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a b s t r a c t

A novel two-level scheduling method was proposed in this paper, which helps an aggregator optimally
schedule its flexible thermostatically controlled loads with renewable energy to arbitrage in the intraday
electricity market. The proposed method maximizes the economic benefits of all the prosumers in the
aggregation, and naturally helps balance intra-hour differences between supply and demand of the bulk
power systems because the prices of the intraday electricity market reflects the need of the bulk power
systems. In the proposed two-level scheduling, the upper level is a model predictive control optimization,
of which the objective function is to minimize the sum of energy and capacity cost of imbalances and the
constraints are thermal constraints based on a proposed energy-balanced model, while the lower level
adopts the typical temperature priority list (TPL) control. Simulation results verified the validity of the
proposed method and evaluated the effects of important influencing factors. In the base case, 41.64%
imbalance cost was saved compared to the reference TPL-based control. Moreover, three further conclu-
sions were drawn: (a) the proposed method mainly saves the imbalance cost by reducing imbalance peak,
thus being suitable for places with high capacity price for imbalances; (b) parameter heterogeneity
affects the performance of the proposed method, and average value method performs well only with
low heterogeneity; (c) the performance of the proposed method worsens with the increase of forecast
uncertainty, but keeps better than that of typical TPL-based control unless the forecast uncertainty gets
very strong.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Renewable energy has been being developed rapidly all around
the world during the latest decades, and its penetration in power
systems keeps increasing. A large portion of renewable energy is
being deployed at the household level in the forms of rooftop
photovoltaic arrays and small wind turbines, which makes many
residential consumers become ‘‘prosumers” that are also able to
produce electricity. In spite of various contributions to environ-
mental conservation and sustainable development, renewable
energy of high penetration presents great challenges to power sys-
tems due to its serious randomness and variability, resulting in sig-
nificant demand for operating reserves. Traditional large
centralized regulating generators are not considered to be an ideal
solution because increased ramp and capacity requirement would
lower the efficiency, shorten the lifetime and increase the
wear-and-tear cost of the generators. In contrast, flexible demand
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Nomenclature

Variables
h water temperature (�C)
u on/off status
r amount of imbalance electricity (kW h)
l aggregated thermal load (kW)
a, b, c, d ancillary variables in the linear counterpart

Parameters
Q heater capacity (kW)
R thermal resistance (�C/kW)
C thermal capacitance (kW h/�C)
Dt length of each time step (h)
M mass of water in full storage (kg)
d demand of hot water (kg)
L heat loss (kW h)
C specific heat capacity (kW h/kg �C)
P rated power (kW)
g coefficient of performance
N+ set of all positive natural numbers
N number of time steps of a day
p imbalance price ($/kW or $/kW h)
w renewable generation (kW)
s uncontrollable load (kW)
g day-ahead purchased electricity (kW)
Num total number of thermal loads
C parameter indicating the tightness of thermal comfort

constraints

K value to calculate C
Y general symbol that represents w or s
e forecast error
r standard deviation
X general symbol that represents P, Q, R, C and M

Subscripts
i, t, m, n time step index
en environment
cur before water consumption
low lower limit
up upper limit
water water
standby standby
0 initial state
e energy price
c capacity price
up lacking electricity
down having surplus local generation

Superscripts
^ estimation/forecast
– average value
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has become a promising candidate to provide the needed
fast-response ancillary services for power systems.

The flexible loads of residential prosumers are usually aggre-
gated to balance the variability of local renewable generation or
even to provide ancillary services to bulk power systems. There
are generally two categories of methods for power system opera-
tors to control aggregations of flexible loads. One is direct load con-
trol, in which the blocks of power offered by aggregators are
directly dispatched by power system operators. The other one is
price response, in which aggregators respond to electricity prices
that reflect the relationship between supply and demand of power
systems. The research of this paper lies in the latter price response
field. To be specific, this paper considers an aggregator that aggre-
gates a population of residential prosumers that owns flexible
thermostatically control loads and renewable generation, and
studies the optimal scheduling method used by the aggregator to
arbitrage in the intraday electricity market. The proposed schedul-
ing method maximizes the economic benefits of the whole popula-
tion of prosumers in the aggregation on one hand, and naturally
helps balance intra-hour differences between supply and demand
on the other.

