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A B S T R A C T

The European electricity markets are going through a phase of agitating transition, which is shaped by different
key factors, such as the expansion of renewable energies, the changes in the EU carbon trading scheme and the
European market integration. In addition, markets are affected by the volatile prices of primary energy carriers,
e.g. gas and coal. The development of these different factors led to a decline of German wholesale electricity
prices of almost 40% — from about 51 €/MWh in 2011 to 31 €/MWh in 2015.

The goal of this study is to analyze the contribution of different price drivers to this decline. Thus, an agent-
based modeling and a regression approach are applied to investigate the effect of price drivers and to verify
model results by comparing both approaches. Our results show that, against the public perception, the impact of
carbon and coal prices on German electricity prices has been twice as high as the renewable expansion between
2011 and 2015. Furthermore, if carbon and coal prices do not recover to at least the level of 2011, electricity
prices will remain on the current low level complicating the economic operation of gas power plants.

1. Introduction

European electricity markets are currently going through a phase of
transition, which is shaped by three key factors: The expansion of
renewable energies, especially wind power and photovoltaics, the
phase-out of nuclear energy and the European market integration.

Different promotion schemes were installed in European countries
to support the expansion of renewable energies. Germany as a leading
country in the promotion of renewable energy already introduced its
first renewable energy law (“Stromeinspeisegesetz”, (Bundesregierung,
1990)) in 1991. This law is regarded as the first feed-in law worldwide
and marked the start of a tremendous rise of renewable energies. In
2000, technology-specific feed-in tariffs were established, as most
renewable energies have not been able to undercut the costs of
conventional fossil-fueled power plants. These tariffs guaranteed a
fixed price for all electricity generated in a predetermined period that is
paid by the transmission system operators who pass on the costs to the
end consumers (German Renewable Energy Sources Act,
(Bundesregierung, 2000)). In 2015, renewable energies contributed
with 195.9 TWh (about 30%) to electricity generation, which compared
to 2005 corresponds to an increase of 213% (Federal Ministry for
Economic Affairs and Energy, 2016). Among the different renewable
energy sources, wind is currently the most important source of energy
production with a share of 44.9% followed by biomass (22.6%) and

photovoltaic (19.6%). However, considering entire Europe, hydro-
power still has the largest share with 45.4% mainly due to the
electricity production in the Alpine and Scandinavian countries
(European Commission, 2015).

A major advance for the integration of the European electricity
markets represents the market coupling in Central Western Europe
(Benelux, France and Germany) at the European power exchange
(EPEX SPOT), which started on November 9, 2010 (European Power
Exchange, 2016). About three years later, market coupling was
extended to also include North-Western Europe (NWE). Through
market coupling, generation capacities can be used more efficiently
across borders and market participants profit from welfare gains
(Weber et al., 2010). As long as sufficient interconnecting capacities
between neighboring countries are available, wholesale prices in
coupled markets converge, leading for instance to identical day-ahead
market prices in Germany and France in about 27% of the time in
2015.

In the last years, the transition of the German electricity market was
accompanied by a substantial price decline in the base as well as peak
wholesale prices (see Fig. 1). In 2011, the yearly base price corre-
sponded equal to 51.12 €/MWh but dropped to 31.63 €/MWh in 2015,
a decrease of roughly 38%. Electricity generators have been profoundly
affected by these developments, even more so as no capacity remu-
neration market is currently implemented in Germany. Many power
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plants are facing diminishing return. Currently, the decommissioning
of 9 GW of thermal capacities within the next years is expected (Federal
Network Agency, 2016a), stirring up concerns about generation
adequacy.1 In order to safeguard the transition phase of the electricity
market and to guarantee the security of supply, the German govern-
ment decided to implement a capacity reserve that will be procured in
December 2016 (Federal Ministry for Economic Affairs and Energy,
2015). Investment decisions in a changing market with major un-
certainties are challenging and certainly not all market participants
expected the ongoing price decline. E.ON SE, for example, decided in
2008 to build a state-of-art gas-fired power plant (Irsching 5) with an
efficiency of 59.7% and in 2010, Irsching 5 was commissioned.
However, on 1 April 2016, the power plant was scheduled to be
decommissioned due to economic reasons (Uniper, 2016).2

In the public perception and many political discussions, the blame
for the current price slide and the related developments is shifted to the
expansion of renewable energies, which have been strongly fostered by
financial subsidies. Additionally, in the recent academic discourse,
there is a broad spectrum of research that focuses on the impact of the
promotion of renewable energies, but only few studies have been
undertaken to analyze the impact of other factors on wholesale
electricity prices. Therefore, this paper contributes to the academic
discussion by providing a quantitative analysis of the fundamental
price drivers and their impact on the recent decline in the German
wholesale electricity prices, which also can be observed in other
European markets such as France, Italy or Spain. To understand also
the future effect of these price drivers on electricity prices and power
plant investments, different scenarios for the development of price
drivers until 2020 are generated and applied. These scenarios allow on
the one hand to understand, how strongly electricity prices can vary in
2020, and on the other hand to assess the economic feasibility of power
plant investments, especially that of gas power plants. For this reason,
in the final step, an economic evaluation is carried out based on a net
present value (NPV) approach for a state of the art technology, a
combined gas power plant (CCGT) like the Irsching plant.

The remainder of the paper is structured as follows. In Section 2,
selected studies on price drivers in electricity markets are discussed. In
the next section, our methodology is described, and three different
models are presented. Section 4 then shows an analysis of the main
price drivers in the German electricity market. Finally, in Section 5 we
summarize the results and conclude.

2. Literature review

In this section, we present an overview of previous studies that

analyze the influence of fundamental factors on electricity prices. In
these studies, a wide range of models3 is utilized. According to
Aggarwal et al. (2009), electricity market models can be classified into
game theory, simulation and time series models. Game theory models
often focus on the strategies of the market players, simulation models
create a detailed representation of the electricity system and time series
models use historical data of the dependent variable. Since there does
not exist a study in the subject scope of this study that utilizes a game
theory model, in the following, we only distinguish between simulation
and time series models.

In line with the rise of renewable energies, many of the recent
studies focus on the effect of wind and photovoltaic on the electricity
price, the so-called merit-order effect (Sensfuß et al., 2008), and do not
discuss the impact of fuel price changes or changing import/export
flows. Furthermore, as Würzburg et al. (2013) point out, it must be
kept in mind that the comparability of studies regarding the merit-
order effect is limited due to the heterogeneous approaches, e.g.
different sets of included fundamental variables (e.g. fuel prices,
market scarcity), alternate scope (inclusion of neighboring countries
or emission trading systems) and varying scenarios (no changes or
alternative capacity expansion paths). An overview on the selected
literature can be found in Table 1.

