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a b s t r a c t

Heating, Ventilation and Air Conditioning (HVAC) systems represent a significant portion of total residen-
tial energy consumption in North America. Programmable thermostats are being used broadly for auto-
matic control of residential HVAC systems while users initialize their everyday schedules and
preferences. The main aim of smart grid initiatives such as time-varying prices is to encourage consumers
to reduce their consumption during high electricity demand. However, it is usually a hassle to residential
customers to manually re-programme their thermostats in response to dynamic electricity prices or envi-
ronmental conditions that vary over time. In addition, the lack of energy management systems such as
thermostats capable of learning autonomously and adapting to users’ schedule and preference changes
are major obstacles of existing thermostats in order to save energy and optimally benefit from smart grid
initiatives. To address these problems, in this paper an adaptable autonomous energy management solu-
tion for residential HVAC systems is presented. Firstly, an autonomous thermostat utilizing a synergy of
Supervised Fuzzy Logic Learning (SFLL), wireless sensors capabilities, and dynamic electricity pricing is
developed. In the cases that the user may override the decision made by autonomous system, an
Adaptive Fuzzy Logic Model (AFLM) is developed in order to detect, learn, and adapt to new user’s pref-
erences. Moreover, to emulate a flexible residential building, a ‘house energy simulator’ equipped with
HVAC system, thermostat and smart meter is developed in Matlab-GUI. The results show that the devel-
oped autonomous thermostat can adjust the set point temperatures of the day without any interaction
from its user while saving energy and cost without jeopardizing user’s thermal comfort. In addition,
the results demonstrate that if any change(s) occurs to user’s schedules and preferences, the developed
AFLM learns and adapts to new modifications while not ignoring energy conservation aspects.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

HVAC systems approximately constitute 64% and 57% of total
residential energy consumption in Canada and the U.S. respectively
[1,2]. Thus, residential HVAC systems are one of the main electrical
loads for peak load management during peak demand periods. For
example, these devices nearly comprised of 50% of the additional
critical peak electricity consumption during hot summer days in
California [3].

On the other hand, one of the main goals of smart grid incen-
tives is to improve sight in order to lower network voltages as well
as to enable customers’ engagement in the operation of the power
system, particularly through smart meters [4], smart energy man-
agement systems, and smart homes [5]. Moreover, the significance
of distributed generation at medium and low voltages and other
small renewables such as photovoltaic in consumer-side to locally
ments.

http://dx.doi.org/10.1016/j.apenergy.2016.11.028
mailto:akeshtka@sfu.ca
mailto:arzanpour@sfu.ca                         
http://dx.doi.org/10.1016/j.apenergy.2016.11.028
http://www.sciencedirect.com/science/journal/03062619
http://www.elsevier.com/locate/apenergy
http://dx.doi.org/10.1016/j.apenergy.2016.11.028


Nomenclature

AFLM adaptive fuzzy logic model
AC air conditioning
ASHRAE American society of heating, refrigeration and air condi-

tioning engineers
DR demand response
FLC fuzzy logic controller
HVAC heating, ventilation and air conditioning
KB knowledge base
MF membership functions
PCT programmable communicating thermostats
SFLL supervised fuzzy logic learning
SP set point
TOU time-of-use
RTP real-time pricing
WSN wireless sensor networks
Lv learning vector
ln elements of the learning vector, n = 1, 2, . . . , N
wn associated weights of the elements of ln
Azm adapting vector for zone m
LZm learning vector for zone m
Av adapting vector
ak elements of adapting vector k 6 n

f k ‘overridflag’ associated with each adapting vector
Cij weekday cluster, ‘i’ is day of week, ‘j =m’ the number of

occurrences within a particular day
Â corresponding adapting vector
Avcim a set of adapting vector under observation
L̂v corresponding learning vector
Lvcim a set of learning vector under observation
Zm number of zones in the house, Z1 (zone 1), Z2 (zone 2)
Hkzm cij heat set point value of the day i for set point number k
Ckzm cij cool set point value of the day i for set point number k
Skzm cij start time of heat/cool set point
Ekzm cij end time of heat/cool set point
WHkzm

cij. weights associated with set point Hkzm cij
WCkzm

cij weights associated with set point Ckzm cij
WSkzm

cij weights associated with start time Skzm cij
WEkzm

cij weights associated with end time Ekzm cij
ITzm set point interval for time T in zone m
f kzm ‘overrideflag’ associated with set point number k in

