage. In [47], both pool and bilateral-contract struc-
tures are analyzed. In [48], the integrated risk management prob-
lem of a hydrothermal GenCo in an oligopolistic market is
considered. The risk exposure due to fuel price, water inflow, elec-
tricity price and power demand uncertainties are represented by
the conditional value-at-risk (CVaR) approach. In [49], bidding
strategies for a single price-taker hydro GenCo are studied. Uncer-
tainty about competitor GenCo offers are represented through the
residual demand curve. In [50], the effect of risk aversion and for-
ward markets on capacity expansion and forward hedging deci-
sions of GenCos are analyzed. Similar to our work, these authors
observe that due to competition, GenCos in a Cournot duopoly
may obtain higher expected profits as they become more risk
averse. A similar observation is made in [51] regarding the invest-
ment decisions of natural gas suppliers in an oligopolistic gas
market.

Another stream of risk-related papers are those that address the
generation portfolio selection problem of a single GenCo. For
instance, [52] presents a stochastic programming model for the
integrated portfolio selection and scheduling problem of a risk-
averse hydro producer. In [53], a Monte-Carlo simulation tool is
developed to optimize a power portfolio composed of physical
and financial assets. In [54], a detailed production model with nat-
ural gas, wind and cascaded hydro units is considered. Using agent-
based simulation and Monte Carlo approaches, [55] discusses the
effect of risk aversion on power plant investment decisions. In
[56], a Monte Carlo simulation is developed for assessment of
low-carbon power plant proposals.

As discussed in the paragraphs above, the learning behavior and
risk attitude of GenCos have been separately studied in the litera-
ture. Yet, their joint effect has not so far been investigated, which
presents a gap in the literature. We are aware of only two pieces
of work that address both learning behavior and risk attitudes;
however, their model structures as well as definitions of learning
and risk are different from our work. Liu and Wu [57] present a
stochastic optimal control mechanism in an oligopolistic market
in which GenCos engage in Cournot competition. The adaptation
mechanism in this model is somewhat similar to the learning in
our model. The [57] model, however, ignores the bidding and price
formation details in the market, and the network physical struc-
ture. Rahimiyan and Mashhadi [58] consider both Q-learning (a
fuzzy version) and risk attitude of GenCos. However, different from
our model and the literature in general, GenCo risk attitude is char-
acterized as a combination of certain Q-learning parameter values,
without using a separate risk component in the model.
3. Model with risk-neutral GenCos

In this section, we assume risk-neutral GenCos that aim to max-
imize expected profit. We first discuss the network representation
and market structure in the framework of our study. Then, we pro-
vide the details of the GenCo learning model.

3.1. The network and market structure

We consider only the day-ahead market, ignoring the futures
markets and real-time markets. The market is an oligopoly with
a relatively small number of GenCos each having a single produc-
tion unit. All parameters related to GenCos, including demand,
capacity and costs, are steady. Line or generation outages are
ignored.

The physical transmission grid is represented using a network
in which nodes correspond to GenCos and arcs correspond to
transmission lines between GenCos. The GenCo that connects to
the system at node-i is referred to as GenCo-i. GenCo-i has gener-
ation capacity Pmax

i > 0 and marginal production cost Ci. Power
demand (load) in node-i;Di, is assumed to be constant and price-
inelastic. The transmission line between nodes k and l has capacity
Fmax
kl and susceptance �ykl.
For every period, corresponding to an hour in the day-ahead

market, each GenCo submits a bid composed of a power quantity
and price:
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� Bid quantity: The GenCo is assumed to bid all its production
capacity, without capacity withholding. This assumption
implies that systems with storage capacity are ignored.
� Bid price: The GenCo chooses a bid price bi ($/MW h) among
the exogenously-given bid price alternatives ðbij 2 BiÞ. The bid
price alternatives range from the GenCo’s marginal production
cost Ci to a given price cap in the market.

The information set of each GenCo-i consists of the history Hij of
its own realized profit values for each bid price alternative bij. The
GenCo has no information about the generation capacity, marginal
cost, bid prices or profits of other GenCos, or the total number of
GenCos in the system.

The market is run by the Independent System Operator (ISO),
which collects the bids and clears the market. For each period,
the ISO solves the following DC-OPF problem as an approximation
to the underlying AC-OPF problem. Note that AC-OPF problems are
typically approximated by the more tractable DC-OPF problems
that consider linearized power constraints [59].

min
Xn
i¼1

biPi ð1Þ

subject to Pk � Dk ¼
X
ðk;lÞ2BR

ykl hk � hlð Þ; 8k 2 f1; . . . ; ng; ð2Þ

Pi 6 Pmax
i ; 8i 2 f1; . . . ;ng; ð3Þ

jykl hk � hlð Þj 6 Fmax
kl ; 8ðk; lÞ 2 BR: ð4Þ

The objective (1) is to minimize the system-wide cost of power
supply. Constraint (2) allows the surplus power in each node to
flow via the transmission lines to the connected nodes. Constraint
(3) is the generation capacity constraint of each GenCo. Constraint
(4) is the power flow constraint on each transmission line. The
problem (1)–(4) is a linear optimization problem as we assume a
DC representation of the transmission network.

By solving the problem, the ISO determines the power Pi to be
dispatched by each GenCo-i, the voltage angle hi at each node-i,
and the Locational Marginal Price LMPi at each node-i, which is
the shadow price for Constraint (2). LMP at a node corresponds
to the minimum cost of fulfilling the demand for an additional unit
(MW) of power at that particular node. Based on the solution, each
GenCo is paid the LMP at its location node multiplied by its power
dispatch. Thus, the profit rij of GenCo-i from bidding price bij at a
particular period becomes

rij ¼ PiðLMPi � CiÞ: ð5Þ
Note that because Pi and LMPi values are determined as a function
of all bids submitted to the ISO, each GenCo’s profit is affected by
the bid price choices of all GenCos. We refer to GenCo-i’s profit sim-
ply by ri when the particular bid price bij that resulted in the profit
is not relevant for the discussion.

3.2. The learning model

To model the learning behavior of GenCos, we use the modified
Q-learning algorithm of [7] in which each GenCo (agent) experi-
ments with bid price alternatives and learns through experience.
GenCo-i keeps a set Hij of past realized profits from bidding the
price alternative bij. This includes the zero profit realizations due
to rejected bids. For each price alternative bij, the GenCo calculates
the Q-value Qij which denotes the weighted average of past real-
ized profits from bidding bij. Qij captures the expected profit
GenCo-i believes to obtain by bidding this price in the subsequent
period.