2.1. Simulation models

One of the first studies of the merit-order effect is carried out by
Sensfuß et al. (2008), who use an agent-based model of the German
electricity market to analyze the effect of electricity production from
wind power and photovoltaic on the day-ahead electricity price. They
determine an average price reduction for the year 2001 of 1.70 €/MWh
and for the years from 2004 to 2006 a reduction of 2.50–7.83 €/MWh.
In another study, Sensfuß (2013) applies the same model and
calculates a price reduction of 8.72 and 8.91 €/MWh for 2011 and
2012 respectively. In this analysis, the electricity production of biogas
and biomass is considered as well as additional capacities of coal and
gas-fired power plants in the scenario with no renewable production.
Bode and Groscurth (2006) take a rather simplistic approach by
calculating the intersection of the electricity demand and supply curve
under the assumption of perfect competition and static daily demand
profiles for each month. They show that the price reduction depends on
the level of the installed renewable capacity and quantify the effect in
the case of an elastic demand at 0.55 €/MWh per GW and in the case of
a nearly inelastic demand at 0.61 €/MWh per GW.

Using a fundamental merit-order model of the German electricity
system that separates between 34 different power plant types, Weber
and Woll (2007) find that in 2006 the feed-in of wind leads to a short-
term price reduction of 4.04 €/MWh when compared to a scenario with
no wind feed-in. However, if the wind capacity is replaced by alter-
native hypothetical power plants, they expect a medium-term price
effect of −0.4 €/MWh and long-term effect of −1.00 €/MWh.

In another study, Weigt (2009) carries out an analysis of the effects
of wind energy by applying a model of the Germany electricity market
that minimizes unit commitment, start-up and marginal costs without
taking into account cross-border flows. While the results show that the
installed capacity cannot significantly reduce fossil capacities, it,
however, does reduce the average wholesale market price.

Based on the work of Traber and Kemfert (2009), Traber and
Kemfert (2011) apply an optimization model (ESYMMETRY) to
analyze the impact of wind energy in Germany. Compared to the prices
of a counterfactual scenario with no wind feed-in, the historical
wholesale electricity prices from winter 2007 to autumn 2008 are on
average 3.7 €/MWh higher. In a subsequent study, Traber et al. (2011)

Fig. 1. The day-ahead market prices for the German/Austrian market zone.
Source: Own illustration based on data from European Power Exchange (2016).

1 As power plant owners are not obliged to explain the reasons for a decommissioning,
it not clear to which extent the decisions are based on economical or technical reasons.

2 Already in 2012, Irsching 5 achieved only half of the expected yearly operating hours
(Reuters, 2013) and became part of a reserve for redispatch measurements until 2016.
Afterward, the power plant was supposed to be decommissioned. However, this decision
is currently facing a ban from the regional TSO due to security and reliability of supply
concerns.

3 A recent discussion and outlook on electricity price modeling can be found e.g. in
Weron (2014).
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compare two scenarios for the German electricity market in 2020, one
baseline scenario with an expansion of renewable capacities and one
scenario with no further expansion of renewable capacities but
increased coal power plant capacity. Here, the additional electricity
production of renewable energies is expected to lead to a price
reduction of 3.2 €/MWh. Ederer (2015) analyzes the historical and
expected impact of offshore wind in Germany from 2007 to 2019.
Instead of constructing a detailed fundamental model, they use original
market data for ask and the supply bids. For scenarios with additional
wind capacity, a short and a long-term effect are incorporated, i.e.
additional electricity supply bids at low variable costs and the replace-
ment of base-load capacity. The simulation suggests that on short-term
decreasing prices are related to the excess of supply, but on long-term
market average prices do not change due to additional wind generation
since base-load power plants are replaced. However, due to the limited
availability of wind compared with thermal capacities, the electricity
price shows increased volatility.

Contrary to most studies that focus on the day-ahead market,
Kallabis et al. (2016) introduce a parsimonious model for the electricity
futures market and analyze the development of the German futures
prices from 2007 to 2014. They obtain the result that the volatile
carbon emission allowances price was by far the most important driver
of electricity prices with an effect of 14.14 €/MWh – more than the
combined impact of changes triggered by the demand, thermal
capacities and renewables (12.81 €/MWh). Subsequently, according
to their results, the overall contribution margin of the power plants was
affected the most by the increasing electricity production from renew-
ables followed by the regressing demand. Moreover, they find that the
effect of the carbon price on the margins is twofold, while gas-fired and
nuclear units face decreasing margins, the more carbon-intensive
technologies such as coal and lignite-fueled power plants could
increase their profits.

2.2. Time series models

In contrast to the previous studies that represent the electricity
system by using bottom-up modeling approaches, the papers presented
in following paragraphs rely on econometric concepts, especially
regression models to analyze the drivers of wholesale electricity prices.
O'Mahoney and Denny (2011) develop an hourly multiple linear
regression model for the Irish electricity market. They find that in
2009 the electricity price is 12% lower due to electricity generation
from wind and with additionally installed wind capacity the electricity
price decreases by 9.9 €/MWh per GW. In a subsequent study, in order
to analyze the generator behavior in the Irish electricity market,
O'Mahoney and Denny (2013) construct a multiple linear regression
model with a set of variables that includes the fuel/carbon prices, the
marginal capacity and the net demand that is covered by the conven-
tional supply. They apply the model to hourly data from 2009 and show
that the Irish price mainly depends on the gas price, the net demand
and the marginal capacity. The coefficients of coal and oil price are not
significant which they explain by the fact that in Ireland about 60% of
the conventional capacities consist of gas-fired power plants.

In another piece of research, Würzburg et al. (2013) analyze the
effects of the electricity generation of photovoltaic and wind for the
German–Austrian market area via a multiple linear regression model
that amongst others includes the load, gas price and cross-border flows.
With data from July 2010 to June 2012, they quantify the impact of the
wind and photovoltaic feed-in at about 1 €/MWh per GWh, which they
describe as counterintuitive since the photovoltaic feed-in frequently
correlates with higher demand than wind. Cludius et al. (2014) analyze
the distributional effects of the rising renewable generation for different
types of electricity customers by developing a multivariate regression
model of the electricity price similar to Gelabert et al. (2011). They find
that the electricity generation by photovoltaic and wind has reduced the
electricity price by 6 €/MWh in 2010 and 10 €/MWh in 2012, which

energy-intensive industries benefit from since, in contrast to private
households, the industries cover only a small share of the passed through
charges. Additionally, they carry out a prognosis for 2016 and estimate
the price reduction to be around 14–16 €/MWh, depending on the
different regarded expansion paths of renewable energies.

In a recent analysis, Dehler et al. (2016) focus on the Swiss
electricity market and its interdependencies with neighboring countries
in the timeframe of 2011–2014. They apply a multiple linear regression
model and show that during summer the electricity price and the feed-
in from renewables in Germany affect the Swiss price while during
winter, peak load situations in Italy and France are correlated with high
prices on the Swiss market.

