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From an electricity market design perspective, it is relevant and practical to knowwhichmarket structures allow
for price convergence, and how long this takes to achieve. This study employs the Phillips and Sul (2007, 2009)
methodology to test for the convergence ofwholesale electricity prices across the Australian States.We identify a
long-run, common price growth pattern that applies to a cluster formed by three Eastern States that share com-
monmarket characteristics and limited physical interconnection.We also find another cluster with less compet-
itive market structures that, although not interconnected, strongly converge towards their own trend. These
findings confirm theoretical expectations while quantifying the rate of convergence. Finally, we also investigate
the role that the carbon tax regime has played in the convergence process, with new empirical showing that the
previous results are not affected, with the notable exception being the case of South Australia.
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1. Introduction

The Australian electricitymarket experienced significant deregulation
in the 1990s, and policy questions have arisen since. The main domestic
network is the National Electricity Market (NEM), which was established
in 1998 and links regional markets in Queensland, New South Wales,
Victoria and, more recently, Tasmania and South Australia. Both pro-
ducers and retailers trade through a spot market operated by the
Australian EnergyMarket Operator. Despite the policy efforts to integrate
these markets, their price convergence has yet to be formally examined,
which is the primary objective of this study.

To the best of our knowledge, the study by Nepal and Foster (2013)
is the only empirical study testing the long-run convergence of electric-
ity prices across Australian markets. The authors argue that the lack of
pair-wise cointegration, i.e. long-term fixed relationships, may be indic-
ative of the convergence or divergence of electricity prices across mar-
kets. The authors propose an examination of time-varying estimates
obtained through a Kalman-filter procedure applied to paired states.
their valuable comments and
tion, the paper was written the
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The use of cointegration methodologies for assessing electricity market
integration is not uncommon. For instance, Dempster et al. (2008) use
cointegration and Granger causality tests to examine the ‘extent of inte-
gration’ of re-structured electricity markets supplying to California.
However, this paper will argue that more recent econometric develop-
ments are better suited for this particular test.

Despite the lack of any relevant literature on long-run trends of spot
electricity prices in Australia, a few studies have analyzed short-term
phenomena, such as spikes and volatility, based on daily or intra-daily
data. Using copula analysis, Ignatieva and Trück (2016) find evidence
of spot price dependence across various regional markets in Australia,
which is especially strong for extreme price co-movements (spikes).
These results are consistent with Aderounmu and Wolff (2014a,
2014b), who also find evidence of dependence of price spikes in
Australia. Some other studies examining high-frequency data for
Australia have focused on the emergence of volatility clusters. For in-
stance, Higgs (2009) finds evidence of inter-relationships between
spot price levels and volatility, while Worthington et al. (2005) have
identified transmission channels for price and price volatility with a
multivariate GARCH model.

This study will employ weekly data to assess the convergence of
long-run trends, but it will not focus on intra-week issues such
as those described above. We argue that a disadvantage of Nepal and
Foster's (2013) long-run integration test is the use of half-hourly prices,
which leads to short-run dynamics that are very difficult to model (or
ty markets in Australia: A price convergence assessment, Energy Econ.
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filter) due to the presence of intra-day and weekly seasonality and the
spikes that characterize the Australian markets (Aderounmu and
Wolff, 2014a; Ignatieva and Trück, 2016).

The main novelty of this study is the use of Phillips and Sul's (2007,
2009) methodological approach, which has three clear advantages over
the cointegration analysis used in Nepal and Foster (2013): First, it
allows for rigorous econometric testing of ‘convergence clubs’ and
estimation of convergence paths relative to some identified common
trends. Second, the latter is implemented on a single data set comprising
all States. Third, our methodology does not need to rely on strong
assumptions on trend or stochastic stationarity in the data. Phillips
and Sul's methodology is relatively new and has been applied in the
context of the integration of energy markets (Li et al., 2014; Ma and
Oxley, 2012).

We hypothesize about two types of price convergence, which we
refer to as short and long run. In the short-run, price convergence is
driven by arbitrage, i.e. the process of making profits at no risk by buy-
ing and selling a good across different markets. As it is well known, in
efficient markets, short-run profit maximization eliminates arbitrage
possibilities. In the long-run, price convergence is led by the exploita-
tion of economic profits under free entry and exit conditions. Competi-
tive markets are dynamically efficient. This distinction is particularly
relevant for the case of electricity markets. Electricity is a perfectly
homogeneous, non-storable2 good, delivered through a physically
connected network. The physics of electricity implies that in the short
run, the only possibility to exert arbitrage exists in buying and selling
in markets that are physically interconnected. The amount of transmis-
sion capacity determines the extent of short-run price convergence:
When it is large enough, it eliminates the likelihood of price differentials
between net electricity demanded and supplied. When it is limited,
there can be a price differential between the net-exporting zones or
countries and the net importing ones, depending on the respective
energy demand and supply. Price differentials give rise to congestion
rents (i.e., measured by the difference in prices × the energy transmit-
ted through the congested transmission line) and a possible inefficiency
(unless the transmission capacity has been planned optimally, i.e. up to
the point in which the marginal cost of expanding it equals the price
differential).