When GenCo-i bids price bij and obtains the profit rij in a partic-
ular period, the relevant Q-value is updated as
Qij ¼ ð1� aitÞQij þ aitrij: ð6Þ
The history set is also updated as Hij  Hij [ rij. The other bid

price alternatives’ Q-values are unchanged. In this equation, the
recency rate ait determines the weight given to the most recent
profit observation. If ait ¼ 1, the last obtained profit (rij) becomes
the Q-value. In this case, the agent uses only the last period infor-
mation for that price alternative, ignoring history. At the other
extreme, if ait ¼ 0, the Q-value will not be updated. To facilitate
convergence, we assume ait to start at ai0, and decay linearly over
periods to ai0=10 according to the equation
ait ¼ ð1� t=maxtÞðai0Þ þ ðai0=10Þðt=maxtÞ, where maxt is the num-
ber of periods. We have also studied the case of exponentially
decaying ait and found no significant difference in results.

The bid price alternative that maximizes the expected profit in a
particular period is labeled as the GenCo’s best identified bid price.
Note that the best identified bid price values are by definition
time-dependent. We ignore their time index because the meaning
will be clear from the context.

b�i ¼ Max
bij

Q ij: ð7Þ

In choosing its bid price, the GenCo uses an �-greedy action
selection rule [60], which is characterized by the exploration
parameter �: In each period, GenCo-i submits its best identified
bid price b�i with probability 1� �it . With probability �it , the GenCo
submits a randomly chosen price bij from its set of bid price alter-
natives. Each alternative has an equal probability of being chosen.
This randomization helps the GenCo in assessing the performance
of different bid price alternatives. The approach aims to strike a
balance between exploitation of the best identified bid price and
exploration of possibly better bid prices. A high exploration param-
eter �would cause the GenCo to search for better bid prices most of
the time, slowing learning. A low �, on the other hand, may lead to
local optimum solutions by causing the GenCo to stick prematurely
to a particular b�i .

We use a time-decaying exploration parameter. This approach,
which is similar to [30], is different from most works in the litera-
ture, in which � is fixed (e.g., [6]). Starting from a relatively high
initial value of �i0, the parameter decreases over time towards zero
according to the equation �it ¼ maxf0; �i0 þ 8tð�i0 � 1Þ=maxtg.
Hence, exploration is favored in the initial periods. Over the course
of the simulation, GenCo’s experience about the profitability of dif-
ferent bid price alternatives builds up, decreasing the need for
exploration. Thus, the GenCo is more likely to exploit its experi-
ence by submitting its b�i . Because � decreases over time to zero,
the GenCo’s bid price choice will converge to an alternative that
hopefully maximizes its Q function.

The aforementioned learning model captures the dynamics of a
GenCo’s bidding behavior over time. We refer to a GenCo that bids
to maximize its utility and is subject to learning through this
model as a learning GenCo. Note that in the model, the GenCo does
not take any strategic action, that is, the GenCo does not consider
the actions of other GenCos explicitly in its decision process. In
fact, it does not have information on other GenCos. The GenCo is
modeled as a simple agent that learns only from its own experi-
ence. GenCos’ collective behavior, however, may lead to strategic
outcomes.
4. Simulation study with risk-neutral GenCos

A simulation run in our study consists of maxt iterations. Each
iteration corresponds to the settlement of an hourly auction (one
period) in the day ahead market. In each iteration, GenCos simulta-
neously bid prices bi to the ISO. The ISO then solves the DC-OPF



Table 1
Transmission line parameters in Case 1.

k/l ykl Fmax
kl ðMWÞ

f1=2;1=3;2=4;3=4;4=5g 4 No limit
2/5 4 100

Table 2
GenCo parameters in Case 1.

ID Pmax
i ðMWÞ Ci ($/MW h) Bi ($/MW h)

1 300 20 f20;30;40;50g
2 300 20 f20g
5 250 30 f30;40;50g

Table 3
Profits ðr1; r5Þ obtained from possible bid price profiles ðb1; b5Þ in Case 1.

b5

b1 30 40 50

20 (428.57, 0) (857.14, 1214.29) (1285.71, 2428.57)
30 (0, 0) (416.67, 1583.33) (416.67, 3166.67)
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problem given in (1)–(4) to determine the power Pi to be dis-
patched by each GenCo-i, and the nodal price LMPi at each node.

At the beginning of the simulation, the following variables are
initialized as t ¼ 1;Qij ¼ 0;Hij ¼£, whereas ai0 and �i0 are set to
their initial values. One simulation run with 2000 iterations takes
less than two seconds on an Intel Core i7 @ 3.2 GHz computer with
24 GB RAM. To obtain robust results, we report the average result
over a number of simulation runs, each having a different random
number seed. This is similar to the literature [15]. The random
numbers are used for simulating the �-greedy action selection rule
of each GenCo in each iteration: First, in determining whether the
GenCo submits its best identified bid price, and if this price is not
to be submitted, in determining the bid price to submit among the
alternatives.

To illustrate our learning model and simulation algorithm, we
use two case studies that are based on [6]. In both case studies,
we consider the five-node transmission grid presented in Fig. 1.
This network topology, which follows from [5], is inspired by the
real Pennsylvania-NewJersey-Maryland (PJM) five node power sys-
tem. The (negative) susceptance and the maximum flow values of
the transmission lines are summarized in Table 1. Node-3 is the
reference bus in this system.
40 (0, 0) (0, 2000) (833.33, 3166.67)
50 (0, 0) (0, 2000) (0, 4000)
4.1. Case 1: Two learning GenCos and a unique Nash equilibrium

In this case, GenCo-1 and GenCo-5 are the learning GenCos,
both having �i0 ¼ 0:9 and ai0 ¼ 0:1. Other GenCo parameters are
summarized in Table 2. We report results from a single sample
simulation run that has 300 iterations.