Many relevant papers have been published in this area. First of
all, due to great proportion in electricity consumption and ther-
mal energy storage capability [1,2], a series of direct load control
methods have been developed to control aggregated thermostat-
ically controlled loads for a set of purposes. For example, Lu
investigated the potential of providing intra-hour load balancing
services using aggregated heating, ventilating and air-
conditioning loads [3]. Lu and Zhang also presented design con-
siderations for a centralized load controller to control thermostat-
ically controlled appliances for continuous regulation reserves [4],
and further developed a novel dynamic parameter selection pro-
cess to optimize the performance of it [5]. Sinitsyn et al. designed
safe protocols for generating power pulses with heterogeneous
populations of thermostatically controlled loads to provide ancil-
lary services by assisting in balancing generation and load [6],
and further introduced timers to endpoint load control enabling
better shaping of power pulses [7]. Perfumo et al. developed a
model-based feedback control strategy for load management of
large groups of thermostatically controlled loads [8]. Callaway
developed new methods to model and control the aggregated
power demand from a population of thermostatically controlled
loads to deliver load following and regulation services with appli-
cation to wind energy [9]. Mathieu et al. explored state estima-
tion and control methods to coordinate aggregations of
thermostatically controlled loads to manage frequency and
energy imbalances in power systems [10].

On the other hand, another group of papers have presented
price-based scheduling methods for flexible resources. For exam-
ple, Sossan et al. developed a model predictive control strategy
for the space heating of a smart building including cogeneration
of a fuel cell-electrolyzer system according to a dynamic electricity
price [11]. Vasirani et al. developed an agent-based approach to
model and control virtual power plants that are composed of wind
power generators and electric vehicles [12]. Subramanian et al.
developed and analyzed real-time scheduling algorithms for coor-
dinated aggregation of deferrable loads and storage devices [13]. Ju
et al. established a bi-level stochastic scheduling optimization
model for a virtual power plant connected to a wind-
photovoltaic-energy storage system considering the uncertainty
and demand response [14]. Zapata et al. conducted a comparative
study of imbalance reduction strategies for virtual power plants
that consist of cogeneration devices and photovoltaic installations
in the intraday balancing market [15].

Furthermore, some studies developed price-based scheduling or
control methods for aggregated thermostatically controlled loads.
For example, Lu et al. developed a state-queueing model to analyze
the price response of aggregate loads consisting of thermostatically
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controlled appliances [16], and further studied the modeling
uncertainties using that model [17]. Mathieu et al. investigated
the potential for aggregations of thermostatically controlled loads
to arbitrage intraday wholesale electricity market prices via non-
disruptive load control [18]. Bianchini et al. developed a model
predictive control approach for demand response in building heat-
ing systems [19].

As for the scheduling methodology, the idea of hierarchical
scheduling has been widely used in many power system studies.
Some researchers used it to deal with the multiple time scales in
the scheduling problems, such as the large-time-step day-ahead
scheduling and small-time-step intraday adjustment for virtual
power plants [14], thermal energy storage systems [20] and build-
ing energy systems [21] and the different time scales of combined
heat and power plants and demand response in an integrated com-
munity energy system [22]. Some researchers used it to tackle the
multiple spatial scales involved in the scheduling problems, such
as those in a microgrid [23], an electricity distribution network
[24] and even a transmission network [25]. Other researchers used
the different levels in the hierarchical scheduling to deal with tem-
poral and spatial scheduling respectively [26], or to deal with dif-
ferent energy systems [27].

This paper differs from the above mentioned exiting works
in various ways. First of all, compared with the direct load con-
trol methods presented in [1–10], the method proposed in this
paper assists aggregators to arbitrage in the intraday electricity
market to maximize their revenues and thus contribute to the
balance of the whole power system in an indirect way. Com-
pared to those price-based methods, this paper deals with the
scheduling of thermostatically controlled loads that have unique
characteristics which are significantly different from those of
other devices such as cogeneration units [11], electric vehicles
[12], energy storage systems [13], or general form of flexible
loads [14]. Moreover, although some price-based methods were
also developed for thermostatically controlled loads such as
those in [16–19], this paper further considers the existence of
renewable energy and the capacity cost in the intraday electric-
ity market, which makes the problem and its mathematic for-
mulation much different.

Besides, the proposed two-level scheduling method is novel,
although there have been a lot of works about hierarchical
scheduling in power systems as presented above. Different from
the existing works that designed hierarchical scheduling to deal
with different time scales, spatial scales or energy systems
[14,20–27], the proposed two-level scheduling method is
designed to decompose the target scheduling problem into
two interactive levels of identical time and spatial scales. More-
over, the proposed two-level scheduling method combines the
model predictive control optimization and temperature priority
list -based control for the first time, in which the original
energy-balanced model is the key to describe the aggregated
behavior of the load population at the upper level optimization,
thus linking the two levels.