In the long run, price convergence depends on the structure and evo-
lution of power markets. Over time, zones or States with high prices
would attract power producers, which lowers their net demand (and
this potentially reduces net supply in power exporting zones if power
plants, which are taken off-line, are not replaced by a sufficient flow of
new investments). The overall effect may lead to price convergence,
even with limited interconnection capacity. However, several factors
can be an obstacle to this convergence process, such as differences in
power supply structures, the degree of competitiveness, load levels
and profiles, the costs and availability of primary energy sources, finan-
cial costs and risk attitudes, andmarket design andmarket intervention.
Moreover, technological changes might impact long-run convergence;
for instance, by reducing the opportunity cost and therefore fostering
adoption of renewable-based technologies (such as PV) that rely on pri-
mary energy sources unevenly distributed across Australia. The more
electricity markets are homogeneous with regard to these elements,
the more we can expect price convergence to occur, even with limited
or absent interconnection capacity, and vice versa. Long-run price
convergence is affected, inter alia, by energy policies targeted at reduc-
ing externalities, and in particular, power production from carbon-
intensive fuels.
2 We refer here to traditional electricity networks, where electricity is delivered
through transmission networks in which demand and supply are balanced in real time
(dispatching). For these networks, storage is either technically unfeasible or economically
unsustainable. Of course, storage in batteries exists for limited charges or unconnected
applications.
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In Australia, a carbon tax was implemented from July 2012 to July
2014 to foster this target. It affected power production from fossil
fuels, regardless of the specific physical location of the power plant.
The impact of the introduction of a carbon tax on price convergence is
twofold. On the one hand, by altering the marginal cost of electricity
in a homogeneous way across markets, the carbon tax could foster
price convergence. By contrast, by affecting the electricity costs of
those power supply systems that are more carbon intensive, it can en-
hance the different costs of power supply and, therefore, reduce price
convergence. In the case of Australia, we have a sufficient number of ob-
servations to analyze both short- and long-term convergence and inves-
tigate whether the carbon tax has influenced the convergence process.

In addition to NEM member States, our study covers Western
Australia (WA). WA's main wholesale market is the South West
Interconnected System (SWIS), which covers the area of Perth and
surroundings and is operated by WA's Independent Market Operator
(IMO). In WA, there is no existing interconnection with any other
power system outside the state. Including WA in the sample provides
interesting insights into integration issues within Australian electricity
markets. The lack of interconnection capacity between the SWIS and
the rest of Australia does not allow for arbitrage of electricity prices in
the short run. In the long run, nevertheless, convergence cannot be
ruled out. As long as cost drivers (i.e., primary energy costs, financial
costs, technological costs and availability) are homogeneous across
Australia, there is enough justification for long-run price convergence.
It is, therefore, of interest to test whether there exists any convergence
between electricity prices in WA and other regions in the long run,
despite the absence of physical interconnection.

The remainder of this study is organized as follows. Section 2 re-
views the role of the carbon tax in price convergence and discusses
the main differences between NEM and SWIS. Section 3 discusses the
methodology used, and Section 4 describes the data set used in this
study. Empirical findings are presented in Section 5 and are discussed
in Section 6. The impact of the carbon tax regime on price convergence
is analyzed in Section 7. The study concludes in Section 8.
2. Long-run electricity price convergence in Australia: the role of
carbon tax and the WA capacity remuneration mechanism (CRM)

2.1. Long-run price convergence and the role of carbon tax

Between July 1, 2012 and July 17, 2014, the Australian authorities
had a carbon pricing scheme in place, which was a central piece of the
2011 Clean Energy Act passed under Julia Gillard's Labour Party admin-
istration. It envisaged a plan to transition from a three-year carbon-tax
policy to an emissions trading mechanism, although the law was
abolished in 2014 under the Tony Abbott administration, prior the trad-
ing mechanism being implemented. Carbon emissions were taxed at
$23/ton during the 2012–13 financial year (ending in June 30) and
$24.15/ton during the 2013–2014 financial year. Emitters responsible
for over 60% of Australia's emissionswere covered by a liability to acquit
permits for emissions arising from the combustion of fossil fuels and
other sources. 348 of Australia's highest emitting entities, including
power stations, mines and emissions-intensive manufacturers, benefit-
ed from this concession. The effects of the carbon tax policy on the
electricity sector seem to be substantially significant as emissions
from electricity generations are the largest contributor to Australia's
overall emissions. Retail and residential electricity prices rose substan-
tially across Australia over the two years following the introduction of
the carbon price, while electricity demand stagnated. The carbon tax
affected electricity prices unevenly across Australia because electricity
is produced from various technologies of varying carbon intensities. It
has been estimated that the isolated cost of carbon reflected on
spot electricity prices has been consistently in the range of 15–18
Australian dollars per MWh in Queensland, NSW, Victoria and South
ty markets in Australia: A price convergence assessment, Energy Econ.
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Australia,while the impact on Tasmania is about half of thatfigure (AER,
2013, p. 9).