Evaluating the effects of the nuclear moratorium in Germany in
March of 2011, Thoenes (2014) develops a semiparametric cointegra-
tion model that incorporates daily prices of carbon emission allowan-
ces, natural gas and electricity. The results indicate that the change of
the gas and carbon emission allowances price is insufficient to explain
the increase in the futures electricity prices. Immediately after the
decision, futures electricity prices showed a capacity effect of 6 GW, but
after several trading days, this effect decreased.4

Instead of applying a classical linear regression model, Paraschiv
et al. (2014) take a different approach by developing a dynamic
fundamental model, which is used to analyze the impact of fuel and
carbon prices as well as wind and photovoltaic on the day-ahead
electricity price in Germany. By using separate time-varying coeffi-
cients for each hour of the day, they show how the impact of the
fundamental variables depends on the load profile. For example, the
effect of wind is highly dynamic, in night hours with a low demand the
impact of wind can lead to strong price changes and even negative
prices might occur.

In summary, the literature review shows the wide range of different
approaches that are used to analyze especially the price impact of
renewable energy sources. Since the sharp price decline in wholesale
prices from 2011 to 2015 is not sufficiently analyzed in the existing
literature, our research enhances the literature by focusing on this
extraordinary development of the German wholesale electricity prices
in this study. However, as many other European electricity markets
face the same price decline triggered more or less by the same drivers,
the analysis can be transferred to other spot markets going through
similar changes like the switch to renewable energies.

While other studies apply a single method, which has its specific
limitations, we apply different modeling approaches to the same
research question to derive robust results taking into account these
limitations. Moreover, we try to provide robust results by comparing
two different years, thus, the stochastic influences e.g. a stronger or
weaker wind year should have less importance. Contrary to other
approaches (e.g. Kallabis et al. (2016)), the agent-based model applied
in this study is able to incorporate, for example, different market
players, ramping costs and strategic behavior.

3. Modeling approach

In order to analyze the price development in the German electricity
market, a threefold approach featuring a standard linear regression, a
dynamic regression5 and an agent-based simulation model is adopted
and described in the following subsections (for an overview see
Table 2). In this way, the results of the models applying the same data
can directly be compared and the strength and weaknesses of each
approach can be considered. A linear regression model, for example,
relies on strict assumptions such as the homogeneity of variance or the
absence of multicollinearity in the input data that cannot always be
ensured (e.g. Berry and Feldman, 1985). Additionally, non-linear

4 This might be attributed to adaption effects e.g. different exchange flows.
5 A detailed description of this model is provided in the appendix of this article B.1.
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dynamic effects, for instance, the shutdown of several nuclear power
plants in 2011 in Germany, are difficult to implement. In contrast to
linear regression models, agent-based models can integrate these
effects, but rely on detailed data that is not always publicly available
— e.g. the efficiency of power plants or the local heat demand that
companies often treat as trade secrets — and hence assumptions have
to be made that are difficult if not impossible to verify.

3.1. Linear regression model

We use a multivariate regression model similar to O'Mahoney and
Denny (2013), where the hourly day-ahead electricity price pt is the
dependent variable and the explanatory variables consist of the hourly
load loadt, the hourly forecasted feed-in from photovoltaic
solarForecastt and wind windForecastt and the lagged daily prices for
natural gas gasPricet−24, hard coal coalPricet−24 and CO2 emission
allowances carbonPricet−24.

6 Seasonal dummies dst are introduced to
reflect systematic changes in the demand and the planned non-
availability of power plants, which usually is higher during the summer
and, hence, affects the fuel mix. Instead of choosing dummies to
capture the daily and weekly patterns in the electricity prices that are
caused by the different typical demand curves, which e.g. are lower at
night and on weekends, the regression was applied for each combina-
tion of the day type, either a working day or a non-working day
t d WD WE↦ ∈ { , }, and the hour of the day t h↦ ∈ {1, 2, …, 24}:

∑

p β β Load β windForecast β solarForecast

β gasPrice β coalPrice β carbonPrice

β ds d t d h t h

= + + +

+ + +
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=1

3

,
(1)

As the estimation of the β-factors can be affected negatively by
multicollinearity, ideally, all exogenous variables should be uncorre-
lated. While for some of the exogenous variables no relationship is
expected e.g. the emission allowances price and the wind feed-in,
others might influence each other, for example, the fuel prices. In order
to test for multicollinearity, a condition number test was carried out
(Belsley et al., 1980). The test results do not indicate severe multi-
collinearity, but there is a strong relationship between the intercept and
the load as well as a moderate dependency between the emission
allowances, coal and gas price (see Table A.1).

Outlier

The electricity prices from 2011 to 2015 contain only few outliers

(see Table 3). However, these outliers, the upper as well as the lower
ones, can significantly affect the results of the regression. While outliers
can contain valuable information and do not necessarily have an
adverse effect on the reliability of the results (Belsley et al., 1980),
we found that in our case the coefficient of determination R2 improved
considerably when the outliers were excluded from the calculation of
the coefficients. In order to identify the outliers, we apply the iterative
process7 proposed by Trück et al. (2007).

3.2. Agent-based simulation model

In addition to the previously described regression models, an agent-
based bottom-up model of the German electricity market is chosen.
Agent-based models have already served as a tool to assess a wide
range of research questions in the context of electricity markets (e.g.
(Guerci et al., 2010; Weidlich and Veit, 2008; Ringler et al., 2016)).
Depending on the scope, each model features a certain architecture
(e.g. included market areas, timely resolution) and a different set of
agents. These sets usually contain agents that represent the most
relevant market participants who interact with other agents, who make
their own decisions based on public and private information and learn
from their past behavior (Tesfatsion, 2006). One major advantage of
the agent-based approach is that imperfect markets such as oligopolies
can be represented.

As reliable input data is essential for obtaining accurate results —

especially for a bottom-up model that requires large amounts of
information — data needs to be chosen with care. For the model, all
power plants of capacity greater than 10 MW are included with their
techno-economic characteristics (efficiency, net capacity, fuel, …) based
on an official list provided by the Federal Network Agency (2016b). As
national grid restrictions do not influence the day-ahead price forma-
tion in Germany, the German market area is regarded as a “copper
plate”.

In this model, the day-ahead market is operated by a central agent
who receives bids from the different demand and supply agents. The

Table 2
An overview of the applied models.

Objective Strength Weakness

Linear regression model Explain dependent variable (electricity
price) through regressors (e.g. demand,
wind)

Easy to implement, wide-spread method Multi-correlations have to be ruled out (Belsley et al., 1980), non-
linear dynamic effects cannot be captured (e.g. the shutdown of
several nuclear power plants)

Dynamic fundamental
model

Capturing the varying influence of
fundamental parameters on dependent
variable

Dynamic influences can be considered
while keeping a closed mathematical
structure

Estimation of coefficients is complex, the system of equations
requires many parameters (Bai et al., 2013)

Agent-based model Detailed bottom-up model of relevant
system (e.g. power plants, market
players)

Imperfect markets and private
information can be included, scenarios

Time-consuming implementation, decision-making rules hard to
validate

Table 3
Statistical outliers in the day-ahead electricity prices. Data: European Power Exchange
(2016).