Table 3 shows the profits resulting from each possible bid price
profile ðb1; b5Þ for the learning GenCos. The highlighted profile (20,
50) is the only pure strategy Nash equilibrium of the stage game.
This profile also happens to provide the maximum total profit for
GenCos. Fig. 2 illustrates the evolution of Q-values for each bid
price alternative during the simulation. We observe that the two
learning GenCos eventually reach the Nash equilibrium with bids
ðb1 ¼ 20 and b5 ¼ 50Þ. The graph for GenCo-5 shows that it takes
some iterations to learn to bid $50=MW h.
4.2. Case 2: Three learning GenCos and multiple Nash equilibria

In this case, GenCo-2 in Case 1 also becomes a learning GenCo,
and its bid price alternatives are extended from f20g to
f20;30;40;50g. With this new setting, as seen in the profit values
of Table 4, the stage game has two Nash equilibria as f20;40;50g
and f30;50;50g. The initial Q-learning parameters are �i0 ¼ 0:85
and ai0 ¼ 0:15 for all GenCos.

We aim to observe where the simulations will converge. To this
end, 10,000 simulation runs are conducted, each having 2000 iter-
ations. Overall, we observe most simulation runs to converge to
Fig. 1. The transmission grid in case studies.
either one of the two Nash equilibria, or a state that provides a sim-
ilar profit profile to a Nash equilibria. In fact, 65:6% of the runs con-
verge to the Nash equilibrium f20;40;50g and 6:25% converge to
the Nash equilibrium f30;50;50g. Compared to the latter, the for-
mer equilibrium provides higher social welfare, i.e., lower cost of
power as measured by the DC-OPF objective function value, and
a more equitable profit distribution among GenCos.

The simulation runs also converge to state f30;40;50g with
probability 25% and to f40;50;50g with probability 3:12%. These
Non-Nash states provide an identical profit profile to one of the
Nash equilibria. Such states are referred to as semi-Nash by [7].
Apparently, in search of better profits, the Q-learning behavior of
GenCos can make the market converge to even a non-Nash state
if this state provides reasonable profits.

5. Model with risk-averse GenCos

Here, we present a model with risk averse GenCos, which
encompasses the risk-neutral model of Section 3 as a special case.
In this risk-averse model, the utility of bid price alternative bij to
GenCo-i is increasing in its Q-value Qij, and decreasing in the stan-
dard deviation of past realized profits from this alternative, which
are recorded in the set Hij. Accordingly, GenCo-i’s best identified
bid price is determined using the risk-modified Qr-values as

b�i ¼ Max
bij

Qr
ij ð8Þ

where Qr
ij ¼ ð1� biÞQij � bi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
rij2Hij
ðrij � QijÞ2
jHijj � 1

vuut
: ð9Þ

Parameter b 2 f0;1g denotes the risk aversion level of the GenCo
where b ¼ 0 corresponds to the risk-neutral case and higher b val-
ues correspond to more risk-aversion. Q-values are updated similar
to the risk-neutral model, based on realized profits as given in Eq.
(6).

6. Simulation study with risk-averse GenCos

To address risk aversion, two modifications are made in the
simulation algorithm. First, b�i is now determined based on the



Fig. 2. Q-value evolutions for GenCo-1 and GenCo-5 in Case 1.

Table 4
Profits fr1; r2; r5g of bid profiles fb1; b2 ; b5g in Case 2 where Rows: B1, Columns: B2 and separated tables: B5.

20 30 40 50

b5 = 30

20 (428.57, 0, 0) (3000, 785.71, 0) (3000, 0, 0) (3000, 0, 0)
30 (0, 3000, 0) (0, 3000, 0) (2500, 0, 0) (2500, 0, 0)
40 (0, 3000, 0) (0, 3000, 0) (0, 5000, 2500) (5000, 0, 2500)
50 (0, 3000, 0) (0, 3000, 0) (0, 5000, 2500) (0, 7500, 5000)

b5 = 40

20 (857.14, 0, 1214.29) (3428.57, 785.71, 1214.29) (6000, 1571.43, 1214.29) (6000, 0, 2000)
30 (416.67, 2500, 1583.33) (3428.57, 785.71, 1214.29) (6000, 1571.43, 1214.29) (6000, 0, 2000)
40 (0, 6000, 2000) (0, 6000, 2000) (0, 6000, 2000) (5000, 0, 2500)
50 (0, 6000, 2000) (0, 6000, 2000) (0, 6000, 2000) (0, 7500, 5000)

b5 = 50

20 (1285.71, 0, 2428.57) (3857.14, 785.71, 2428.57) (6428.57, 1571.43, 2428.57) (9000, 0, 4000)
30 (416.67, 2000, 3166.67) (3857.14, 785.71, 2428.57) (6428.57, 1571.43, 2428.57) (9000, 2357.14, 2428.57)
40 (833.33, 5500, 3166.67) (833.33, 5500, 3166.67) (6428.57, 1571.43, 2428.57) (9000, 2357.14, 2428.57)
50 (0, 9000, 4000) (0, 9000, 4000) (0, 9000, 4000) (0, 9000, 4000)
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risk-modified Qr-values as shown in Eq. (8). Second, the variance
component of Eq. (8) is ignored in the initial half of the iterations
because there may be too few observations to support the required
variance calculations.

We study the effects of risk aversion on GenCos’ bid prices and
profits using a new case study, Case 3. The grid structure and Gen-
Cos’ parameters for this case are presented in Fig. 3 and Table 5,
respectively. This structure provides GenCo-3 advantage due to
zero generation cost, whereas GenCo-4 is at an unfavorable posi-
tion with a relatively high generation cost. All reported results
are averages over 30 random runs each having 2000 iterations.
The initial Q-learning parameters are �i0 ¼ 0:85 and ai0 ¼ 0:15 for
all GenCos.
6.1. Identical risk aversion level

Here, we assume all three GenCos to have the same b. We ini-
tially focus on the picture at the end of the simulation. Fig. 4(a)
provides the b�i value at iteration 2000 for each GenCo, averaged



Fig. 3. Transmission grid in Case 3.

Table 5
GenCo parameters in Case 3.

ID Pmax
i (MW) Ci ($/MW h) Bi ($/MW h)

2 1200 10 f10;20;30;40g
3 800 0 f9;18;20g
4 1000 15 f15;25;35;45g
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over 30 runs, as a function of the identical b. Fig. 4(b) presents the
corresponding profit values.