A tax on carbon affects the economics of generation, increasing the
cost of producing electricity for any form of generation that intensely
produces carbon dioxide emissions, namely, brown coal and inefficient
black coal power plants (Daley and Edis, 2011). Since the introduction
of the carbon price, there have been significant changes in the composi-
tion of electricity supplied. Electricity generated from renewables and
gas increased, whilst the share of electricity generated from black and
brown coal reached a record low; according to the Australian Energy
Regulator, in the period in which the carbon tax was in place, almost
2000M-watts of coal fired plants were shut down and coal fired gener-
ation declined by 11% (AER, 2014, p.6). In addition, considering that the
price elasticity of demand for electricity is especially high in Australia
(Hill and Cao, 2013), the carbon tax had a strong effect on household
electricity savings. Households reacted by changing practices and
adopting more energy-efficient equipment. The amount of solar
power produced byhouseholds and businesses increased, driven largely
by subsidies for the installation of solar panels and feed-in tariff
schemes. However, such changes did not occur symmetrically across
the Australian States, given that domestic governments adopted differ-
ent subsidies schemes and feed-in tariff policies (Saddler, 2013). It is
then of interest to examine whether the introduction of a carbon tax
in Australia increased market homogeneity (due to its across-markets
features and the aforementioned impacts on end consumers) and accel-
erated convergence rates, or whether it enlarged the differences in
power systems structures and therefore impeded or reduced long-run
price convergence.

2.2. CRMs and long-term price convergence

There exists an important distinction in electricitymarket design be-
tween so-called ‘energy-only’markets andmarkets with CRMs. The for-
mer are markets where energy is the only good traded, while in the
latter, there is an explicit remuneration for power on top of energy
prices. NEM is an energy-only market, and SWIS is a market with a
CRM (called a reserve capacity mechanism; the capacity remuneration
is termed capacity credit). This is not the only relevant market design
difference between NEM and SWIS. In particular, NEM is a pool
(where all energy is traded), while SWIS is a power exchange in
which roughly 20% of the load is traded. The difference in capacity
remuneration could be relevant for long-run price convergence since
it refers to the way investments in power production are remunerated.
In energy-only markets, investments are remunerated implicitly, de-
pending on the frequency and amount of price spikes (price that goes
to the marginal social value of the non-served load, i.e. the VOLL). By
contrast, in markets with CRMs, investments are remunerated explicit-
ly. This difference is sometimes claimed to be amajor obstacle tomarket
integration (see, for instance, ACER, 2013, for the case of the European
electricity market integration).

From a theoretical point of view, for competitive markets, this
should not be the case. In perfectly competitive energy-only markets,
the expected discounted value of the super marginal profits gained by
a power plant under those occurrences (i.e., the price–cost margin
when the price is set to the VOLL× the quantity of energy × the capacity
factor of a given plant) equals the investment (fixed) costs of the plant
(Stoft, 2002). Thus, investments are induced up to the point where
power producers can cover both their fixed and marginal costs. In mar-
kets with CRMs, investments are directly remunerated by the capacity
remuneration scheme itself. When the value of the capacity is compet-
itively set—for instance, through an auctionmechanism (or properly ad-
ministratively set)-it equals the (yearly) discounted value of the super
marginal profits that producers would gain ex post, had the CRM not
been in place. Themain difference is thus in the timing of the remuner-
ation itself: with CRMs, capacity is remunerated ex ante rather than ex
post, i.e. once energy is produced. Under (perfect) competition, both
Please cite this article as: Apergis, N., et al., Integration of regional electrici
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energy-only and CRM markets attract sufficient investments to serve
the load. In other words, the long-run price trend towards convergence
should not be affected by how the different market designs remunerate
investments. This is an important point and an interesting element to be
tested, motivating our inclusion of SWIS in the analysis.

3. Methodology

We employ Phillips and Sul's (2007, 2009) methodological
approach for testing the convergence hypotheses. By taking into ac-
count the heterogeneity of the time series in our panel, we identify
clubs (i.e., groups of States), each possibly converging towards a com-
mon club trend. Our full-panel dataset is formed by N = 6 time series
noted as (yit)t = 1,…,T = 304, where yit is the filtered value of the natural
log of the electricity price in state i at time t. The time series are filtered
individually (see Section 4).

Our approach has a number of clear advantages. First, it measures
the relative convergence of cross-sectional averages, which contrasts
the concept of absolute level convergence analyzed in Bernard and
Durlauf (1996). Second, it outperforms standard panel unit root tests
that could apply to the series (yit–yjt)t = 1,…,T in our panel, as the latter
may retain non-stationary characteristics even when the convergence
condition holds, i.e. panel unit root tests may classify the difference be-
tween gradually converging series as non-stationary. Third, our ap-
proach may detect convergence that would not be detected in a panel
cointegration test. Only when the series (yit, yjt) stabilize around
steady-state values they would share a common trend. However, if
the series are slowly approaching a long-run trend in a non-linear fash-
ion, a standard cointegration test might reject a long-term stable rela-
tionship between the variables. Finally, a mixture of stationary and
non-stationary series in the panel may bias the results if the correct
specification is not identified, leading to results that are not particularly
robust. In contrast to these traditional approaches, the specification of
the Phillips and Sul's (2007, 2009) test does not rely on unit root or
cointegration testing of the variables in the panel.

It should be noted that for some applications, the highly modified
unit root test that incorporates relevant characteristics of the data
could be used to test for convergence. A good example of this is Meng
et al. (2013), which implements a RALS-LM unit root tests, allowing
for two endogenously-determined structural break dates, and finding
significant support for per capita energy use convergence across
25 OECD countries, spanning the period 1960–2010. In our study,
endogenously-determined breaks are not needed. Still, there could be
some potential dynamic issues associated with the introduction of the
carbon task; we address this issue in Section 7.