To summarize, this paper studies the optimal scheduling
method of aggregated thermostatically controlled loads to arbi-
trage in the intraday electricity market at the presence of local
renewable generation. The main novelty and contribution of the
paper is threefold: (i) firstly, a novel two-level scheduling approach
is proposed to manage an aggregation of large amounts of thermo-
statically controlled loads and renewable generation in the intra-
day electricity market; (ii) secondly, an energy-balanced model
for thermostatically controlled loads based on the existing thermal
dynamic model is established for the convenience of aggregated
scheduling. (iii) thirdly, the imbalanced energy and capacity are
considered to be reduced at the same time in the intraday electric-
ity market.
2. Problem description

Residential prosumers owning thermostatically controlled
loads and renewable generation are considered in this paper. An
aggregator contracts with them and acts as their agent to arbi-
trage in the electricity markets. That is, the aggregator manages
all the resources within it to maximize the economic benefits of
the whole population of the prosumers. Specifically, before a
day, the aggregator purchases/sells electricity from/to the day-
ahead wholesale electricity market based on generation and load
forecast, and then within the day, eliminates the real-time elec-
tricity imbalance of the aggregation by exchanging electricity
with the intraday electricity market. This paper assumes that
the trading in the day-ahead electricity market has been settled,
and focuses on the optimal scheduling method for the aggregator
to arbitrage in the intraday electricity market. The above descrip-
tion is illustrated in Fig. 1.

The term ‘‘intraday electricity market” is a general description,
whichmay refer to different entities in different countries. In the U.
S., this market is called ‘‘real-time energy market”, in which load
following reserves on time scales of a few minutes are traded
[13,18]. In most European countries, it refers to the balancing mar-
ket, in which the Balance Responsible Parties (in this paper, the
aggregator) are charged based on the energy and capacity costs
of the power system reserves if their actual generation/consump-
tion deviates from their schedules [15,28].

In this paper, it is assumed that the aggregator does not bid
into the intraday electricity market, but rather purchases/sells
electricity at whatever price the market clears. It is also assumed
that the power input/output of the aggregator is sufficiently small
so that the market prices are not affected. If the power input/out-
put of the aggregator is too large to be neglected, the market
prices will be affected, thus reducing the potential for arbitrage.
In this case, the calculated revenues in this paper can be seen
as an estimated upper bound of the revenues of the aggregator
in the intraday market. Similar assumptions and analysis can be
found in [18].
3. Modeling of thermostatically controlled loads

In this section, an energy-balanced model is established based
on the thermodynamics of thermostatically controlled loads for
the convenience of formulating them in the scheduling problem.
Typical thermostatically controlled loads include air conditioners,
heat pumps, electric water heaters and refrigerators. In this paper,
electric water heaters are selected as a representative to demon-
strate the modeling and scheduling method of thermostatically
controlled loads.
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3.1. Thermodynamic process

The equivalent thermal parameter (ETP) approach [29] is used
in this paper to describe the thermodynamics of electric water hea-
ters, i.e. their heat exchange process with the ambient environ-
ment and with cold water inflows. Differential equations are
used to calculate the water temperature evolution process. Specif-
ically, the water temperature is calculated by

hiþ1 ¼ hen;i � ðhen;i � hiÞ expð�Dt=ðRCÞÞ þ ui � QRð1� expð�Dt=ðRCÞÞ
ð1Þ

where hi is the water temperature in the hot water storage; hen,i is
the environmental temperature; ui is the on/off status of the water
heater; i represents the ith time step. Q, R and C are heater capacity,
thermal resistance and thermal capacitance of the water heater
respectively. When hot water is consumed, the water temperature
is modified by

hi ¼ ðhcur;iðM � diÞ þ hen;idiÞ=M ð2Þ
where hcur,i is the water temperature before the consumption at the
ith time step;M is the mass of water in full storage; di is the demand
of hot water drawn during the ith time step.

Throughout the whole scheduling horizon, the hot water tem-
perature is controlled within a range to satisfy the customer
demand and device limit, i.e.,

hlow 6 hi 6 hup ð3Þ
where hlow and hup are the lower limit and the upper limit of the hot
water temperature respectively.

3.2. Energy-balanced model

Formulas (1)–(3) focus more on the temperature evolution
process of hot water, but in the scheduling process, we care
more about the amount of thermal energy that is gained
through heating process, lost due to standby heat loss and
hot water use, and needed to guarantee thermal comfort.
Besides, the form of formulas (1)–(3) is not convenient for
aggregation when formulating the scheduling problem of large
amounts of electric water heaters. Therefore, formulas (1)–(3)
are used to deduce the following formulas (4)–(7) which will
be used to formulate the constraints of the scheduling problem
in the next section.