We observe b�3 and b�4 to be quite stable for different risk aver-
sion levels. GenCo-3 mostly bids 9. It ventures into bidding 18 only
for relatively small b values. GenCo-4 bids its maximum price of 45
for any b value except zero. GenCo-2, on the other hand, responds
to different levels of risk aversion. In fact, the profit results
observed in Fig. 4(a) are driven by the changes in b�2. As b increases
from 0:00 to around 0:38; b�2 increases. When risk-neutral, GenCo-2
usually bids 20, but as it becomes risk-averse, this GenCo tries
higher bid prices such as 30 or 40 more frequently. These higher
bid prices lead to higher profits not only for GenCo-2 itself, but also
for its competitor GenCo-3 as well. In fact, both GenCos’ individual
profits, and also the total profit of all GenCos are maximized at
b ¼ 0:38. Thus, some level of risk aversion in the market could ben-
efit all GenCos.

After reaching a maximum around b ¼ 0:38; b�2 decreases for
higher risk aversion levels. In fact, for b 2 ½0:74;0:82�, GenCo-2
Fig. 4. End-of-simulation results. (a) The
becomes excessively concerned about the variability in profits
and bids its marginal cost 10 more frequently. For even higher b
values, GenCo-2 only bids 10, resulting in zero profits. Such low
bids by GenCo-2 causes a significant reduction in the profit of com-
petitor GenCo-3 as well. For sufficiently high b values, both GenCo-
2 and GenCo-3 submit their marginal generation costs to minimize
the variability in their profits. GenCo-4, meanwhile, is observed to
obtain zero profit at the end of the simulation independent of b.

We have discussed the end-of-simulation results when each
GenCo-i bids its b�i as of iteration 2000. While these converged
results are of interest, they do not necessarily represent what has
happened throughout the simulation, especially during the initial
iterations in which most of the learning takes place. Figs. 5(a)
and (b) provide the average results over all 2000 iterations, again
averaged over 30 runs. A comparison between Figs. 4 and 5 illus-
trate the effects of GenCo learning and competition over time.

The similarities in shapes indicate strong convergence in bid
prices. The differences in bid prices point to changes in bidding
behavior over time. In particular, the effect of risk aversion on b�2
becomes sharper over iterations. GenCo-3 bids higher prices than
9, and GenCo-4 bids lower prices than 45 throughout the itera-
tions. Accordingly, GenCos’ profits converge to more extreme levels
at the end of the simulation. For b < 0:74, the competing GenCos,
GenCo-2 and GenCo-3, achieve higher profits at the end of the sim-
ulation than they do in the initial iterations. For higher b values,
however, extreme risk aversion of GenCo-2 causes a reduction in
both GenCos’ profits. Meanwhile, as expected, GenCo-4’s profits
converge to zero over iterations. All these observations underscore
the importance of risk aversion on GenCos’ bidding behavior and
resulting profit levels in an environment shaped by dynamic learn-
ing and competition.

Fig. 6 presents the corresponding DC-OPF optimal value,
P

biPi

and the total payment to GenCos,
PðLMPi � PiÞ. Comparing the

end-of-simulation and simulation-average results, we make the
following two observations:

� DC-OPF optimal value: For almost all b, the end-of-simulation
DC-OPF optimal value is lower than the simulation-average
value. Hence, the ISO’s auction mechanism seems to be success-
ful in driving GenCos’ bid prices down throughout the
simulation.
� Total payment to GenCos: For b < 0:45, the total payment to
GenCos, hence, their total profit is higher at the end of the sim-
ulation than the simulation-average payment. When the Gen-
Cos are not very risk-averse, they collectively learn to obtain
better profits over time. For b > 0:45, however, the observation
is reversed; risk-averse behavior of GenCo-2 causes a reduction
in total GenCo profits. This reduction is especially acute for
b > 0:74.
best identified bid prices. (b) Profits.



Fig. 5. Simulation averages. (a) The best identified bid prices. (b) Profits.

Fig. 6. DC-OPF optimal value and total payments to GenCos. (Presenting both end-of-simulation and simulation-average results.)
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This analysis sheds light onto the effect of risk aversion level on
GenCo bids and profits. Overall, while some level of risk aversion
can be beneficial to GenCos’ total profits, high levels of risk aversion
is observed to degrade profits due to extreme price competition.
6.2. Differing risk aversion levels

Here, we analyze the effects of changes in the b values of indi-
vidual GenCos, focusing initially on GenCo-2. Fig. 7 presents the
average profits and bid prices of each GenCo in a separate column,
as a function of b2 (in the y axis) and b3 ¼ b4 (in the x axis) over the
whole simulation. If b2 increases, while keeping b3 ¼ b4 constant,
GenCo-2’s profit decreases. This is expected as this GenCo now bids
lower prices. Interestingly, GenCo-3’s profit also decreases due to
increased competition. GenCo-4’s average profit, too, is generally
reduced. The only exception with GenCo-4 occurs for very high
b2 values, in which GenCo-2 bids its minimum price 10 most fre-
quently. In this case, GenCo-4 has a chance to make some profit
only if b4 is relatively low. Fig. 8 presents the end-of-simulation
version of the same analysis.

Next, we investigate the effects of a simultaneous increase in
b3 ¼ b4, while keeping b2 fixed, for example, at zero. When GenCos
3 and 4 become more risk-averse, they might be expected to
reduce their bid prices, leading to a decrease in GenCo-2’s profit.
Our simulation results, however, suggest the opposite. As b3 and
b4 increase, we observe GenCo-2 to increase its bid price, leading
to an increase in its profit. The key to understanding this counter-
intuitive result is GenCo-4’s behavior, who simply bids its highest
price alternative 45. For this price, GenCo-4 is assigned no dis-
patch. If GenCo-4 bids one of the lower prices, there is a slight
chance that it will be assigned some dispatch and earn some profit.
When this happens, however, the variability in profit also increases
which is not desirable from a risk-aversion point of view.

Fig. 9 illustrates the average profit and bid price of each GenCo-i
(in a separate column) over the simulation as a function of its own
bi (in the y axis) and the other GenCos’ b values (in the x axis). The
leftmost column is the same as that of Fig. 7. From the middle col-
umn, for example, we observe that rather than its own b3, GenCo-
3’s profit depends mostly on the risk aversion levels of the other
GenCos, particularly that of GenCo-2. GenCo-3 sticks to the advan-
tageous bid price of 9 unless b3 is very low. Given this b3, GenCo-3’s
profit becomes a function of b2, which decreases if b2 increases.
Note the emergence of b ¼ 0:38 as a critical value again in this
graph. GenCo-3 profits, in particular, are maximized when b2 and
b4 are around 0.38. GenCo-4 makes a much lower profit compared
to GenCos 2 and 3. GenCo-4’s profit is maximized when b4 is at
intermediate values, while the other two GenCos’ risk aversion
levels are low, and consequently they do not engage in intense
price competition.