Themethodology employed in this studymakes use of the following
time-varying common factor representation for our set of observable
series yit:

yit ¼ δitμ t ð1Þ

where μ t is a single common component and δit is a time-varying
idiosyncratic element which captures the deviation of state i from
the common path defined by μ t. Within this framework, all N ‘groups’
(either in terms of the entire sample or within a cluster) will converge
at some point in the future to the steady state if lim

k→∞
δitþk ¼ δ for all

i = 1, 2, …, N, irrespective of whether states are near the steady
state(s) or in transition. Since δit cannot be directly estimated from
Eq. (1), Phillips and Sul (2007) eliminate the common component μ t

by rescaling to the cross-sectional average:

hit ¼ yit

,
1=N

XN
j¼1

yjt

2
4

3
5 ¼ δit

,
1=N

XN
j¼1

δit

2
4

3
5 ð2Þ

The relativemeasure, hit, captures the transition pathwith respect to
the panel average. In order to define a formal econometric test of
ty markets in Australia: A price convergence assessment, Energy Econ.
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Table 1
Averageweeklywholesale electricity prices ($/MWh) for NEM regions andWestern Energy
Market (Western Australia).

NSW QLD SA TAS VIC WA

Whole sample statistics
Mean 45.14 43.77 57.28 41.14 42.85 47.60
Std. Dev. 46.60 35.22 84.23 31.20 45.37 19.75
Max 627 400 693 405 619 166
Observations 304 304 304 304 304 304

Pre-carbon-tax statistics
Mean 40.90 33.93 50.92 38.97 36.28 44.38
Std. Dev. 55.09 32.23 97.25 36.81 50.27 21.99
Max 627 400 693 405 619 166
Observations 212 212 212 212 212 212

Carbon tax regime statistics
Mean 54.91 66.43 71.96 46.16 57.99 55.03
Std. Dev. 7.32 31.24 37.13 8.01 25.76 9.84
Max 102 223 264 74 221 79
Observations 92 92 92 92 92 92

Notes: SWIS data are calculated from half-hourly short-term energy market prices. WA
includes the SWIS wholesale prices only.
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convergence as well as an empirical algorithm for identifying clubs, the
following semi-parametric form for the time varying coefficients δit is
assumed:

δit ¼ δi þ σ it ξit ð3Þ

where σit = σi / [L(t) tα], σi N 0, t ≥ 0, and ξit may be weakly dependent
over time, but i.i.d.(0,1) over i. The function L(t) is increasing in t and
divergent when t tends to infinity.3 Under this specific form for δit, the
null hypothesis of convergence for all i takes the form:

H0. δit = δ, α ≥ 0,

while the alternative hypothesis of non-convergence for some i is
expressed as:

H1. δit ≠ δ, or α b 0.

Essentially, the test reduces to examining the sign of α. When the
null hypothesis of convergence is rejected for a particular group of indi-
viduals from the panel, this does not preclude the possibility that these
individuals may converge to some other cluster in the panel. Thus, a po-
tential issue in this test is the possible presence ofmultiple equilibria. In
such a case, rejection of the null hypothesis that all states in the sample
are under convergence does not imply absence of different convergence
clubs in the panel.

To test the null hypothesis above can be tested, according to Phillips
and Sul (2007, 2009) through the following regression4:

log H1=Htð Þ‐2logL tð Þ ¼ ĉþ blogtþ ût; ð4Þ

where:

Ht
N

i¼1
¼ 1=Nð Þ

X
hit–1ð Þ2

is the square cross-sectional distance relative transition coefficients.
Regression (4) is estimated for t = [rT], [rT} + 1, …, T, where r N 0 is
set on the [0.2, 0.3] interval, following Phillips and Sul's (2007) recom-
mendation. Noting that b = 2ᾰ, the null hypothesis above can be
conducted as the one-sided test of b ≥ 0 against b b 0. Because the OLS
standard errors in regression (4) may be weakly time-dependent,
Phillips and Sul (2007, 2009) recommend estimating heteroskedasticity
and autocorrelation consistent standard errors for b. In this one-sided
test, the null hypothesis of convergence is rejected is tb b−1.65 (the lim-
iting critical t-value, using the 5% significance level, is approximately
−1.65).

The test could be applied to different club formations in the panel.
A robust clustering algorithm for identifying clubs in a panel is proposed
by Phillips and Sul (2007). We implement this algorithm following
these steps: (i) we order the N states according to the final values of
their times series; (ii) starting from the highest-order state, we add ad-
jacent states from our ordered list. For each formation, we run regres-
sion (4). Then, we select a core group using the following cut-off point
criterion: k* = ArgMaxk{tbk} subject to Mink{tbk} N −1,65, for k = 2,
3, …, N; (iii) we sieve the data adding one of the remaining members
at a time to the core group, and we re-estimate Eq. (4) for each forma-
tion. We use a sign criterion to decide whether a member should join
the core group; (iv) for the remaining states, we repeat the steps
(ii)–(iii) iteratively. We stop when we can no longer form clubs. Each
club will be associated with its own convergence path. If the last
group arising from the algorithm does not have a convergence pattern,
we conclude that their members form a divergent club. Some clubsmay
3 Following Phillips and Sul (2007, 2009), we adopt L(t) = log(t). The purpose of this
function is to guarantee convergence when α = 0, in order to write the null hypothesis
of convergence as α ≥ 0.

4 The analytic proof under the convergence hypothesis for this regression equation is
reported in Appendix B of Phillips and Sul (2007).
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be weakly divergent, i.e. associated with −1.65 b tb b 0. As noted by
Phillips and Sul (2007, 2009), using a sign criterion in step (ii) may
lead to over-estimation of the number of clubs. To remedy this potential
problem, the authors recommend performing club merging tests after
running the algorithm, again through regression (4).