First of all, the heat loss due to hot water use (that is, cold water
inflows), Lwater,i, is estimated by

Lwater;i ¼ di � cwater � hi � hen;i
� � ð4Þ

where cwater is the specific heat capacity of water, while the standby
heat loss, Lstandby,i, is estimated by

Lstandby;i ¼ Mcwater hi � hen;i
� �ð1� expð�Dt=ðRCÞÞ ð5Þ

Heat loss, including standby heat loss and heat loss due to water
use, causes water temperature decrease. Therefore, to maintain the
water temperature within the required range [hlow, hup], the heat-
ing schedule of the electric water heater should satisfy

Xi

n¼1

ðun � P � g � DtÞ P
Xi

n¼1

Lwater;i þ Lstandby;i
� ��Mcwaterðh0 � hlowÞ

8i 2 ½1;N�; i 2 Nþ ð6Þ
and

Xi

n¼1

ðun � P � g � DtÞ 6
Xi

n¼1

Lwater;i þ Lstandby;i
� �þMcwaterðhup � h0Þ

8i 2 ½1;N�; i 2 Nþ ð7Þ
where P is the rated power of the electric water heater; g is the
coefficient of performance (COP) of the electric water heater; h0 is
the initial temperature of the water in the storage; N+ represents
the set of all positive natural numbers.

Note that the energy-balanced model established above just
describes the thermal process of one single thermostatically con-
trolled load only. It is further used in the next section to formulate
the thermal comfort constraints in which the thermal behaviors of
the whole population of thermostatically controlled loads are
described implicitly by accumulating the equations (4)–(7) of each
single load.

4. Two-level scheduling of aggregated thermostatically
controlled loads with renewable generation in the intraday
electricity market

4.1. Two-level scheduling overview

As shown in Fig. 2, the aggregator keeps the real-time energy
balance of the aggregation by controlling the flexible thermostati-
cally controlled loads and trading electricity with the intraday
electricity market. Through the two-level scheduling, the aggrega-
tor maximizes the economic benefits of the whole aggregation in
the intraday electricity market by reducing the electricity imbal-
ance. Specifically, (i) the upper level conducts model predictive
control (MPC) optimization based on historical data, current mea-
surement data and forecast data, generating the optimized aggre-
gate load signal of the current time step for the lower level; (ii)
the lower level conducts temperature priority list-based control
(TPL-based control) to follow the aggregate load signal from the
upper level, generating the specific load control commands for all
the thermostatically controlled loads. The communication infras-
tructure required by this two-level scheduling framework is the
same as that of conducting the typical TPL-based control which
has been well described in [4,5].
renewable generation.
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4.2. Upper level scheduling: MPC optimization

Model predictive control optimization is conducted at the upper
level at each time step, generating the load schedule of aggregated
thermostatically controlled loads from the current time step to the
end of the scheduling horizon. However, only the load schedule of
the current time step will be issued to the lower level to be fol-
lowed at each time step.

4.2.1. Objective function
The objective of the upper level optimization is to minimize

the total imbalance cost of the whole aggregation throughout
the scheduling horizon. The aggregator pays the imbalance cost
to the intraday electricity market to eliminate the electricity
imbalance in the aggregation. The total imbalance cost is
calculated by

min
XN
t¼i

pe-up;t � rup;t � Dt
� �þXN

t¼i

pe-down;t � rdown;t � Dt
� �þ pc-up

�maxt2½1;N�frup;tg þ pc-down �maxt2½1;N�frdown;tg ð8Þ
where the first two terms represent the energy cost and the last two
terms represent the capacity cost. N represents the number of time
steps of a day, and Dt represents the length of each time step; p rep-
resents imbalance price; r represents the amount of imbalanced
electricity; the subscript i represents the current time step; the sub-
script ‘‘e” and ‘‘c” indicate the type of imbalance prices, represent-
ing energy price and capacity price respectively; the subscript
‘‘up” and ‘‘down” indicate the directions of imbalance, ‘‘up” repre-
senting lacking electricity and ‘‘down” representing having surplus
local generation (the corresponding imbalance called ‘‘up imbal-
ance” and ‘‘down imbalance” respectively).

4.2.2. Constraints
In the first place, real-time energy balance in the aggregation

should be maintained. Therefore, the following constraints should
be satisfied:

rup;t ¼ max 0; lt þ ŝt � ŵt � gtf g ð9Þ

rdown;t ¼ max 0; ŵt þ gt � lt � ŝtf g ð10Þ

8t 2 ½i;N�; t 2 Nþ

where ŵt and ŝt are the estimation of total renewable generation
and uncontrollable load at the tth time step respectively, which
are forecast at the ith time step; gt is the day-ahead purchased elec-
tricity at the tth time step, which is known exactly during the intra-
day scheduling optimization; lt is the aggregate load of the
thermostatically controlled load population at the tth time step,
which is the decision variable to be optimized; i represents the cur-
rent time step.