Prices < −25 €/MWh Prices > 100 €/MWh

Occurrences Percentage Occurrences Percentage

2011 3 0.03% 11 0.13%
2012 23 0.26% 60 0.68%
2013 15 0.17% 17 0.19%
2014 16 0.18% 0 0.00%
2015 8 0.09% 0 0.00%

6 Similar to Würzburg et al. (2013), we find that the electricity exchange with
neighboring countries was most often insignificant and alternated between having a
positive or negative impact. This is probably related to the fact that the exchange flows
strongly depend on the expected price differences with neighboring markets and as these
differences are not included in the model, it is challenging to interpret the exchange flows
in itself. Thus, we decide to exclude the exchange from the regression.

7 In a first step, all outliers are determined as prices that are outside of the interval
I σ x x σ= [ − 3 + , + 3 ]∼ ∼ where σ denotes the variance and x∼ the median of the electricity
prices. This step is then repeated until all prices lie within the interval I.
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supply side is modeled with a high level of detail. In order to determine
the bids for its plants, each electric supply agent follows a multistep
process. First, the price of the next day is forecasted. Based on the
forecasted prices as well as the techno-economical restrictions, such as
the start-up time of the power plant, a possible operating schedule is
determined. Then, the supply agents submit hourly bids that include
the variable costs and, in case the power plant is not already running,
linear distributed start-up costs. To avoid start-up costs, block bids
with a price below the variable costs can be placed for a base-load
power plant, e.g. in a situation with high wind feed-in where the unit is
expected to be out of the market for several hours. Thus, negative
prices can be simulated as well. Different renewable energy sources,
e.g. photovoltaic, wind, biomass, running water, are incorporated in the
model. Since the model focuses on the German electricity market, the
exchange with other countries is represented by an exchange agent that
trades the historical exchange volumes.

After all agents have submitted their bids, the market operator
determines the market-clearing price and the accepted volume for all
bids. The electric supply agents then determine the dispatch off their
power plants for the next day and learn from their profits.

A more thorough description of the model, as well as validation of
the model's results, is provided by Bublitz et al. (2014).

4. Data and model validation

In this section, we provide an overview of the different data sources
and a descriptive analysis of the price drivers in the regarded period
from 2011 to 2015. Afterward, we use this information to validate the
different selected models.

4.1. Data sources

As the day-ahead market price can be seen as an hourly reference
price for the German electricity market, the German/Austrian day-
ahead market price at EPEX SPOT was chosen for the analysis in the
next section. While the intraday market could have been chosen as well,
in comparison the total trading volumes on the day-ahead market are
several times higher. In order to adequately model the day-ahead price,
all other data should represent the day-ahead level of information as
more recent information was not available to the market participants
when submitting their bids to EPEX SPOT.

The hourly German electricity load Load*t is published by the
European Network of Transmission System Operators for Electricity
(ENTSO-E, 2016). Since the total monthly load values do not cover the
total monthly consumption, e.g. 95% for 2014 and 97% for 2015,8 a
constant for each month and year cy m, is added to the hourly load values
so that 100% of the consumption is represented.9

Load Load c= * +t t m y, (2)

Due to the stochastic nature of the electricity generation from solar and
wind, market participants do not have knowledge of the exact next-day
electricity feed-in from solar and wind when participating in the day-
ahead market and need to rely on forecasted values. While each market
participant uses undisclosed forecasts methods, there exists a publicly
available forecast from each transmission system operators for their
network area which we use.10 As the forecasted feed-in differs from the

total yearly feed-in published by the Federal Ministry for Economic
Affairs and Energy (2016), the forecast is scaled by a parameter cy:

Wind c Wind= · *t y t (3)

Due to the time-consuming transport of coal, coal is not traded on the
spot but futures market at the EEX. For the analysis in the next section,
the monthly futures of the coal reference index API2 at the ARA inland
ports (API2-CIF-ARA-Coal-Month-Future) are used.

Since October 2011, there are two market areas for the trading of
natural gas in Germany, GASPOOL that spans from North to East
Germany and NetConnect Germany (NCG) from South to West
Germany. For both market areas, a daily reference price is published
at the EEX. The arithmetical average of these reference prices is then
used for the case study.

For the carbon price, the settlement price of the EU-Emission
Allowances (EUA) of the relevant trading phase (II or III) at the EEX is
applied.11

4.2. Descriptive analysis of the price drivers

An overview over the yearly averages, the standard deviation, the
minimum and maximum for each of the selected fundamental variables
is provided in Table 4. Several conflicting trends can be identified:
From 2011–2015 the load and the coal prices are decreasing, while the
feed-in from photovoltaic and wind is increasing. The gas price shows a
more volatile development, first the price rises until 2013 and after-
ward drops to a lower level than in 2011. By contrast, the CO2 price
falls until 2013 and then increases but stays behind the average value
of 2011. The yearly standard deviation, as well as the range of the
emission allowances, hard coal and natural gas price, are relatively low
in comparison to the load and the feed-in from wind and photovoltaic.

As OTC transactions only account for a minor volume of the short-
term electricity trades, the day-ahead price for the German-Austrian
market area can be regarded as a reference price. Electricity producers
offer their conventional capacities based on their variable costs that
mainly consists of fuel, emission allowances and operation and
maintenance costs. Fig. 2 shows these capacities sorted ascending by
their variable costs (merit order curve) for the years 2011 and 2015.
Base-load power plants, i.e. nuclear and lignite-fired power plants have
the lowest variable costs, followed by coal and gas-fired power plants
and peak load oil-fired units. The shut-down of roughly 11 GW of
nuclear capacities in 2011 shifted the whole curve to the left, which
alters the electricity price in most hours, as the minimum load from
2011 to 2015 is roughly 35 GW (see Table 4). This effect is partially
compensated by the growing feed-in from wind and photovoltaic that
increased from 2011 to 2015 on average by 6.6 GW. Moreover, the low
carbon and coal price lead to an increased competitiveness of coal-fired
power plants. As the gas price has only slightly decreased and gas-fired
fuel plants are not as strongly affected by the lower carbon price, gas-
fired power plants – even those with a high efficiency – cannot compete
with coal-fired power plants in 2015.

Fig. 6 shows the relationship between the residual load12 and
electricity prices. It can be observed that an increase of the load usually
results in a higher market price. If the residual load falls below a certain
level and base-load power plants for some hours are forced to be turned
off, negative prices can occur due to slow ramping rates, start-up costs
and the obligation to provide system services such as the provision of
primary reserve capacity. Negative prices strongly depend on the
number of operational base-load plants and mostly occur at night,
when a low demand coincides with a high feed-in from wind.

8 This difference is mainly caused by the decentralized electricity generation and
consumption in the grids of larger municipal utilities or industrial companies (BMWi,
2013).