4. Data

The data set consists of weekly wholesale electricity prices, spanning
the period January 1, 1999 to July 31, 2014. Data for Eastern Australian
States (New South Wales, Victoria, Queensland, South Australia and Tas-
mania) are obtained from the Australian Energy Regulator (AER, www.
aer.gov.au). Data for Western Australia's SWIS market are obtained from
the Independent Market Operator of Western Australia (IMOWA, www.
imowa.com.au). For SWIS, we calculate weekly averages from the half-
hourly clearing prices of the short-termenergymarket. TheNorthern Ter-
ritory is not included in the sample. Table 1 displays the summary statis-
tics of the prices in the considered markets.

Table 1 reveals higher average prices after the introduction of the
carbon tax (part of it is attributed to inflation). The carbon tax pass-
through affected regional markets unequally, presumably due to differ-
ences in demand and supply elasticities. However, the statistical differ-
ences are to be taken with care as other regional factors have also
shifted demand and supply (the exact quantification of the pass-
through is beyond the scope of this paper). Overall, the introduction of
the carbon tax raises interesting questions with regard to electricity
price convergence. In the methodology described in Section 3, this
break does not affect the cross-sectional estimates. However, it affects
the definition of the steady state. To assess the practical implications
of this issue, in Section 7 we assess convergence excluding the carbon
tax period.

Table 1 reveals that there is higher volatility across NEM states,
which was expected given the energy-only nature of those markets.
Moreover, the price floor and ceiling in the NEM regions is higher
than the counterparts in WA. It is worth noting that the latter does
not allow negative prices, whereas NEM does.

The power supply structure differs across NEM5 markets, as well as
between them and SWIS. Coal is the predominant source of electricity
generation in the NEM; coal generators accounted for 53% of the regis-
tered capacity and supplied 74% of power in 2014 (AER, 2014, p. 25).
Other installed capacity includes natural gas (21%), hydroelectric
(16%) and wind (6.3%) generators. In Queensland, NSW and Victoria,
5 Unless stated otherwise, all data are derived from the AER State of the EnergyMarket
reports from the several years.
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coal accounts for approximately 66%, 65% and 55% of generation capac-
ity, respectively.6 In South Australia and Tasmania, there is no coal
generation capacity. In the former, the largest share of fuel source
is gas (60% of capacity), while nearly all generation in Tasmania is hy-
droelectric (86%). South Australia has the largest share of non-hydro re-
newable energy sources installed, with wind power accounting for 29%
of capacity (supplying 35% of energy in 2014). In Western Australia,
SWIS has also a power supply structure dominated by fossil fuels. Coal
amounts to about 40% of the capacity, and combined with natural gas,
they account for 80% of the total capacity. Renewables reach 9% of
WA's power production.7

The ownership of power generators varies across states as well. In
Tasmania, virtually all generation capacity is controlled by a state-
owned monopolist, i.e. Hydro Tasmania. Similarly, the SWIS market
comprises 4200 M-watts of installed generation capacity, of which
74% is owned by the state utility Verve (AER, 2014, p. 205), which re-
ceives 50% of the capacity credits (IMO, 2014, p. 39). In the remaining
States, markets are more contestable, as reflected in the following
generation capacity Herfindhal–Hirschman Index (HHI) concentration
estimates: 0.2122 for New South Wales, 0.241 for Queensland, 0.2276
for South Australia and 0.2138 for Victoria.8

Dynamically, the NEM annual growth rates for the generation of
electricity from both black and brown coal have been negative between
2012 and 2014. Nevertheless, gas, hydro and wind usage have been
growing at an increasing rate since 2000 (AER, 2014, p. 6). Due to
stagnation of electricity demand since 2010, there has been limited
investment in new generation capacity; NEM investment in new gener-
ation capacity from2010 to 2014 consistedmostly of newwindandnat-
ural gas plants (AER, 2014, p. 33). Electricity trade patterns in the NEM
remained relatively stable, except for Tasmania. More specifically,
Tasmania was a net electricity importer from 2007 to 2009; it became
the major exporter in 2013–14 (AER, p. 42). However, it must be
taken into account that in the NEM region, and in addition to electricity
flows, there are also substantial natural gas flows. Flows of natural gas
across Eastern States are generally highly seasonal, indicating that the
installed capacity does not work at full capacity during the year. The
major producer on the East Coast is Queensland, which is connected
to a major distribution point for South Australia and New South Wales
through the South West Queensland pipeline; Victoria is connected to
this network only indirectly through South Australia and New South
Wales. The major natural gas producer in Australia is WA; however,
there is no physical network for transporting natural gas from WA to
the Eastern States.

It is also worth considering that the interconnection capacity is
limited across NEM markets. There exist six interconnectors in the
NEM: Heywood (South Australia–Victoria), Basslink (Tasmania–
Victoria), Murraylink (Victoria–South Australia), NSW–Victoria, QNI
(Queensland–New South Wales) and Directlink (Queensland–New
South Wales). Their overall capacity9 does not exceed 8% of the overall
peak demand. A map presenting main power stations and connection
networks in NEMmarkets is provided in Fig. A2 in the Appendix.
6 Own calculations based on data from AER (2014, p. 27).
7 Own elaboration ondata provided by IMO. Capacity is calculated as the share of capac-

ity credits by technology. Dual (coal/gas) are attributed to coal. Demand sidemanagement
is not included.