zone m
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utilize them during peak demand periods in existing electricity
supply has also been explained in [6]. Additionally, with advance-
ments in communication networks and proliferation of deploying
smart meters, management of peak load problems are being
shifted towards the customer-side [7–9]. In [7], a holistic review
has been conducted to summarize the initiatives and facilities that
have capability to assist residential users to potentially save
energy. The authors concluded that energy display devices by pro-
viding feedback to customers about their energy consumption can
significantly help reduce energy consumption through shifting
their electricity demands to off-peak hours. Authors in [8]
attempted to propound the ways and services such as employing
smart devices and smart meters that can encourage end-users such
as residential customers in future to have an active role in future
smart power grids. A novel air conditioning system has been devel-
oped by considering two demand response strategies namely
demand side bedding and frequency controlled reserve in [9]. They
used these strategies to bring up the role of both demand response
programs and smart meters in saving energy and improving grid
efficiency. In all communication networks within smart grids, con-
sidering the security issues is very important. A study on security
issues in Microgids project platform has been conducted in [10],
and the authors concluded these issues can be one of serious chal-
lenges in future smart power systems. As a result, smart meters as
shared technology between users and power grids can enable res-
idential customers to become an integral part of the electric power
system. Moreover, time-varying electricity prices such as time-of-
use (TOU) rates, real-time pricing, and combinations of these
mechanisms provide various opportunities for residential users
to reduce consumption and electricity bill by shifting the operation
of their home appliances from on-peak rates to off-peak rates [11].
Nevertheless, load management strategy for residential HVAC sys-
tems can usually be performed by load shedding in response to dif-
ferent parameters such as time-varying prices [12], variations of
ambient temperature [13], and in-home user activity (occupancy)
[14]. Authors in [12] have accomplished a survey, where 15 houses
as pilots have been used to compare the role of applying time-
varying prices such as time-of-use and critical peak pricing in
improving grid efficiency as well as saving energy. Additionally,
Please cite this article in press as: Keshtkar A, Arzanpour S. An adaptive fuzzy lo
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the role of employing occupancy sensors in smart grids for saving
energy through reducing the set point temperature of HVAC sys-
tems when the home in unoccupied was explained [14]. However,
the authors in all these works only considered one parameter such
electricity price or occupancy for controlling the energy consump-
tion in the houses.

Fortunately, technology options such as employing home are
networks [15] and installing energy display devices for monitoring
HVAC energy consumption [16] as well as programmable ther-
mostats [17] are also currently available to assist residential cus-
tomers in order to manage and reduce their electricity
consumption by shedding the demand of home appliances and
HVAC systems during high electricity rates. Programmable com-
municating thermostats (PCTs) and price-responsive thermostats
[18], and occupancy-responsive thermostats [19] are being used
widely to automatically control residential HVAC systems while
users initialize their everyday schedules (i.e., time intervals) and
preferences (i.e., set point temperatures). PCTs and price-
responsive thermostats potentially have capabilities for two-way
communication such as using ZigBee communication protocols
(IEEE 802.15.4) with utilities through deployed smart meters in
order to participate in demand response (DR) programs with user
choice [20]. The PCTs and price-responsive thermostats can receive
price signals from smart grid and automatically decreases or
increases the initialized set points to a level pre-defined by the
user. Occupancy-responsive thermostats also keep monitoring
occupancy and automatically change set points when a space or
room is unoccupied. However, there exist major disadvantages to
these thermostats. It has been reported repeatedly that users lose
their thermal comfort particularly in cold winter days or hot sum-
mer days when they participate in DR programs during high elec-
tricity prices [19,21]. Authors in [19] found out that even existing
smart home energy management devices cannot always save
energy due to their dependent on user engagement. In this case,
the users constantly re-adjust the pre-defined offsets in order to
maintain their thermal comfort. However, it is often an inconve-
nience to residential users to continuously re-set the offset values
in response to time-varying prices or occupancy [19]. Additionally,
occupants often forget, neglect or even in many cases give up to
gic system for residential energy management in smart grid environments.
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re-set their thermostats when their thermal comforts are threat-
ened during participating in DR programs. The main reason that
this happens is lack of leaning and adapting to user thermal pref-
erences in existing PCTs or occupancy-based thermostats. Hence,
developing autonomous fuzzy techniques for future smart ther-
mostats can help users participate in DR programs without any
interaction with their thermostats to save energy and cost but
maintaining thermal comfort. In [22], a synergy of model predic-
tive control and weather forecasting was developed to improve
the energy efficiency in commercial buildings while providing
occupant’s thermal comfort. However, the approach would be
computationally expensive for implementing in residential scales
because the processing should be performed by small embedded
microcontroller integrated into thermostats.