In the second place, human comfort on hot water use should be
satisfied. Therefore, according to the energy-balanced model estab-
lished in Section 3.2, the aggregate load of thermostatically con-
trolled load population should satisfy

Xi�1

m¼1

lmDt þ
Xt

n¼i

lnDt P
Xi�1

m¼1

XNum
j¼1

Lwater;m;j þ Lstandby;m;j

� �

þ
Xt

n¼i

XNum
j¼1

Lwater;n;j þ Lstandby;n;j
� �

�
XNum
j¼1

Mjcwater h0;j � hlow;j
� � 8t

2 ½i;N�; t 2 Nþ ð11Þ
and

Xi�1

m¼1

lmDt þ
Xt

n¼i

lnDt 6
Xi�1

m¼1

XNum
j¼1

Lwater;m;j þ Lstandby;m;j
� �

þ
Xt

n¼i

XNum
j¼1

Lwater;n;j þ Lstandby;n;j
� �

þ
XNum
j¼1

Mjcwater hup;j � h0;j
� � 8t

2 ½i;N�; t 2 Nþ ð12Þ

where Num represents the total number of thermostatically con-
trolled loads; i represents the current time step; m and n are the
time step index before and after the current time step respectively.
Note that the first terms at the left side of (11) and (12) (the sum of
lmDt) are known exactly during the optimization because the
metering devices can provide the information of historic power
consumption of each thermostatically controlled load. The ln in
the second terms at the left side of (11) and (12) are the decision
variables to be optimized.

In reality, the terms at the right side of (11) and (12) are difficult
to be known exactly during the optimization because: (i) it is dif-
ficult for the aggregator to know specific thermal parameters (R,
C, etc.) of each thermostatically controlled load; (ii) the hot water
use and environmental temperature for each thermostatically con-
trolled load throughout the scheduling horizon are not known; (iii)
the temperature of water in the storage for each thermostatically
controlled load throughout the scheduling horizon is not known
beforehand. Due to the above difficulties, several efforts are made
in the following to estimate the unknown or uncertain parameters.

First of all, the parameter distribution characteristics of the
thermostatically controlled load population can be estimated by
investigating a number of samples of the whole population. Then
we can use the average parameter values for each thermostatically
controlled load. Similarly, we can investigate the hot water use of
typical users, and then use it to estimate the total hot water use of
the whole population. Finally, the water temperature in the storage
throughout the scheduling horizon is assumed to be a constant
value between the lower and the upper bounds. Under the above
assumptions, the first term at the right side of (11) and (12) is cal-
culated by

XNum
j¼1

Lwater;m;j þ Lstandby;m;j

� � ¼ lm�1Dt �
XNum
j¼1

Mcwater hm;j � hm�1;j
� � ð13Þ

whereM is the average value ofM; hm,j and hm-1,j can be obtained by
metering devices as discussed before. The second terms at the right
side of (11) and (12) is calculated by (14):

XNum
j¼1

Lwater;n;j þ Lstandby;n;j
� � ¼ Num � dn � cwater

�hlow þ C �hup � �hlow
� �� ĥen;n

h i

þ Num �M � cwater
�hlow þ C �hup � �hlow

� �� ĥen;n
h i

� 1� expð�T=R=CÞ
h i

ð14Þ

where the parameters with the overbar represent the average value.
C is the pre-assigned parameter which indicates the tightness of
the constraints (11) and (12). C = K for (11) and C = 1-K for (12),
where K 2 [0,0.5]. The higher the K is, the tighter the constraints
would be. Similarly, we calculate the third terms of (11) and (12)
using the average values if we do not know the exact parameter val-
ues for each load.
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4.2.3. Linear counterpart
The objective function (8) and constraints (9) and (10) include

the nonlinear terms max{�} which makes the optimization prob-
lem difficult to be solved. In this part equivalent linear counterpart
is established for them to make it easy to be solved by existing
developed linear optimization tools. Specifically, the objective
function (8) is transformed to

min
XN
t¼i

pe-up;t � at � Dt
� �þXN

t¼i

pe-down;t � bt � Dt
� �þ pc-up � c

þ pc-down � d ð15Þ
with additional constraints:

c P at 8t 2 ½i;N�; t 2 Nþ ð16Þ

d P bt 8t 2 ½i;N�; t 2 Nþ ð17Þ

c P maxf0; lm þ sm �wm � gmg 8m 2 ½1; i� 1�; m 2 Nþ ð18Þ

d P maxf0;wm þ gm � lm � smg 8m 2 ½1; i� 1�; m 2 Nþ ð19Þ
where a, b, c and d are non-negative ancillary variables, and the
right-side terms of (18) and (19) are known constants at the current
time step i. Besides, the constraints (9) and (10) are transformed to

at � lt P ŝt � gt � ŵt 8t 2 ½i;N�; t 2 Nþ ð20Þ

bt þ lt P gt þ ŵt � ŝt 8t 2 ½i;N�; t 2 Nþ ð21Þ
So far, all the nonlinear terms have been transformed equiva-

lently to linear forms. Therefore, the upper-level MPC optimization
is now a continuous linear optimization problem which is com-
posed of the objective function (15), energy-balance constraints
(20) and (21), thermal comfort and device constraints (11) and
(12) and additional constraints (16)–(19). The total load profile of
the thermostatically controlled load population lt is the decision
variables to be optimized as well as the additional variables a, b,
c and d. Detailed tricks used in the linearization can be found in
[30].