8 Own calculations using 2014 data from AER (2014, p. 37). The HHI is calculated as the
sum of squaredmarket shares of firms. The HHI is defined in the interval [0, 1], with 1 in-
dicating full concentration (i.e. one supplier). One squared market share in the HHI in-
cludes firms categorized as “others”; the value of this component is 0.02 (2%) for New
South Wales, 0.02 (2%) for Queensland, 0.03 (3%) for South Australia and 0.6 (6%) for
Victoria.

9 Source: Our elaboration based on data from AEMO. In particular, we calculate the av-
erage interconnection capacity as the yearly average from AEMO's Interconnector
Quarterly Performance Reports, and for simplicity, we report the figure of the overall av-
erage interconnection capacity compared to the overall peak. For each interconnector,
the specific figure does not differ much from the overall average (see also Nepal and Fos-
ter, 2013, Table 1).
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All the factors described above play a significant role in defining
long-term price convergence across the various electricity markets.
Due to data limitations, it is not possible to include all factors in a single
convergence model as the exclusion of any relevant variable driving
convergencewould lead tomisleading, biased results. However, it is rel-
evant to assess the convergence of various electricity prices, as argued in
Section 2 and as found in other energy economics studies based on the
Phillips and Sul's (2007, 2009) methodology. An interesting result will
be the formal identification of clustering group(s) of convergent supply
characteristics across the regions under study.

Finally, the issue of seasonality is rather critical for the case of
electricity prices across states, given that the regional markets across
the Australian States have different weather patterns, and therefore,
they also experience different seasonal patterns. To avoid any biasness
in the relevance of our findings in the presence of large short term
spikes, we employ filtered (trended) data in our estimations; following
the methodological approach in Hodrick and Prescott (1997) filter, we
estimate the trend that minimizes the squared changes in trend and
deviations:

minyt�
XT
t¼1

yt–yt
�ð Þ2 þ λ

XT‐1
t¼2

ytþ1
�−yt

�� �
– yt

�−yt‐1
�ð Þ�2

( )
ð5Þ

This filtering technique is especially well-suited for extracting long-
run trends of interest from the data while eliminating short-run ‘spiky
behaviour’. Following a reviewer's recommendation, the Appendix
illustrates the picture of the original and the trended data across the
six States (Fig. A1). The overall picture clearly displays the smoothing
character of the electricity prices across all six States which permits
the analysis to obtain more valid findings with respect to the conver-
gence hypothesis.

5. Empirical results

Table 2 reports the panel convergence results for the Australian
electricity prices. To implement the algorithm described in Section 3,
the states are ordered according to the final values of each series.
The resulting order is as follows: 1. SouthAustralia, 2. Victoria, 3. Queens-
land, 4. NSW, 5. WA and 6. Tasmania. The first row displays the results
testing for full convergence (i.e., convergence among all six states),
while rows 2 to 4 display the results arising from the club-clustering
procedure. As the first row of Table 2 indicates, the null hypothesis of
full-panel convergence cannot be rejected as: tb = −0.231 N −1.65;
however, the speed of adjustment, i.e. ᾰ= b/2 =−3.619/2, is negative,
suggesting (weak) divergence. According to Phillips and Sul (2007, 2009),
the sign of thepoint estimate is also a validwayof evaluating convergence
patterns. Based on this sign observation, we proceed to the implementa-
tion of the algorithm to see if with identification of convergent clubs we
can improve this basic result. It is not surprising that the heterogeneity
in the panel has led to a weakly divergent pattern. Consider the fact that
the production mix is substantially different for some of the States (i.e.
South Australia: high share of renewables; Tasmania: hydro energy),
which implies that States are coping with quite different costs of produc-
tion. The results that follow from the club clustering algorithm in rows 2
Table 2
Test statistics for convergence of Australian electricity prices and regional clustering.

Cluster b tb

Full sample South Australia, Victoria, Queensland,
New South Wales, WA, Tasmania

−3.619 −0.231

1st club Victoria, Queensland, New South Wales −1.154 −0.169
2nd club WA, Tasmania 0.971 1.348
3rd club (non-converging) South Australia – –

Note: for testing the one-sided null hypothesis: b ≥ 0 against b b 0, we use the critical
value: t0.05;rT − 2 − 1 = 228 = −1.65156 in all cases.
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through 4 show that over the period under investigation, three distinctive
clubs were identified. Starting with South Australia (the first State in our
ordered list), the algorithm added contiguous States to try to identify a
core group; for each of these formations, we found that: tb b −1.65. Fol-
lowing Phillips and Sul (2007, 2009) recommendation, the analysis isolat-
ed South Australia and proceeded to the next iteration of the algorithm.
Starting with Victoria, the analysis found that the maximum tb̂ in the
core grouping step was−0.169, which is associated with the inclusion
of Queensland and NSW. Although the null hypothesis of convergence
cannot be rejected at the 5% level, the negative sign of the point estimate
is −1.154 implies a negative speed of adjustment, i.e. ᾰ = −1.154/2,
which suggests divergence. However, the Phillips and Sul (2007, 2009)
test is set so that α = 0 implies convergence (because of the presence
of L(t)), and the null hypothesis that b = 2ᾰ is statistically different
from zero cannot be rejected either. In line with Phillips and Sul (2007,
2009) interpretation of cases in which−1.65 b tb b 0, we conclude that
Victoria, Queensland and New South Wales should be classified as a
club with its own convergence pattern (as tb N −1.65), exhibiting weak
transitional divergence (as b is negative). The two remaining States
from our list, WA and Tasmania, form a third club which strongly
converges to its own path; the null hypothesis of convergence cannot
be rejected: tb= 1.348 N−1.65) and the speed of adjustment is positive.