A dynamic demand response controller (thermostat) based on
RTP for peak load reduction is discussed in [23]. The proposed ther-
mostat operates like price-responsive thermostats while attempts
to maintain thermal comfort in ASHRAE thermal comfort-zone.
However, they have not considered how their controller can pro-
vide thermal comfort during high prices if the initialized set points
become close to lower boundaries of thermal comfort-zone. To
address problems related to existing PCTs as well as the proposed
approach in [23], we have recently developed a fuzzy logic
approach added to PCTs [24]. The PCT equipped with our approach
is able to smartly respond to different parameters such as dynamic
electricity pricing and outdoor temperature to maintain user’s
thermal comfort while not ignoring energy conservation aspects.

Furthermore, the capabilities of wireless sensor networks
(WSNs) to measure, detect, and monitor different variables of
interest have been investigated and evaluated to improve the lim-
itations of existing energy management systems such as ther-
mostats [25–27]. In [25], an occupancy-based thermostat using a
combination of passive infrared (PIR) sensors and door sensors
has been installed in a house to evaluate the role predicting occu-
pancy in different parts of the house in energy conservation. To do
so, they have applied Hidden Markove Theory for predicting user
occupancy states, namely away, home, and sleep. However, they
have not considered smart grid initiatives such as time-varying
prices in their approach. A combination of a control strategies
and wireless communication for comparing centralized control of
HVAC systems versus decentralized control have been proposed
in [26]. A new system which is able to reduce the run time of the
HVAC system in a residential building through controlling the air-
flow for each specific zone of house by installing different wireless
sensors such as humidity, occupancy, etc. was proposed in [27].
The system can decrease the amount of energy used and increasing
the comfort of the home occupations due to using different wire-
less sensor nodes. A testbed for demand management of AC sys-
tems in buildings from a central server to save energy and
provide user comfort was developed in [28]. The system utilizes
power line communication to control the thermostats of an AC sys-
tem. However, the authors did not consider peak demand curtail-
ment under dynamic electricity pricing. Additionally, a
decentralized architecture for autonomous ploygeneration micro-
grids using computational intelligence techniques in order to study
the needs in remote area which can consist of electrical energy and
space heating and cooling systems [6].

Furthermore, the integration of wireless sensor capabilities and
neural networks for control of HAVC systems in public buildings
into save energy and provide thermal comfort has been considered
in [29]. They applied a model predictive control strategy using sev-
eral neural network models through measuring several parameters
such as air temperature received from wireless sensor networks.
Although energy savings resulting from the proposed method is
notable, lack of considering electricity rates as one of important
parameters for energy saving is the major drawback of this
Please cite this article in press as: Keshtkar A, Arzanpour S. An adaptive fuzzy lo
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approach. A fuzzy logic system capable of maintaining and adapt-
ing to occupant’s thermal comfort based on on-line fuzzy learning
was considered in [30]. Authors used several thermal factors such
as air speed and air temperature into one single thermal index,
where the index value was described in a set of fuzzy rules as ther-
mal sensation. As a result, the proposed algorithm on-line learns
from occupant’s thermal comfort preferences and adapts to new
thermal comforts by applying specific set of labels defined in a sta-
tic set of fuzzy rules. However, they have not taken into consider-
ation the role of time-varying prices and smart grid incentives for
peak load management in their research. Recently, several model-
based strategies have been developed for identifying DR measures
in office buildings. A meta-model based method for integrated
building energy simulation was developed in [31] to evaluate to
what degree simplified buildings models are accurate before using
such models in design, control and decision making processes for
demand reduction. However, the approach focuses on the way
buildings are designed and operated based on internal and external
actions such as weather and occupancy to incite developing new
technologies and solutions in building energy efficiency. A holistic
study on calibration model outputs with measured data to obtain
more accurate representation of real building operation was also
described in [32]. They have conducted a study on current strate-
gies to model development and calibration, concentrating on the
significance of uncertainty analysis in the calibration process to
help identify saving opportunities in office buildings.