4.3. Lower level control: TPL-based control

At each time step, the upper level sends the signal of optimized
current total load of thermostatically controlled load population to
the lower level. The lower level conducts the typical TPL-based
control to follow the total load signal. To support the TPL-based
control, communication infrastructure needs to be constructed to
collect the real-time temperature and power consumption of each
thermostatically controlled load and to send the on/off control sig-
nals. TPL-based control has been described in detail in [4,5], and
the procedure is summarized briefly as shown in Fig. 3.

5. Case study

Several cases are presented in this section to explore the perfor-
mance of the proposed two-level scheduling method. In all cases,
the proposed two-level scheduling method is compared with the
typical TPL-based control to explore its strengths and weaknesses.
Base case demonstrates the basic characteristics of the proposed
two-level scheduling method, while the other cases explore the
effects of various factors.

5.1. Base case

Base case is used to validate the effectiveness of the proposed
two-level scheduling method and its basic characteristics. The
studied aggregator is assumed to manage 200 controllable electric
water heaters, 9 MWp wind generation and 9 MWp uncontrollable
loads. The thermal parameters and the hot water use are shown in
Table 1 and Fig. 4 respectively. Besides, the wind generation and
the total uncontrollable load are shown in Figs. 5 and 6
respectively.

In the base case, the electric water heater population is
assumed to be homogeneous, that is, their thermal parameters
and water use are assumed to be identical to each other. Moreover,
the energy prices for the up imbalance and the down imbalance are
assumed to be equal, as shown in Fig. 7, and the capacity prices for
the up imbalance and the down imbalance are assumed to be equal
as well, to be 100 $/MW h. Besides, during the intraday rolling
scheduling process, the forecast of future wind generation and
uncontrollable load are considered accurate. It is worth noting that
the effects of these assumptions on the performance will be stud-
ied respectively through sensitivity analysis in Case I to Case III.

Before the rolling scheduling in the intraday electricity market,
the aggregator trades electricity with the day-ahead electricity
market based on the day-ahead forecast of all the loads and renew-
able generation within it, that is,

gi ¼ ŝi þ l̂i � ŵi i ¼ 1;2 . . .N ð22Þ



Table 1
Thermal parameters of the electric water heaters [29].

P (W) Q (W) R (�C/kW) C (kW h/�C) M (gallon) hlow (�C) hup (�C)
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Fig. 4. Hot water use throughout the day [29].
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Fig. 5. Total wind generation throughout the day.
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Fig. 6. Total uncontrollable load throughout the day.
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Fig. 7. Energy price for imbalance in the intraday electricity market [31].
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Recall that gi represents the electricity traded in the day-ahead

market at the ith time step. ŝi, l̂i and ŵi represent the day-ahead
estimation of total uncontrollable load, thermal load and
renewable generation at the ith time step respectively. In the
whole case study section (Section 5), we generally assume that
the estimation equals to the actual value plus a random forecast
error that follows normal distribution, i.e.

bY t ¼ Yt þ
Xt

n¼i

en; t ¼ i; iþ 1; . . . ;N

en ¼ 0; n ¼ i

en � Nð0;r2
nÞ; n > i

� ð23Þ

where bY t represents the estimation made at the ith time step, for a
general variable (load/generation) of the tth time step. Yt represents
the actual value and en represents the forecast error. Note that the

deviation of the estimation bY t from the actual value Yt increases
with the prediction window length (t-i). Specifically for generating

the day-ahead estimation of ŝi, l̂i and ŵi, we could just let i be 1 in

(23). The ‘‘actual value” of l̂i is assumed to be the total heat loss
(heat loss due to hot water use plus standby heat loss) of the ther-
mostatically controlled load population which is calculated by (4)

and (5). In the base case, for day-ahead estimation ŝi, l̂i and ŵi,
the standard deviation rn of en is assumed to be 20% of the actual
values, so that within the day electricity imbalance will occur and
the aggregator needs to reduce the imbalance in the most econom-
ical way.