Fig. 10 presents the end-of-simulation versions of these graphs.
Compared to the simulation-average values, we observe GenCo-2
and GenCo-3’s profits to be higher. GenCo-4’s end-of-simulation
profit, meanwhile, converges to zero independent of b4.
6.3. Learning dynamics

Here, we drill further into the detailed workings of the learning
model during the simulation. Fig. 11 presents how the three Gen-



Fig. 7. Profits and bid prices as a function of b2 vs. b3 ¼ b4, simulation average.

Fig. 8. Profits and bid prices as a function of b2 vs. b3 ¼ b4, end of simulation.

Fig. 9. Profits and bid prices as a function of risk aversion levels, simulation average.

Fig. 10. Profits and bid prices as a function of risk aversion levels, end of simulation.
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Cos’ Qr-values, hence the best identified bid prices, change over
iterations for a given risk profile ðb2; b3; b4Þ. The graphs on left pre-
sent the case of the risk profile ð0;0;0Þ, corresponding to the bot-
tom left corner of the relevant graph in Fig. 8. The graphs on
right present the case of the risk profile ð0;1;1Þ. Recall that our
model ignores the effect of risk during the first half of the itera-
tions; the risk model kicks in after iteration 1000.

When all GenCos are risk-neutral (Fig. 11(a)), we observe b�2 and
b�3 to take some time to converge, due possibly to the tight compe-
tition between GenCos 2 and 3. Once the equilibrium between



Fig. 11. Qr-value evolutions. (a) Risk profile ð0;0;0Þ. (b) Risk profile ð0;1;1Þ.
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these two GenCos with b�2 ¼ 20 and b�3 ¼ 9 is reached, GenCo-4’s
bids become irrelevant as this GenCo is driven out of the market.

When GenCo-2 is risk-neutral but GenCos 3 and 4 are extremely
risk-averse (Fig. 11(b)), b�2 changes from 20 to 30 once risk aversion
kicks in at iteration 1000. For GenCo-3, the price 9 arises as b�3. Bid-
ding 9 brings in a decent profit to GenCo-3 while not having the
profit variability disadvantage of the higher bid prices.

This discussion illustrates how the learning, risk aversion and
competition components of our model interact with each other.
7. Effects of the Q-learning parameters

Here, we study the effects of the initial values, �i0 and ai0, of the
time-decaying Q-learning parameters, �it and ait , on GenCo profits.
A comprehensive simulation study is conducted using the network
structure of Case 3. In all simulation runs 2000 iterations are
conducted.
Fig. 12. Qi (first row) and CPi (second row
We report the results from the perspective of one GenCo at a
time (the GenCo-i), which is assumed to be risk neutral. For this
GenCo, we consider 21� 21 ¼ 441 parameter combinations of
ð�i0;ai0Þ, in which each of the two parameters range between 0
and 1 with an increment size of 0.05.

For a given ð�i0;ai0Þ combination, we speak of different scenarios
characterizing the parameters of the other two GenCos (GenCo-k
where k– i) which are chosen from the following sets:
�k0 2 f0:2;0:4;0:8g;ak0 2 f0;0:2;0:8g; bk0 2 f0;0:4;0:8g. In each of
the 33 � 33 = 729 considered scenarios, the same stream of random
numbers are used and the results are averaged over 10 runs.
GenCo-i is assumed to have no information about the parameters
of the other GenCos; hence, it believes all scenarios to be equally
likely. Consequently, for each ð�i0;ai0Þ combination of GenCo-i,
the average Q-value ðQiÞ and the average cumulative profit ðCPiÞ
over all 729 scenarios are reported. All in all, this comprehensive
simulation study required the DC-OPF problem to be solved
19,289,340,000 times (3 GenCo-i � 441 combinations � 729 sce-
) for different (ai0; �i0) combinations.
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narios � 10 runs � 2000 iterations). The study took around 2000 h
on an Intel Core i7 @ 3.2 GHz computer with 24 GB RAM.

Fig. 12 presents the results (averaged over 729 scenarios) for
each GenCo-i in a separate column. Graphs in the first row illustrate
GenCo-i’s expected profit, that is, the Q-value of the best identified
bid at the end of the simulation, whereas those in the second row
illustrate the cumulative profit (CP) throughout the simulation.
From the figure, we observe ai0 not to have a major impact on profit
results unless its value is very low. Thus, the profits are robust to the
initial value of the recency rate as long as some updating of Q-
values occur. The exploration parameter �i0, on the other hand, is
seen to have a significant impact on profits. The direction of this
impact, however, is ambiguous. For GenCo-2, high �20 lead to better
profits. For GenCo-3, this is true for the end-of-simulation profit, yet
the cumulative profit first increases then decreases with �30. For
GenCo-4, profit is uniformly increasing in �40. Recall that GenCo-4
is at a disadvantageous position compared to the other GenCos.
As suggested in Fig. 12, this GenCo canmaximize its expected profit
by acting as randomly as possible (corresponding to �40 ¼ 1),
thereby disrupting the learning of the two other GenCos.

Next, we compare the end-of-simulation and cumulative profit
values. For GenCos 2 and 4, ð�i0;ai0Þ combinations that yield the
highest expected profit at the end of the simulation (the first row
graphs) are also observed to provide the highest cumulative profit
(the second row graphs). For GenCo-3, on the other hand, we
observe significant differences. This GenCo can identify better
profit opportunities at the end of the simulation by exploring
excessively, however, this comes at the cost of achieving a lower
cumulative profit. Overall, the only parameter that has a major
profit impact at the end of the simulation turn out to be �20. High
values of this parameter is observed to increase the expected profit
of GenCo-2 significantly.
8. Discussion

The academic literature on electricity markets is somewhat
overly concerned with theoretical issues such as convergence to
Nash equilibria [61]. Market participants, meanwhile, need studies
that address the profits and risks associated with realistic GenCo
bidding strategies. In fact, one of the research suggestions in Dahlg-
ren et al. [31]’s survey on risk assessment in energy trading is ‘‘risk
assessment would be more accurate if the bidding behaviors of
market players can be modeled”. This is what we do in the present
study by considering the effects of two behavioral factors on GenCo
bidding and market evolution: learning from experience, and risk
aversion. Our findings imply that one should be cautious in using
static models to investigate dynamic markets such as the day-
ahead electricity market. This is because these models fail to cap-
ture the dynamics of the interaction between competing GenCos
that learn from experience.