9 While a linear scaling factor could also be applied, in some cases this results in
unreasonably high load values, thus, adding a monthly constant is the better option.

10 Even though the data is usually published around 6p.m. on the previous day and
thus usually not available to the market participants when submitting their bids to the
day-ahead auction, which takes place at 12 a.m, it is assumed that this forecast is a
reliable approximation of the different forecasts of market participants.

11 Since no price exists for a weekend day or holiday, in this case, the last available
price is extrapolated.

12 Here the residual load is defined as the load subtracted by the electricity generation
from wind and photovoltaic.
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4.3. Model validation

In the following, we give a brief overview of the adequacy of the
selected models for the price analysis described in the next section.
While the linear regression model and the agent-based model yield
valid results, the results of the dynamic fundamental model are only of
limited informative value and, thus, are not regarded in the following
analysis.13

The linear regression model has a high explanatory power with R2

ranging from 0.69 to 0.83 (see Table A.2). Almost all coefficients of the
selected fundamental variables are highly significant, except the
coefficients of the gas price for several hours on weekends and the
coal price in some night hours on weekends. As the load is typically

lower on weekends and during the night, gas-fired power plants usually
do not run on weekends and thus, is it not surprising that the gas price
is not affecting the electricity price. The same holds true for the coal
price since during very low load situations only base-load plants are
operating.

As shown in Bublitz et al. (2014, 2015a, 2015b); Keles et al. (2016),
the agent-based simulation model is well capable of representing
electricity market dynamics. Seasonal, weekly and daily patterns are
adequately represented, which results in significant statistical figures
e.g. a R2 above 0.75 or a mean average error (MAE) below 4.

5. Analysis of the price decline

In this section, we carry out an analysis of the decline of the
German wholesale electricity prices based on historical data. First, we
apply the models from Section 3, calculate the price effect of the
different fundamental factors and compare the effect with existing
studies. Then, we show how the development of the electricity price is
affected by the selected fundamental factors in two scenarios.

5.1. Impact of each price driver

Based on the data mentioned above and the different modeling
approaches introduced in Section 3, we will analyze the main drivers
for the electricity price development at the EPEX SPOT market,
especially the price reduction between 2011 and 2015. Therefore, we
will determine the price reduction effect itself weighted with the hourly
load in the analyzed year. The relative price effect will be calculated
with the help of the regression model as well as with the agent-based
simulation model. In the case of the regression model, the coefficients
of the analyzed fundamental drivers will be used to determine the
effect:

pe x T
β x Load

Load
( , ) =

∑ · ·

∑
t T d t h t

x
t t

t T t

∈ ( ), ( )

∈ (4)

In the case of the simulation model, two different runs are carried out.
The first run is done by using the historical numbers for the analyzed
fundamental parameter, e.g. carbon prices, and year (2014 or 2015),
the second run is carried out by fixing the value of the analyzed
parameter at the level of 2011, while the others remain the same as in
the first run. The difference of electricity prices from both runs
represents then the price (reduction) effect pe of the analyzed para-
meter:
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Based on the models' results and the defined measures for the price
reduction effect, the impact of main price drivers is analyzed in the
following. Surprisingly, the price impact of the strong expansion of PV
(from 2011 to 2015) in the last four years is not as strong as mentioned
in recent public discussions (in total 2.10 €/MWh calculated with the
ABS model between 2011 and 2015 and 2.40 €/MWh with the
regression model respectively). The impact of wind power, however,
seems to be stronger, especially if the year 2015 is examined. The sharp
increase in German wind installations (on- and offshore) in 2015
combined with a windy year leads to a more significant wind merit-
order effect. The price reduction resulting from wind power feed-in
increased from rather low values below 1.00 €/MWh in 2014 to
3.30 €/MWh in 2015 determined with the agent-based model or
4.40 €/MWh with the regression model respectively. Both models
determined a significant wind effect, which is, however, still below
the price reduction effect of carbon or coal prices.

As illustrated in Fig. 3, the decrease of coal and carbon prices has by
far contributed the strongest to the price reduction between 2011 and
2014 or 2015. The regression model calculates a stronger price impact

Table 4
Overview of the main input data. Data: (ENTSO-E, 2016; European Energy Exchange,
2016).

Load PV Wind Gas price Coal price Carbon price
[GW] [GW] [GW] [€/MWh] [€/MWh] [€/EUA]

2011 Mean 62.13 2.24 5.56 22.78 12.48 12.97
SD 11.15 3.31 4.67 1.42 0.42 2.88
Min 35.96 0.00 0.29 15.27 11.67 6.50
Max 88.48 13.94 24.50 26.18 14.24 16.84

2012 Mean 61.46 3.00 5.75 25.16 10.46 7.37
SD 11.12 4.53 4.57 2.07 0.62 0.71
Min 35.98 0.00 0.25 20.24 9.41 5.71
Max 87.03 20.64 24.46 40.25 12.34 9.31

2013 Mean 60.57 3.54 5.89 27.16 8.84 4.48
SD 10.16 5.54 5.01 1.79 0.48 0.67
Min 36.95 0.00 0.30 25.20 7.97 2.68
Max 82.32 24.59 27.67 39.48 9.84 6.53

2014 Mean 60.43 3.99 6.37 21.13 8.09 5.95
SD 10.67 6.03 5.55 3.01 0.30 0.70
Min 36.00 0.00 0.30 15.36 7.53 4.35
Max 83.03 25.61 29.72 28.28 8.93 7.24

2015 Mean 59.50 4.39 10.01 19.88 7.21 7.67
SD 10.74 6.68 8.31 2.04 0.57 0.58
Min 35.26 0.00 0.55 13.40 6.00 6.42
Max 81.57 27.84 43.45 24.24 8.23 8.65

Fig. 2. The merit order of the conventional capacities in Germany at the beginning of the
year 2011 and 2015. Source: Own illustration based on data from European Energy
Exchange (2016); Federal Network Agency (2016b).

13 A detailed discussion of the underlying causes can be found in the appendix of this
article.
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for the coal price than the agent-based simulation, whereas for carbon
prices it is vice versa. However, both models determine these two
parameters as the main price reducers with a total price reduction
effect of almost 11 €/MWh.

The results of the agent-based model show also that the price
reduction between 2011 and 2015 would be even stronger if there was
the same amount of capacities in the market as in 2011. The decrease
of power plant capacities in the German electricity market (especially
due to the nuclear phase out) and the growing net electricity exports
lead to a recovery of prices by about 4.30 €/MWh and 4.60 €/MWh
respectively.