In sum, we have identified three underlying convergence groups in
our panel. The first one is South Australia's own path,which bears no re-
lationship with the other two trends identified in the algorithm and
which can be characterized as a non-converging case. Interestingly,
the club formed by the best interconnected states (club 2) is only
weakly convergent. Finally, we could confirm that WA and Tasmania,
two markets that are not physically interconnected, appear to conver-
gence towards the same trend.

To complement the analysis conducted so far, relative transition
curves are presented in Fig. 1. The right axismeasures relative transition
with respect to full (N = 6) cross-sectional averages, as defined in
Eq. (2). Under the assumption of overall convergence in the sample,
the relative transition parameters should all converge to one. Visual
inspection of these curves enables us to gain some insight into the
outcomes of the testing methodology, and it allows us to monitor the
convergence of electricity prices for each State relative to the sample
average. In particular, the transition curves report the tendency of the
cluster participants to converge or diverge from above or below one.
All six transition curves show no clear convergence towards one. In
the case of WA, rather than approaching and stabilizing around the
cross-sectional average, its transition curve seems to cut the one hori-
zontal line from above. Visually, the dynamic path of WA's transition
curve share similarities with that of Tasmania, which we confirmed
with our findings. The case of Victoria and NSW is interesting: their
transition curves approach and reach the cross-sectional average in
the first quarter of 2013, but from this point onwards they appear to
Fig. 1. Electricity prices: relative transition curves of convergence clubs.
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show some transitional divergence. Queensland's transition path
is rather erratic: it is convergent (with respect to the cross-sectional
average) up to mid-2011, divergent between mid-2011 and mid-2013,
and convergent from mid-2013 and onwards. The transition pattern of
South Australia appears not to bear any convergence pattern with re-
spect to the panel average or possible clusters. The formal identification
of convergence patterns has helped us reach conclusions on the number
of statistically significant clubs. As noted by Phillips and Sul (2009), the
procedure is consistent with periods of transitional divergence.

To ensure that the cluster classification is correct, one more test is
needed. Phillips and Sul (2009) argue that step (iii) of their convergence
club methodology tends to over-estimate the true number of clubs. To
address this issue, they run regression (4) on merged clubs to assess
whether any evidence exists to support themerging of adjacently num-
bered clubs into larger clubs. The regression (4) results for mergers 1–2
and 2–3 are reported in Table 3. In both cases,we strongly reject the null
hypothesis of convergence. These empirical findings show that there is
no evidence to support mergers of the original clubs.

6. Analysis and implications of the results

The empirical results presented above show that in Australia there
has been no fast, short-run convergence of wholesale electricity prices.
Given the limitations of the physical interconnections of these markets,
short-run full price convergence based on the exploitation of arbitrage
opportunitieswasnot expected.Wefindevidence of three price conver-
gence patterns for Australia that can identify long-run price tendencies.

First, we have been able to formally identify a common pattern be-
tweenNewSouthWales, Queensland andVictoria. Thisfinding suggests
that the characteristics of these markets are homogenous enough as to
facilitate long-term convergence. These characteristics include (i) a
common regulatory framework under the NEM, (ii) similar generation
technological structures, (iii) relatively competitive generation market
structures and (iv) a diversified number of retailers (AER, 2014,
p. 126), as well as full retail contestability which allows electricity
customers to enter contracts with their retailer of choice. The case of
Queensland is interesting as we observe ‘overshooting’ of its relative
convergence curve around 2013 (Fig. 1). A possible explanation for
this pattern is the high degree of uncertainty associatedwith the carbon
tax and the development of Queensland's natural gas resources.

In the events leading up to the current state of Queensland's electric-
ity market, there has been speculation and uncertainty about the possi-
bility of natural gas prices in Asia affecting energy prices in Queensland
and, subsequently, electricity prices. The empirical study of the determi-
nants of the natural gas price in Queensland and its spill-over effects is,
however, beyond the scope of this study. The overall important finding
here is that the above characteristic has allowed for electricity price
convergence. This empirical finding sets an important reference for
electricity market designers and policy makers. What is interesting is
that this result was robust to the introduction of a national carbon tax
policy (see Section 7 below).

Second,we have been able to identify a second groupof Stateswith a
different price convergence pattern. This group includes Tasmania and
Western Australia. To some extent, these findings are rather surprising:
these two markets are distant and not physically connected, and their
Table 3
Club merging analysis.