We present the first ABMS study to analyze the joint effects of
learning and risk aversion, leading to interesting observations. In
particular, different from the literature, we obtain non-
monotonous results concerning the effect of risk aversion on
profits. As Liu and Wu [57] mention, most studies in GenCo risk
management literature (e.g., [46,62,63]) neglect the market
dynamics by considering known (or fixed) probabilistic distribu-
tions for the price of electricity, demand, or rivals’ behavior. Conse-
quently, these models generally find a monotonous decrease in
profit and the taken risk as GenCos become more risk averse. In
practice, such results may not hold true since the interaction of
learning GenCos can affect the distribution of the aforementioned
factors through time [50,51].

Our results have important regulatory and managerial implica-
tions. Most importantly, simulation models such as our model can
be used in the development of testbeds that are tailored to the
learning behavior and risk aversion levels of GenCos in a particular
electricity market. For instance, a large and established GenCo with
a strong financial status would be modeled as less risk averse than
a small GenCo. Risk aversion levels can be modeled as time-
dependent, to capture the changes in risk attitude due to changing
economic and financial conditions. Likewise, the learning behavior
of GenCos would reflect the overall firm strategy, experience in the
market and capabilities of the firm’s human resources. For exam-
ple, a conservative GenCo would be modeled with a smaller �
parameter value compared to a GenCo that is more open to trying
alternative bid prices.

ISOs may use the aforementioned testbeds to develop market
rules that manipulate GenCo behavior in directions that provide
higher social welfare. Such testbeds would allow an ISO to study
the likely impacts of market rule changes prior to costly real mar-
ket implementation. These studies would be particularly important
in the prevention of tacit collusion among GenCos that can arise
from GenCo learning [29,64,65]. GenCos, too, would benefit from
testbeds, in formulating bidding policies that consider their own
as well as their competitors’ bidding behavior.
9. Conclusions

This study analyzes how learning dynamics and risk aversion
shape GenCo bidding behavior in a competitive electricity market,
using an agent-based simulation model. GenCos are modeled as
agents that bid prices repeatedly for each hour of the day-ahead
market. Learning is modeled through a modified Q-learning algo-
rithm, and risk aversion is captured as aversion to variability in
profits. Given GenCos’ bids, to determine locational marginal prices
and GenCo power dispatches, the ISO solves a DC-OPF problem that
considers the physical network characteristics.

First, considering risk-neutral GenCos, the mechanics of our
learning algorithm is illustrated on two simple case studies. The
simulation runs achieve convergence thanks to time-decaying Q-
learning parameters. In the case of a unique Nash equilibrium,
the simulation easily converges to the equilibrium. In the presence
of multiple equilibria, however, simulation runs converge to either
one of the Nash equilibria, or a state that provides identical profits
to a Nash equilibrium. Thus, the individual learning of GenCos is
observed to drive the market into a reasonable outcome.

When the model is extended to consider risk-averse GenCos,
the results show that some level of risk aversion may indeed be
beneficial for GenCo total profits compared to the risk-neutral case.
On the other hand, high levels of risk aversion are observed to
intensify price competition and degrade profits. The findings illus-
trate how altering the risk aversion level of even one GenCo can
trigger changes in the bidding behavior and profit levels of all Gen-
Cos due to learning and market interaction.

This study can be extended in numerous directions. First and
foremost, one could use other measures of risk such as CVaR. A dif-
ferent learning model might be used, or the Q-learning algorithm
employed in this study may be extended to achieve better perfor-
mance. For instance, a GenCo may improve its profit by considering
changes in the Q-values in addition to the Q-values themselves.
Definitely, the results may depend on the specific risk aversion or
learning method being used, which calls for follow-up studies.
References

[1] David AK, Wen F. Strategic bidding in competitive electricity markets: a
literature survey. Power engineering society summer meeting 2000, vol.
4. IEEE; 2000. p. 2168–73.

[2] Hobbs BF, Metzler CB, Pang JS. Strategic gaming analysis for electric power
systems: an MPEC approach. IEEE Trans Power Syst 2000;15(2):638–45.

http://refhub.elsevier.com/S0306-2619(17)30367-7/h0005
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0005
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0005
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0010
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0010


D. Esmaeili Aliabadi et al. / Applied Energy 195 (2017) 1000–1011 1011
[3] Conejo AJ, Carrión M, Morales JM. Decision making under uncertainty in
electricity markets, vol. 1. Springer; 2010.

[4] Li G, Shi J, Qu X. Modeling methods for GenCo bidding strategy optimization in
the liberalized electricity spot market – a state-of-the-art review. Energy
2011;36(8):4686–700.

[5] Krause T, Andersson G, Ernst D, Vdovina-Beck E, Cherkaoui R, Germond A. Nash
equilibria and reinforcement learning for active decision maker modelling in
power markets. In: Proceedings of the 6th IAEE European conference:
modelling in energy economics and policy. p. 1–6.

[6] Krause T, Beck EV, Cherkaoui R, Germond A, Andersson G, Ernst D. A
comparison of Nash equilibria analysis and agent-based modelling for power
markets. Int J Electr Power Energy Syst 2006;28(9):599–607.

[7] Aliabadi DE, Kaya M, S�ahin G. An agent-based simulation of power generation
company behavior in electricity markets under different market-clearing
mechanisms. Energy Policy 2017;100:191–205.

[8] Ventosa M, Baıllo A, Ramos A, Rivier M. Electricity market modeling trends.
Energy Policy 2005;33(7):897–913.

[9] Ruiz C, Conejo A, García-Bertrand R. Some analytical results pertaining to
Cournot models for short-term electricity markets. Electr Power Syst Res
2008;78(10):1672–8.

[10] Bunn DW, Oliveira FS. Evaluating individual market power in electricity
markets via agent-based simulation. Ann Oper Res 2003;121(1–4):57–77.

[11] Li T, Shahidehpour M. Strategic bidding of transmission-constrained GenCos
with incomplete information. IEEE Trans Power Syst 2005;20(1):437–47.