However, there are some differences in the height of the impact of
especially coal and carbon prices determined by the two different
models (agent-based and linear regression model). Compared to the
linear regression model, a lower price reduction effect of carbon prices
is determined by applying the fundamental agent-based approach. This
may result from the fact that mainly lignite-fueled power plants, as the
most carbon-intensive technology, show a corresponding change in
variable costs, but as base-load power plants, they are rarely price
setting. Additionally, the increase in the electricity price induced by the
carbon price is lowered when a fuel switch e.g. from coal to gas occurs.
These effects are better captured by a fundamental agent-based model
than by a statistical approach, so that price impact is much lower than
the one in the case of the linear regression model. Another explanation
of the high effect of the regression model might be that it does not
include other explanatory variables, e.g. the electricity flows with
neighboring countries or the German plant fleet, which can lead to
an overestimation of the betas of the included variables.

The price effect of coal prices determined with the agent-based is
about 2 €/MWh higher than the one calculated with the regression
model. Since the agent-based model incorporates each power plant
with its technical characteristics, it has the strength to adequately
represent changes in the merit-order and hence, can provide a good
estimation of the induced price effect. The agent-based model, there-
fore, can also deal with non-linear relationships between coal and
electricity prices, while the linear regression model cannot capture
these non-linearities and may underestimate the price reduction effects
caused by significant changes in coal prices.

Overall, it can be stated that both models determine the develop-
ment of the coal and carbon emission certificate prices as the main
source for the reduction of wholesale electricity prices the German
electricity market faces since 2011, while the impact of the fluctuating
renewables is considerably lower. However, the differences in the
renewables effects between 2014 and 2015 show that this effect is
growing with the ongoing expansion of especially wind capacity.

5.2. Scenarios for the price effect and economic feasibility of gas
power plants in 2020

In the following, the agent-based and the regression model are used
to forecast the electricity prices in 2020 applying two scenarios for the
fuel prices and a scenario for renewable power production extracted
from ÜNB (2015). For the “low” fuel and carbon price scenario, the fuel
prices are assumed to remain at the current level, while the 2011 prices
are assumed as a “high” price scenario for 2020.

The results indicate that the volume weighted average prices in
2020 will fall to or even below 30 €/MWh if the fuel and carbon prices
stay on today's level. The additional reduction is expected to originate
from the renewable power expansion until 2020, as all the other
parameters remain on the same level as in 2015. An even stronger
decrease would be expected if there was not be some already known
decommissioning of power plant capacity, which is considered in the
agent-based model. This may also be the reason why the model predicts
a smaller price reduction.

In contrast to the “low” price scenario, a strong increase in
electricity prices is determined by both models in the “high” fuel and
carbon price scenario, in which the electricity prices are expected to
reach the 40 €/MWh level again. In this scenario, the fuel and carbon
price increase to the level of 2011 would strongly overbalance the price
reduction effect of the additional RES expansion in the electricity
sector.

Based on the electricity price development described above, Table 5
shows also the number of hours with a positive spread between the
electricity prices and the variable costs of a combined cycle gas turbine
(CCGT). It is obvious that the number of hours with a positive spread is
further reduced in the “low” fuel and carbon price scenario, while there
is a significant increase in the “high” price scenario. The numbers of a
positive spread increase again to more than 2300 and even to 2782
determined by the agent-based model for the high price scenario. The
increase in time with positive spread leads to a positive annual return
for an exemplary CCGT power plant with 55% efficiency rate, an
emission factor of 0.202 t/MWhth, other variable costs of 2 €/MWh
and operational fixed costs of 19 k€/MW (Blesl et al., 2012). However,
the annual return is only slightly positive, so that it can be stated that
without reaching the level of 2011 for coal and carbon prices or without
further decommissioning of coal and lignite capacities, it will be
difficult for even very efficient CCGT plants to operate economically
feasible. Hence, if carbon and fuel prices remain at the low level of
2015, another market mechanism will be required to keep this efficient
and flexible gas capacity in the market, especially if it should serve as
backup capacity for fluctuant renewables.

5.3. Comparison of the results with existing studies

To embed our results into the discussion about electricity price
drivers, we compare our results to those in the literature. As most of the
existing studies focus only on the merit order effect of renewables, we
carry out the comparison based on this criterion. We extend this then
to the comparison of other price drivers analyzing the relative effect of
these parameters, as there is hardly any study analyzing exactly price
decline between 2011 and 2015. That is why the relative effect is
calculated also from the absolute values described in other studies
about price drivers (Fig. 4).

However, at first, the regression model is applied to determine the
total effect of fluctuant renewable energy sources. The price reduction
of renewables, i.e. the merit order effect, is equal to 8 €/MWh in total

Fig. 3. Price effect 2014. Source: Own illustration.

Table 5
Volume weighted day-ahead market price, hours with a positive clean spark spread (CSS)
and annual return under different fuel scenarios of an exemplary CCGT power plant
(efficiency 55%).

Year Scenario Price Annual return # hours with
[-] [-] [€/MWh] of a CCGT [k€/MW] positive CSS [h]

2011 Historical 51.96 39.68 5338
2014 Historical 34.35 −6.31 2076
2015 Historical 33.05 −3.65 1947
2020 Low Regression 28.26 −8.07 1380
2020 Low ABSM 30.02 −4.18 1547
2020 High Regression 40.29 1.58 2382
2020 High ABSM 40.07 2.77 2782
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for 2011 and 9 €/MWh for 2012, which is in the range of the merit
order effect determined by Sensfuß (2011), who applies an agent-based
model of the German electricity market (see Fig. 5).

In 2015, the merit order effect of the renewables available in total
corresponds to 14.70 €/MWh. Cludius et al. (2014) determine a similar
effect, whereby they use estimated values for the electricity prices in 2015.
This shows that the hourly linear regression model introduced in Section
3.1 produces similar results for renewable effect compared to other models.

Comparing the results with Kallabis et al. (2016), who carry out a
study for the decrease of German electricity future prices from 2007

until 2014, a similar relative price impact14 can be observed for CO2

prices. Kallabis et al. (2016) calculate an electricity price reduction of
0.71 €/MWh per €/EUA price reduction.15 We determine a relative
price effect of 0.70–1.09 €/MWh per €/EUA. This also applies to the
effect of renewables, which corresponds to a reduction of 0.13 €/MWh
per TWh power feed-in from RES and is close to the range of our
calculated effect of 0.08–0.12 €/MWh per TWh.16 However, there are
interdependent effects between the price of carbon emission allowances
and the level of renewable generation. While the effects are still
investigated (Hintermann et al., 2016), in the long-term, a demand
reduction induced by an expansion of renewable energies should lower
the carbon price. Nonetheless, for the regarded time period, renewables
explain only a small part of the carbon price variations (e.g. (Koch
et al., 2014; Rickels et al., 2015)). Also taking into account that the
expansion of renewable energies in Germany has only a limited impact
on the European level, the interdependent effects should be negligible
for the results of this study.