Under the above assumptions, the proposed two-level schedul-
ing and typical TPL-based control are applied to control the ther-
mostatically controlled load to follow the real-time imbalance of
the aggregation. The length of time step, Dt, is set as 10 min. The
results are presented in Figs. 8, 9 and Table 2. Note that the LIN-
PROG solver in the optimization toolbox of MATLAB is used to
solve the upper level MPC optimization considering it is a contin-
uous linear optimization problem.

Fig. 8 shows that the two methods arrange the electric water
heaters to work in different ways, which result in different trading
patterns in the intraday electricity market, especially during 17:00
to 24:00. From Fig. 8, it can be seen clearly that the maximum
imbalance under the two-level scheduling (being 300 kW) is sig-
nificantly lower than that under TPL-based control (being
800 kW). Because of this, the capacity cost under the two-level
scheduling comes to be much lower than that under TPL-based
control, as presented in the third column of Table 2. In terms of
energy cost, the two methods are quite close, as presented in the
second column of Table 2. Therefore, in this case, the proposed
two-level scheduling method is able to save 41.64% imbalance cost
compared to the TPL-based control method.

In addition, Fig. 9 shows the water temperature dynamics of the
200 electric water heaters. It can be observed that the water tem-
peratures are always between the lower and the upper limits for
both methods, which means that both methods can guarantee
the thermal comfort.

5.2. Case I: Effects of imbalance prices

The base case shows that the proposed two-level scheduling is
superior to the typical TPL-based control significantly in terms of
imbalance cost. However, actually this conclusion might be
affected severely by the imbalance prices. Therefore, various
imbalance price scenarios are presented to test the proposed



(a) The imbalance under the proposed two-level scheduling throughout the day. 

(b) The imbalance under the TPL-based control throughout the day. 
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Fig. 8. The imbalance under the two methods throughout the day.

(a) Water temperature in the tanks for the 200 electric water heaters under the proposed method. 
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(b) Water temperature in the tanks for the 200 electric water heaters under the TPL-based control. 
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Fig. 9. Water temperature dynamics under the two methods.

Table 2
Imbalance cost under the two methods.

Method Energy cost
($)

Capacity cost
($)

Total imbalance cost
($)

Two-level
scheduling

14.32 52.36 66.68

TPL-based control 13.30 100.96 114.26
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two-level scheduling method as well as the typical TPL-based con-
trol. Note that in all scenarios all the settings and parameters are
exactly the same as those of the base case except for the energy
prices and the capacity prices. The scenarios and corresponding
results are listed in Table 3.

From Table 3, it can be seen that the total cost saving of the pro-
posed two-level scheduling mainly comes from reducing the peak
capacity of imbalance. Specifically, the first 3 scenarios demon-
strate that the total costs under the two methods are close to each
other. The typical TPL-based control behaves even slightly better
than the proposed two-level scheduling when there is no capacity
charge for imbalance. The latter 5 scenarios show that the pro-
posed two-level scheduling saves more money with the increase
of capacity price, steadily saving about 40–50% cost when the
capacity price is high.



Table 3
Imbalance cost of the two methods under different imbalance prices.

Scenarios Total imbalance cost ($) COSTTLS�COSTTPL
COSTTPL

� 100%
pe-up

pe-down
pc ($/kW) Two-level scheduling TPL-based control

0.5 0 17.26 16.75 3.04%
1.0 0 14.22 13.30 6.92%
0.5 0 10.04 9.84 2.03%

1.0 0.01 19.38 23.39 �17.14%
1.0 0.05 39.17 63.78 �38.59%
1.0 0.1 66.68 114.26 �41.64%
1.0 0.5 253.60 518.10 �51.05%
1.0 1.0 551.54 1022.91 �46.08%

Table 5
Comparisons of the two methods under different forecast errors.a

Scenarios (r) Average total imbalance cost ($)

Two-level scheduling TPL-based control

0.0 66.68 114.26
0:1Y 80.08

0:2Y 96.39

0:3Y 100.83

0:4Y 104.49

0:5Y 119.65

a Y represent the actual values as presented in Section 5.1.
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5.3. Case II: Effects of heterogeneity and parameter accuracy

In the base case, the electric water heater population is consid-
ered homogeneous, which most of the time is not the case in real-
ity. Therefore, the effects of heterogeneity will be examined in this
part. Specifically, the thermal parameters of the electric water hea-
ter population, P, Q, R, C and M, are assumed to follow uniform dis-
tribution. The two methods are tested under different
heterogeneity strengths. For the proposed two-level scheduling,
two further situations are considered: (i) assume that all the ther-
mal parameters are known exactly before the scheduling; (ii) aver-
age values described in Section 4.2.2 are used. The scenarios and
corresponding results are presented in Table 4. Note that for all
scenarios, all the other settings and parameters are assumed to
be same as those of the base case.