[12] Day CJ, Hobbs BF, Pang JS. Oligopolistic competition in power networks: a
conjectured supply function approach. IEEE Trans Power Syst 2002;17
(3):597–607.

[13] Díaz CA, Villar J, Campos FA, Reneses J. Electricity market equilibrium based on
conjectural variations. Electr Power Syst Res 2010;80(12):1572–9.

[14] Ruiz C, Conejo AJ, Arcos R. Some analytical results on conjectural variation
models for short-term electricity markets. IET Gener Transm Distrib 2010;4
(2):257–67.

[15] Weidlich A. Engineering interrelated electricity markets: an agent-based
computational approach. Springer Science & Business Media; 2008.

[16] Ruiz C, Kazempour SJ, Conejo AJ. Equilibria in futures and spot electricity
markets. Electr Power Syst Res 2012;84(1):1–9.

[17] Kardakos EG, Simoglou CK, Bakirtzis AG. Optimal bidding strategy in
transmission-constrained electricity markets. Electr Power Syst Res
2014;109:141–9.

[18] Weidlich A, Veit D. A critical survey of agent-based wholesale electricity
market models. Energy Econ 2008;30(4):1728–59.

[19] Bunn DW, Oliveira FS. Agent-based simulation-an application to the new
electricity trading arrangements of England and Wales. IEEE Trans Evol
Comput 2001;5(5):493–503.

[20] Veit DJ, Weidlich A, Krafft JA. An agent-based analysis of the German
electricity market with transmission capacity constraints. Energy Policy
2009;37(10):4132–44.

[21] Li G, Shi J. Agent-based modeling for trading wind power with uncertainty in
the day-ahead wholesale electricity markets of single-sided auctions. Appl
Energy 2012;99:13–22.

[22] Erev I, Roth AE. Predicting how people play games: reinforcement learning in
experimental games with unique, mixed strategy equilibria. Am Econ Rev
1998;88(4):848–81.

[23] Watkins CJ, Dayan P. Q-learning. Mach Learn 1992;8(3–4):279–92.
[24] Sutton RS. Learning to predict by the methods of temporal differences. Mach

Learn 1988;3(1):9–44.
[25] Nicolaisen J, Petrov V, Tesfatsion L. Market power and efficiency in a

computational electricity market with discriminatory double-auction
pricing. IEEE Trans Evol Comput 2001;5(5):504–23.

[26] Li H, Tesfatsion L. Co-learning patterns as emergent market phenomena: an
electricity market illustration. J Econ Behav Org 2012;82(2):395–419.

[27] Sharbafi MA, Azidehak A, Hoshyari M, Babarsad OB, Aliabadi DE, Zareian A,
et al. MRL extended team description 2011. In: Proceedings of the 15th
international RoboCup symposium, Istanbul, Turkey. p. 1–29.

[28] Wang J. Conjectural variation-based bidding strategies with Q-learning in
electricity markets. In: 42nd Hawaii international conference on system
sciences, 2009, HICSS’09. IEEE; 2009. p. 1–10.

[29] Yu NP, Liu CC, Price J. Evaluation of market rules using a multi-agent system
method. IEEE Trans Power Syst 2010;25(1):470–9.

[30] Guo M, Liu Y, Malec J. A new q-learning algorithm based on the metropolis
criterion. IEEE Trans Syst Man Cybernet Part B (Cybernet) 2004;34(5):2140–3.

[31] Dahlgren R, Liu CC, Lawarree J. Risk assessment in energy trading. IEEE Trans
Power Syst 2003;18(2):503–11.

[32] Bathurst GN, Weatherill J, Strbac G. Trading wind generation in short term
energy markets. IEEE Trans Power Syst 2002;17(3):782–9.

[33] Ni E, Luh PB, Rourke S. Optimal integrated generation bidding and scheduling
with risk management under a deregulated power market. IEEE Trans Power
Syst 2004;19(1):600–9.

[34] Conejo AJ, Garcia-Bertrand R, Carrion M, Caballero Á, de Andres A. Optimal
involvement in futures markets of a power producer. IEEE Trans Power Syst
2008;23(2):703–11.

[35] Morales JM, Conejo AJ, Pérez-Ruiz J. Short-term trading for a wind power
producer. IEEE Trans Power Syst 2010;25(1):554–64.
[36] Morales JM, Conejo AJ, Madsen H, Pinson P, Zugno M. Trading stochastic
production in electricity pools. In: Integrating renewables in electricity
markets. Springer; 2014. p. 205–42.

[37] Zheng QP, Wang J, Liu AL. Stochastic optimization for unit commitment – a
review. IEEE Trans Power Syst 2015;30(4):1913–24.

[38] Conejo AJ, Nogales FJ, Arroyo JM, García-Bertrand R. Risk-constrained self-
scheduling of a thermal power producer. IEEE Trans Power Syst 2004;19
(3):1569–74.

[39] García-González J, Parrilla E, Mateo A. Risk-averse profit-based optimal
scheduling of a hydro-chain in the day-ahead electricity market. Eur J Oper
Res 2007;181(3):1354–69.

[40] Dicorato M, Forte G, Trovato M, Caruso E. Risk-constrained profit
maximization in day-ahead electricity market. IEEE Trans Power Syst
2009;24(3):1107–14.

[41] Ghadikolaei HM, Ahmadi A, Aghaei J, Najafi M. Risk constrained self-
scheduling of hydro/wind units for short term electricity markets
considering intermittency and uncertainty. Renew Sustain Energy Rev
2012;16(7):4734–43.

[42] Jiang R, Wang J, Guan Y. Robust unit commitment with wind power and
pumped storage hydro. IEEE Trans Power Syst 2012;27(2):800–10.

[43] Nojavan S, Zare K. Risk-based optimal bidding strategy of generation company
in day-ahead electricity market using information gap decision theory. Int J
Electr Power Energy Syst 2013;48:83–92.

[44] Chen J, Zhuang Y, Li Y, Wang P, Zhao Y, Zhang C. Risk-aware short term hydro-
wind-thermal scheduling using a probability interval optimization model.
Appl Energy 2017;189:534–54.

[45] Batlle C, Otero-Novas I, Alba J, Meseguer C, Barquín J. A model based in
numerical simulation techniques as a tool for decision-making and risk
management in a wholesale electricity market. Part I: General structure and
scenario generators. In: PMAPS00 Conference. p. 1–7.