Regarding the effect of coal and gas prices, the relative effect
calculated from the absolute values of Kallabis et al. (2016) is not
indicative due to the small total change of the price drivers within the
analyzed time period. However, within the time period of this study the
fuel prices possess a significant development. Thus, we could deter-
mine a strong price reduction effect for especially coal prices 0.91–
1.12 €/MWhel per €/MWhth). That is why we determine the coal price
beside the carbon price as the strongest price driver between 2011 and
2015, while they only see the carbon price as the main driver of future
electricity prices between 2007 and 2014.

5.4. Critical reflection of the modeling approach and results

Although the models described in Section 3 perform quite well to
determine electricity price drivers, which becomes evident from the
comparison of the results with other studies, the applied approaches
have still room for improvement. To analyze the price impact of each
influencing parameter between 2011 and 2015, we run two fundamen-
tally different models, a linear multiple regression model based on
historical time-series of the prices and their drivers as well as a
fundamental agent-based approach that considers all important system
elements of the electricity market. Thereby, it has to be mentioned that
especially the linear regression model is not able to capture the non-
linearities in the price relation. However, as we calibrate different
regression models for each of hour of the day and make a further
differentiation for workdays and non-workdays, the models are usually
applied to relatively similar situations where the non-linearity should
not distort the results.

The applied agent-based model simulates the German electricity
system with its main fundamental elements. However, static import
and export flows are used in the model to describe the electricity
exchanges between Germany and its neighboring countries. This
approach does not consider the reciprocal effect between prices and
exports/imports and therefore possible changes in the price impact. In
future research, this issue is to be addressed. However, we do not
expect a significant change in the effect of each price driver, as
wholesale prices in the neighboring countries show a similar develop-
ment in the last years as the German electricity price and hence the
cross-border flows are expected to be stable after varying a price
parameter.

Additionally, the static approach we use for the determination of

Fig. 4. Price effect 2015. Source: Own illustration.

Fig. 5. Merit order effect in Germany from 2011 to 2015. The results from Cludius et al.
(2014) for the period from 2013 to 2015 are taken the scenarios “reference” (2013/2014)
and “high wind” (2015) and thus deviate from the historical feed-in values. Source: Own
illustration.

Fig. 6. The hourly day-ahead market prices as a function of the residual load. Source:
Own illustration based on data from European Power Exchange (2016); European
Energy Exchange (2016); ENTSO-E (2016).

14 Here, a relative effect means that the absolute effect is broken down to the marginal
change of a price driver.

15 As Kallabis et al. (2016) show only the absolute effect in their study, we calculate the
relative effect based on their absolute values for the base electricity futures with delivery
in 2014 that traded in Q4 2007 and Q4 2013.

16 In a working version of the paper (Kallabis et al., 2015), a value of 0.09€/MWh was
presented, thus, closely matching the range in our results.
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the price effect needs to be addressed as well. More detailed, we keep
all other parameters fixed at the level of 2015 and change the analyzed
parameter between the values of 2011 and 2015. We do not consider
effects that a parameter would have on the other influencing para-
meters, if it really stayed at the level of 2011, e.g. the lower availability
of wind power would influence the exports. As we consider a smaller
period of four to five years, in which no larger differences in invest-
ments in power plants can be expected and the structure of the energy
system may not strongly change, the model error without considering
the interdependencies is assumed to be rather low. Therefore, the
calculated price reductions of each parameter are still meaningful.
However, the analysis could be extended allowing more cross-depen-
dencies in future with applying e.g. vector autoregressive models.

6. Conclusions and policy implications

In this study, the main price drivers for the electricity prices at
EPEX SPOT are analyzed focusing on their contribution to the price fall
between 2011 and 2015 (decline of about 20 €/MWh). While recent
studies have mainly focused on the price effect of renewable energies,
especially photovoltaics and wind, and determined the so-called merit
order effect, in this paper, the focus is set on the most important
fundamental price drivers that lead to the price reduction in recent
years. Our results demonstrate that fuel and carbon prices still have a
dominating impact on wholesale electricity prices and that the drop in
coal and carbon emission allowance prices was the main reason for the
decline of electricity spot prices. Contrary to ongoing discussions, the
strong expansion of photovoltaics in Germany was not the main price
driver, and the related merit-order effect was not primarily responsible
for the strong decline in wholesale electricity prices. The additional
price effect of photovoltaics between 2011 and 2015 was relatively low
compared to the effect of coal and carbon prices. Hence, the wide-
spread opinion that the merit order effect of renewables is the main
reason for the low prices we face today at wholesale markets has to be
at least partly rejected. The total price effect of renewables since their
market introduction makes up 14–15 €/MWh in Germany and is
indeed a strong effect. However, the additional price effect between
2011 and 2015 is contributing only partly (5.40 €/MWh determined
with the agent-based model, 6.80 €/MWh with the regression model)
to the price decrease of almost 20 €/MWh in this period.

Using different types of models for our analysis proved to be helpful
to gain a thorough understanding of the price impact of the regarded
fundamental factors and to quantify the related uncertainty. As all
models have their specific shortcomings, the application of several
models helps to derive robust results. As the linear regression model
can be implemented with relatively little effort it seems to be a suitable
way to identify the main trends. However, caution has to be paid for
large input changes that might result in non-linear effects. In this case,
the agent-based bottom-up model yielded more plausible results.
Nevertheless, the implementation and application of this type of
models is time-consuming, which might have contributed to the fact
that many recent studies apply regression models. The results of the
time-varying regression model are of limited benefit for our analysis as

in contrast to the volatile feed-in of wind and photovoltaic, the price
effect of the gradually changing fuel and carbon prices is not adequately
captured. The linear regression and the agent-based model, however,
can also be used to analyze price effects in other countries and
electricity markets, which faced a strong price decrease in the last
years, too.

Furthermore, the price models are used to analyze the income
situation and the annual return of gas power plants, which will still be
required in the future energy system to balance fluctuating renewables.
The scenario analysis for 2020 shows that if the coal and carbon prices
recover to the level of 2011, a modern CCGT power plant can generate
enough income to meet the variable and operational fixed costs. In this
situation, the prices are high enough to achieve a slightly positive
annual return. This may be sufficient to keep existing gas-based
capacity in the market, but would not incentivize new investments.
However, the development of other parameters, such as surplus
capacities in the electricity market, plays also an important role for
the recovery of electricity prices and hence for the profitability of gas-
fired power plants.

In this context, the decision of the European Commission to
establish a market stability reserve from 2019 on and to take emission
certificates out of the carbon market is a step towards the right
direction. However, it may not be sufficient to completely remove the
oversupply with certificates and thus, to achieve a recovery of certificate
prices. Regarding the development of the current surplus volume in the
next years, additional measures might be necessary to trigger an
increase in carbon prices in order to make the operation of more
environment-friendly gas power plants favorable compared to coal
power plants. However, policy measures regarding carbon policy have
to be installed at European level and should even be harmonized
worldwide, as more restrictive national measures without harmoniza-
tion can lead to “carbon leakage” or a new surplus of certificates in the
EU ETS.