The results presented in Table 4 show that the proposed two-
level scheduling is easier to be affected by parameter heterogene-
ity, while the performance of the typical TPL-based control is
stable. In spite of this, the proposed two-level scheduling always
performs better than the TPL-based control when there are accu-
rate thermal parameters. As for the average value situation, it per-
forms very close to the accurate value situation when the
parameter heterogeneity is slight, while its performance gets
increasingly worse with significant parameter heterogeneity, being
even worse than the typical TPL-based control.

From the results we can also see that parameter accuracy is very
important to the proposed method. The parameters of water hea-
ters, such as Q, R, C, P, etc., can be estimated by curve fitting
approaches with high accuracy based on the operation measure-
ment data, as described in [3]. Considering the communication
infrastructure of TPL-based control measures the real-time tem-
perature and power data for each water heater, it is physically fea-
sible for the aggregator to use these data to identify the parameters
for each water heater. If in some cases the aggregator is not
allowed to use these data in this way due to some reasons (e.g. pri-
vacy concerns), the proposed method using average parameter val-
ues or the typical TPL-based control has to be used according to the
heterogeneity level.
Table 4
Comparisons of the two methods under different thermal parameters.a

Scenarios (X represents P, Q, R,
C and M)

Total Imbalance Cost ($)

Two-level scheduling TPL-based
control

Accurate
values

Average
values

X 2 ½1:0X;1:0X� 66.68 66.68 114.26

X 2 ½0:9X;1:1X� 71.25 71.00 105.62

X 2 ½0:7X;1:3X� 103.60 164.54 107.71

X 2 ½0:5X;1:5X� 103.09 246.17 116.88

a X equal to the typical thermal parameter values as listed in Table 1.
5.4. Case III: Effects of forecast errors

In the base case, we assume all the intraday forecasts are accu-
rate, including the forecast for wind generation and uncontrollable
load. In this part, we explore the effects of forecast errors, which
are ineluctable in practice. As presented by (23) in Section 5.1,
we assume that all the forecast errors follow the Gaussian distribu-
tion. The mean value is assumed to be 0, and the maximum fore-
cast standard deviation r is assumed to take different values to
generate scenarios of different levels of forecast errors. For each
level of r, Monte Carlo simulation method is used to evaluate the
two methods by calculating the average cost of 30 scenarios. Note
that all the other settings and parameters are the same as the base
case. The results are presented in Table 5.

From Table 5, it can be observed that the performance of the
two-level scheduling gets worse and worse with the increase of
forecast uncertainty. However, its performance keeps better than
that of TPL-based control as long as the r is below 0.5 Y . Note that
the TPL-based control is immune to forecast uncertainty because it
relies on no forecast data, but its imbalance cost stays at a compar-
atively high level.
6. Conclusion

A two-level scheduling method was proposed in this paper to
help an aggregator optimally schedule its thermostatically con-
trolled loads with renewable generation to arbitrage in the intra-
day electricity market. A model predictive control optimization
based on the proposed energy-balanced model was used for the
upper level, which minimizes the sum of energy cost and capacity
cost of imbalances, while the typical TPL-based control was
adopted for the lower level.

Simulation results showed the performance of the proposed
two-level scheduling method. Compared to the typical TPL-based
control, 41.64% imbalance cost was saved by using two-level
scheduling in the base case. Several factors affect the performance
of the proposed two-level scheduling. Firstly, the two-level
scheduling mainly saves the imbalance cost by reducing imbalance
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peak, thus being suitable for places with high capacity price for
imbalances. Secondly, parameter heterogeneity affects the perfor-
mance of two-level scheduling, and average value method per-
forms well only with low heterogeneity. Thirdly, the performance
of the two-level scheduling worsens with the increase of forecast
uncertainty, but keeps better than that of typical TPL-based control
unless the forecast uncertainty gets very strong.

The above simulation results were obtained based on practical
device parameters and market price data, showing that the pro-
posed two-level scheduling method has some advantages over
the typical TPL-based control that has been implemented in some
places. Therefore, the proposed method can be used by aggregators
to optimally schedule their thermostatically controlled loads to
arbitrage in the intraday electricity market. In the real world, many
aggregators manage flexible thermostatically controlled load
resources (e.g. the Open Energi in the UK [32]) and many places
have the intraday electricity markets as described in the paper
(e.g. the U.S.A. and many European countries). Therefore, the pro-
posed method have good potential in real application.

There is still space for further improving and expanding the
research. Future research can develop in the following directions:
(i) develop robust scheduling methods to deal with parameter
and forecast uncertainty; (ii) propose distributed scheduling and
control methods instead of centralized ones for the aggregated dis-
tributed energy resources, e.g. the .alternating direction method of
multipliers (ADMM) approach [33].
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