New club Club-merging test statistic

I Club 1 + 2 −0.083⁎

(−6.71)
II Club 2 + 3 −0.071⁎

(−5.88)

⁎ Denotes statistical significant at the 5% level while it rejects the null hypothesis
of convergence. The figures in parenthesis denote t-statistics. The critical value:
t0.05; rT − 2 − 1 = 228 = −1.65156 in all cases.
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market design differs, as does their power supply structure. A common
trait of these markets is the presence in both States of a high degree of
government ownership of generation capacity and limited competition
(in electricity as well as in the markets of the energy inputs/fuels). In
Tasmania, the state-owned Hydro Tasmania does not directly compete
with Eastern coal and gas producers for production inputs. In Western
Australia's SWIS market, the market share of capacity credits suggests
the presence of a price leadership oligopolistic structure, which does
not favor price convergence, while, as argued above, we can expect
price convergence only whenmarkets with CRMs are perfectly compet-
itive. This does not seem to be the case in WA. Therefore, the second
group adheres to (what we can call) a ‘non-competitive’ electricity
price convergence pattern. Clearly, the methodology does not allow
us to directly test whether the competitiveness of WA's SWIS and
Tasmania markets or the ownership structure are statistically signifi-
cant factors that both can affect price convergence. We can only point
out the differences in relevance to these aspects across Australian elec-
tricity markets and highlight that the results in this paper confirm that
WA and Tasmania are not moving in the same direction as the first
group we have identified.

Third, there is the case of South Australia, in which electricity prices
follow a long-run trend of their own. The average wholesale electricity
price in South Australia is higher than in other States (Table 1); however,
the dynamic evolution does notmatch any of the two patterns identified
above. Fig. 1 suggests that the pattern has been rather divergent from
mid-2013 to mid-2014. The power generation structure of South
Australia is different than in the other NEM regions since no coal is
used in the production of electricity. Compared to first convergence
club (i.e., NSW, Queensland and Victoria), where coal generation is pre-
dominant, the findings document a fundamental difference driving pro-
duction decisions. In addition, the connection to the NEM electricity
network is very limited. As a result, the supply of electricity in South
Australia is inadequate to satisfy demand at the price set by the first con-
vergence group.Moreover, South Australia has the highest investment in
new generation capacity in Australia, themajority of which goes to wind
generation,which for technical reasons is not a popular technology in the
remaining Eastern States. As long as the rate of return for wind genera-
tors and other types of generation remain high, South Australia will
continue to attract high levels of investments relative to other States. In
the future, we expect to see the convergence of South Australia with
electricity prices from the first club; however, the effects of new invest-
ments have yet to produce an impact on electricity prices.
7. Convergence robustness test: the carbon tax period

Based on the discussion in Section 2, we re-ran similar convergence
tests excluding the years under the carbon tax policy. The new results
are reported in Table 4. The findings in the first row indicate that, as
before, there is evidence of weak divergence when the panel is tested
as a whole. The results of the club clustering algorithm, reported in
rows 2 and 3, show that over the period without the carbon tax, two
convergence clubs are formed, with test statistics: tb = −0.346 and
Table 4
Australian electricity prices (excluding the carbon tax years).

Cluster b tb

Full sample South Australia, Victoria, Queensland,
New South Wales, WA, Tasmania

−2.953 −0.428

1st club South Australia, Victoria, Queensland,
New South Wales

−1.016 −0.346

2nd club Tasmania, WA 1.117 1.235

Note: for testing the one-sided null hypothesis: b ≥ 0 against b b 0, we use the critical
value: t0.05;rT − 2 − 1 = 154 = −1.65481 in all cases.
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tb = 1.235, respectively, which are not too different from what we
found earlier. However, the interesting finding is that without consider-
ing the impact of the carbon tax on electricity prices, the State of South
Australia joins now the club of Victoria, Queensland and NSW. This oc-
curs after eliminating a potential factor that contributes significantly
to electricity price divergence, and it confirms our hypothesis that
South Australia had been slowly converging to the first group through
investments in renewables. The introduction of the carbon tax has
lowered this convergence process by affecting those markets that
were most sensitive to it due to their predominance of coal-fired
power production (i.e., Queensland, NSW and Victoria). Once again,
the second club continues to include, as separate cases, Tasmania
and Western Australia, indicating that the remaining factors that drive
convergence (mentioned above) persistently remained.
8. Conclusion

From a market design perspective, it is interesting to identify the
common traits of the markets whose prices may converge over time.
This study has covered the case of Australia and contributed to it in dif-
ferentways. First, it contributed by formally identifying three distinctive
underlying growth patterns for wholesale electricity prices across the
six Australian States. Second, it confirmed that markets that have limit-
ed physical interconnection can achieve price convergence over the
long run under certain degrees of homogeneity in their market struc-
tures. Third, the empirical findings documented that Tasmania and
Western Australia, which are characterized by less competitive markets
in which a major role is played by state-owned companies, share a
separate, non-competitive convergence pattern. This is despite any
major differences between WA and Tasmanian market designs regard-
ing capacity remuneration, namely, the latter being an energy-only
market and the former being a market with a CRM. Fourth, we illustrat-
ed that the introduction of a carbon tax has not altered the price conver-
gence process of the identified clubs of Australian States, with the
notable exception of South Australia, which would have converged to
the club formed by the other NEM States (except Tasmania) had the
carbon tax not been in place.

Policymakers and electricitymarket design experts should take note
of these findings. In practice, it is important to know which market
structures have led to electricity price convergence in Australia and
which have not. The results have confirmed some theoretical expecta-
tions while quantifying the convergence rates. In future research
venues, it would be very interesting to compare the results of this
paper with those derived from electricity markets in other parts of the
globe, as well as assessing the impact of possible technological changes
on the convergence trend. For instance, it could be interesting to assess
the impact on the long-run convergence of the introduction of storage
capacity, which would allow to balance uncontrollable RES on the one
hand, but thatmight also impact profits offlexible thermal power plants
on the other.
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