If carbon and coal prices remain at the current low level, an
economic operation of gas power plants will be hardly possible and it
will be difficult for energy suppliers to keep them in the market. In this
case, other market mechanisms, such as a capacity remuneration
mechanism, will be required to operate these flexible power plants
profitably and thus, to keep them in the electricity market. However,
implementing new market regulations has to be done with care, as it
can disturb the market operation resulting in new uncertainties for
investors.

Continuing low prices will keep the market value of electricity
generated from RES at a low level as well, which in turn makes higher
funding volumes for renewables necessary. Also in this respect, the
recovery of coal and carbon certificate prices is essential.
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Appendix B. Dynamic fundamental model

B.1. Model description

Similar to Paraschiv et al. (2014) and Karakatsani and Bunn (2008), we develop a state space model with time-varying regression coefficients for
the day-ahead electricity prices. Applying an approach with time-varying coefficients is based on the assumption that the price formation is
continuously adapting to the changing fundamental factors, e.g. sudden decommission of nuclear capacities, European market integration, new
regulatory policies (e.g. market stability reserve) or new market rules (e.g. negative prices or block bids). Using a time-varying model has already
proven to be effective in the studies of e.g. Mount et al. (2006) or Karakatsani and Bunn (2010).

Similar to the linear regression model, the dynamic fundamental model is implemented for each hour of the day, so daily patterns e.g. hours with
high or low demand can be analyzed separately, yet in contrast, for this model only working days are included. This is related to the fact that coal,
gas or carbon emission allowances are only traded on working days and thus for weekends/holidays no separate values exist which, however, are
required for an adequate calibration.17

The incorporated variables differ slightly from the linear regression model with constant parameters. In order to deal with autocorrelation and
include price signals, we use the lagged hourly electricity price from the previous day. The lagged price should have a positive reinforcing influence
on the current price, as extreme electricity prices tend to occur within a short time frame (Huisman and Mahieu, 2003). The model is then
formulated as follows:

y X b= + ϵi t i t i t i t, , , , (B.1)

b b η= +i t i t i t, , −1 , (B.2)

Table A.2
Goodness of fit for the linear regression model.

R2 R2 adj RMSE

Hour WD WE WD WE WD WE

0 0.767 0.745 0.766 0.741 4.502 5.915
1 0.740 0.744 0.739 0.740 4.683 5.753
2 0.726 0.723 0.724 0.719 4.960 5.981
3 0.711 0.716 0.710 0.712 5.078 5.991
4 0.724 0.699 0.722 0.694 4.743 6.237
5 0.770 0.703 0.769 0.698 4.916 6.444
6 0.695 0.712 0.693 0.708 6.010 6.811
7 0.712 0.746 0.710 0.742 6.054 6.479
8 0.739 0.772 0.738 0.768 6.192 6.326
9 0.784 0.788 0.783 0.785 6.080 6.197
10 0.793 0.801 0.791 0.798 6.129 6.163
11 0.817 0.798 0.816 0.794 5.838 6.296
12 0.829 0.798 0.828 0.795 5.570 6.119
13 0.838 0.785 0.837 0.782 5.314 6.063
14 0.834 0.764 0.832 0.760 5.005 5.965
15 0.815 0.755 0.814 0.751 4.941 5.852
16 0.788 0.758 0.787 0.754 5.125 5.851
17 0.770 0.767 0.768 0.763 5.611 5.914
18 0.714 0.771 0.712 0.767 7.074 6.145
19 0.690 0.763 0.688 0.759 6.962 5.977
20 0.741 0.794 0.739 0.791 5.306 5.025
21 0.741 0.822 0.739 0.819 4.860 4.657
22 0.791 0.790 0.789 0.787 4.349 4.923
23 0.800 0.751 0.799 0.747 4.152 5.643

Table A.1
Test for multicollinearity for hour 12 on working days.

CondIdx Intercept Load Wind pv Gas Coal Carbon Dummy1 Dummy2 Dummy3

1.000 0.000 0.000 0.005 0.002 0.000 0.000 0.001 0.002 0.002 0.002
2.522 0.000 0.000 0.013 0.007 0.000 0.000 0.000 0.208 0.044 0.052
2.631 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.171 0.146
3.833 0.000 0.000 0.632 0.011 0.000 0.000 0.000 0.137 0.008 0.002
5.123 0.000 0.000 0.136 0.104 0.001 0.005 0.049 0.242 0.052 0.063
6.850 0.001 0.001 0.032 0.111 0.007 0.000 0.066 0.243 0.387 0.390
9.304 0.000 0.001 0.018 0.365 0.022 0.003 0.254 0.026 0.239 0.215
22.975 0.024 0.046 0.121 0.233 0.066 0.389 0.038 0.002 0.079 0.062
32.169 0.007 0.018 0.000 0.014 0.880 0.601 0.590 0.005 0.008 0.029
83.451 0.968 0.934 0.041 0.154 0.024 0.001 0.002 0.134 0.011 0.039

17 For the linear regression model, the fuel price on weekends/holidays equals the last available traded price as the model does not take into account the price difference from the
previous day. However, this approach is not applicable for the time-varying regression model that relies on the changes between time steps.
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where for i ∈ {1, …, 24}
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Eq. (B.2) is called the transition equation and describes the change of the regression coefficients over time. Eq. (B.1) represents the
measurement equation, which relates the vector of the exogenous variables Xi t, to the electricity price yi t, . For the calibration of the model, first, the
covariance matrices Qi and Ri, which are assumed to be constant over time, are calculated with the maximum likelihood estimation. Afterward, the
coefficients bi t, −1 of the different fundamental factors are estimated with the Kalman Filter. This is done for each step t taking into account only the
information that is already available at that time. Afterward, for each hour of the day, the dynamic influence of the regarded factors can be analyzed.

B.2. Model validation

As stated before, the results of the dynamic fundamental model are of limited benefit for our analysis, even though the statistical figures show
that the model possesses a high explanatory power (see Table B.1). While highly volatile factors such as the wind feed-in or load are adequately
captured within the model, the coefficients of less volatile price drivers are insignificant most of the time or if significant, possess values that are

non-plausible from a fundamental economic perspective. In contrast to the other obtained results, the dynamic model states that e.g. an increasing
coal price lowers the electricity price in peak hours by a factor of about 2. This is related to the fact that the calibration of the model is based on daily
changes. However, a gradual development, e.g. the decline of the coal price that extends over several years, has an almost negligible short-term
effect in comparison with the changes of the wind or photovoltaic feed-in. Strong daily changes or price shocks which could improve the results, only
occur once in the regarded period, when the gas price increases from about 24–40 €/MWh within a few days. Besides this single significant change,
there are no remarkable changes in the fuel prices in the short-term. Therefore, the dynamic model cannot determine plausible beta coefficients for
the long-term developing fuel prices. This approach can determine short-term effects quite well but indeed fails for the analysis of the mid- and
long-term effect, which is in the focus of this study.
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