[46] Gountis VP, Bakirtzis AG. Bidding strategies for electricity producers in a
competitive electricity marketplace. IEEE Trans Power Syst 2004;19
(1):356–65.

[47] Caruso E, Dicorato M, Minoia A, Trovato M. Supplier risk analysis in the day-
ahead electricity market. IEE Proc Gener Transm Distrib 2006;153(3):335–42.

[48] Cabero J, Ventosa MJ, Cerisola S, Baillo A. Modeling risk management in
oligopolistic electricity markets: a Benders decomposition approach. IEEE
Trans Power Syst 2010;25(1):263–71.

[49] Pousinho HM, Contreras J, Bakirtzis AG, Catalão JP. Risk-constrained
scheduling and offering strategies of a price-maker hydro producer under
uncertainty. IEEE Trans Power Syst 2013;28(2):1879–87.

[50] Chin D, Siddiqui A. Capacity expansion and forward contracting in a
duopolistic power sector. Comput Manage Sci 2014;11(1–2):57–86.

[51] Egging R, Pichler A, Kalvø ØI, Walle-Hansen TM. Risk aversion in imperfect
natural gas markets. Eur J Oper Res 2017;259(1):367–83.

[52] Fleten SE, Wallace SW, Ziemba WT. Hedging electricity portfolios via
stochastic programming. In: Decision making under uncertainty. Springer;
2002. p. 71–93.

[53] Vehviläinen I, Keppo J. Managing electricity market price risk. Eur J Oper Res
2003;145(1):136–47.

[54] Sahin C, Shahidehpour M, Erkmen I. Generation risk assessment in volatile
conditions with wind, hydro, and natural gas units. Appl Energy
2012;96:4–11.

[55] Gielis F. Potential effects of risk aversion on technology choices and security of
supply: researched with an agent-based model of a liberalised electricity
market Ph.D. thesis. TU Delft: Delft University of Technology; 2016.

[56] Di Lorenzo G, Pilidis P, Witton J, Probert D. Monte-carlo simulation of
investment integrity and value for power-plants with carbon-capture. Appl
Energy 2012;98:467–78.

[57] Liu Y, Wu F. Risk management of generators’ strategic bidding in dynamic
oligopolistic electricity market using optimal control. IET Gener Transm
Distrib 2007;1(3):388–98.

[58] Rahimiyan M, Mashhadi HR. An adaptive-learning algorithm developed for
agent-based computational modeling of electricity market. IEEE Trans Syst
Man Cybernet Part C (Appl Rev) 2010;40(5):547–56.

[59] Sun J, Tesfatsion L, et al. DC optimal power flow formulation and solution using
QuadProgJ. In: Proceedings, IEEE power and energy society general meeting,
Tampa, Florida. p. 1–62.

[60] Sutton RS, Barto AG. Reinforcement learning: an introduction, vol.
1. Cambridge: MIT Press; 1998.

[61] Shoham Y, Powers R, Grenager T. Multi-agent reinforcement learning: a
critical survey. Tech rep; 2003.

[62] Boonchuay C, Ongsakul W. Optimal risky bidding strategy for a generating
company by self-organising hierarchical particle swarm optimisation. Energy
Convers Manage 2011;52(2):1047–53.

[63] Ma X, Wen F, Ni Y, Liu J. Towards the development of risk-constrained optimal
bidding strategies for generation companies in electricity markets. Electr
Power Syst Res 2005;73(3):305–12.

[64] Liu AL, Hobbs BF. Tacit collusion games in pool-based electricity markets
under transmission constraints. Math Program 2013;140(2):351–79.

[65] Aliabadi DE, Kaya M, S�ahin G. Determining collusion opportunities in
deregulated electricity markets. Electr Power Syst Res 2016;141:432–41.

http://refhub.elsevier.com/S0306-2619(17)30367-7/h0015
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0015
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0020
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0020
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0020
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0025
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0025
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0025
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0025
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0030
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0030
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0030
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0035
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0035
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0035
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0035
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0040
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0040
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0040
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0045
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0045
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0045
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0050
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0050
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0055
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0055
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0060
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0060
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0060
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0065
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0065
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0070
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0070
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0070
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0075
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0075
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0080
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0080
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0085
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0085
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0085
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0090
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0090
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0095
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0095
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0095
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0100
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0100
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0100
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0105
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0105
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0105
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0110
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0110
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0110
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0115
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0120
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0120
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0125
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0125
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0125
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0130
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0130
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0135
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0135
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0135
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0140
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0140
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0140
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0145
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0145
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0150
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0150
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0155
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0155
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0160
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0160
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0165
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0165
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0165
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0170
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0170
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0170
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0175
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0175
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0180
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0180
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0180
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0185
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0185
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0190
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0190
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0190
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0195
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0195
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0195
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0200
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0200
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0200
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0205
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0205
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0205
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0205
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0210
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0210
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0215
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0215
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0215
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0220
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0220
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0220
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0225
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0225
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0225
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0225
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0230
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0230
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0230
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0235
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0235
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0240
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0240
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0240
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0245
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0245
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0245
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0250
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0250
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0255
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0255
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0255
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0255
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0260
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0260
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0260
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0265
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0265
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0270
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0270
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0270
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0275
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0275
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0275
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0280
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0280
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0280
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0285
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0285
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0285
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0290
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0290
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0290
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0295
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0295
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0295
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0300
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0300
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0310
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0310
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0310
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0315
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0315
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0315
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0320
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0320
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0325
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0325
http://refhub.elsevier.com/S0306-2619(17)30367-7/h0325

	Competition, risk and learning in electricity markets: An agent-based simulation study
	1 Introduction
	2 Literature survey
	3 Model with risk-neutral GenCos
	3.1 The network and market structure
	3.2 The learning model

	4 Simulation study with risk-neutral GenCos
	4.1 Case 1: Two learning GenCos and a unique Nash equilibrium
	4.2 Case 2: Three learning GenCos and multiple Nash equilibria

	5 Model with risk-averse GenCos
	6 Simulation study with risk-averse GenCos
	6.1 Identical risk aversion level
	6.2 Differing risk aversion levels
	6.3 Learning dynamics

	7 Effects of the Q-learning parameters
	8 Discussion
	9 Conclusions
	References