On the other hand, user behaviors such as occupancy and user
negligence are important parameters that may impact the opera-
tions of thermostats resulting in more energy and bill savings.
Researchers attempted to model occupants’ activities and evaluate
the most influential parameters in occupant behavior for energy
saving using model predictive control strategies [33,34]. In terms
of the influence of user behaviors on thermostats in smart grid
environments, in many cases the residential customers with smart
thermostats forget or neglect to participate in DR during high elec-
tricity prices [12]. In other cases, households forget to train their
smart thermostats particularly during sudden rise or drop in out-
door temperature [18,19]. In fact, responding to time-varying
prices and environmental conditions strongly depends on cus-
tomer’s acceptance and participation. These cause that even
advanced thermostats such as NEST [35] cannot often compromise
between saving energy and user’s thermal comfort [19]. Besides, in
day-ahead electricity pricing, households rarely check prices to
reschedule their devices properly, because it is a hassle to users
to constantly respond to hourly prices manually [36]. Given these
problems, users cannot optimally benefit from time-varying prices
applied by utilities particularly the ones whose electricity bills are
significantly influenced by HVAC systems. As a result, lack of
autonomously learning and adapting to user’s schedule and prefer-
ence changes is a major disadvantage to existing smart ther-
mostats. Recently, some researches have been conducted for
better energy management in buildings by developing regression
models using data mining techniques [37,38]. In [37], a daily clus-
tering using energy interval data taken from smart meters was pro-
posed to perform condition monitoring and short-term load
prediction for demand response measures in office buildings.

In residential scales and thermostat technologies a part of afore-
mentioned problems has been addressed in NEST thermostat.
However, NEST is entirely an interactive-based thermostat in
which the thermostat must be trained by its user. Based on the
summarized information shown in Table 1 which surveyed from
recent studies about home energy management systems (HEMS)
in smart grids, we believe there still exist neglected potentials
for energy management and conservation which reside in the
use, control, and interaction of HEMS such as thermostats. For
example, in many cases, the adjusted set points at different inter-
gic system for residential energy management in smart grid environments.
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Table 1
Abridged listing of home energy management systems (HEMS) in smart grids via considering important parameters as well as learning capabilities of the approaches used by the
source.

Source Considered parameters and techniques

Method Occupancy
as control
parameter
considered?

Electricity
prices
as control
parameter
considered?

Thermal
comfort
as control
parameter
considered?

Smartness
of HEMS
considered?

Adaptability
to user
pattern
changes
considered?

User interaction
with HEMS
for providing
thermal
comfort?

[3,9,11,12,18,23] Conventional rule-based learning
strategies

No Yes No No No Required

[6,14,16,26,27,34] Multi-sensor agent control approaches Yes No Yes Yes No Required
[7,8,10,11,13,16,17,21] Public awareness programs No Yes Yes No No Required
[30,35,41] Adaptive learning techniques using fuzzy

logic, or neural networks
No No Yes Yes Yes Required

[22,29,33] Model predictive control Yes No Yes No No Required
[24,39] Supervised fuzzy logic learning Yes Yes Yes Yes No Not required
[25] Hidden Markov model Yes No Yes Yes No Required
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vals of weekdays are not certain values for that specific time inter-
val(s) [19,21]. During weekdays there exist apparent variations in
load demand because of sudden rises or drops in outdoor temper-
ature or consumers preferences. This results in wasting energy due
to lack of autonomous decision making systems. Because from
user-side, occupants often neglect or forget to modify (setback)
set point temperatures or their schedules accordingly. From
device-side (existing smart thermostats), there is lack of respond-
ing to environmental conditions (ambient temperature) without
user interaction [19].

In this paper, our endeavors are dedicated to present an auton-
omous and adaptable energy management solution for residential
HVAC systems in smart grid environments. The proposed system is
a synergy of fuzzy logic techniques, wireless sensors capabilities,
and dynamic electricity pricing. The main advantage of fuzzy logic
controllers (FLCs) compared to other types of controllers resides in
the fact that no mathematical modeling is required for the design
of the controller. In fact, the inputs and outputs of FLC are real vari-
ables mapped with linear/nonlinear functions. They are connected
through a set of IF-THEN rules to obtain the corresponding output
(s). In this paper, the proposed system takes into account different
parameters and information that directly relate to energy manage-
ment and thermal comfort in residential buildings. Since one of the
main objectives of our study is to save energy and cost without
sacrificing thermal comfort, fuzzy logic is feasible and imple-
mentable to compromise between these interests.

Due to various factors such as dynamic electricity pricing and
users’ negligence, we have recently developed an ‘autonomous
thermostat’ to make intelligent decisions without any interaction
from the user to adjust set point temperatures in response to
time-varying prices and environmental conditions (e.g., occu-
pancy) [39]. Indeed, the thermostat autonomously accommodates
the set point values based on the developed supervised fuzzy logic
learning (SFLL) approach while saving energy and cost without sac-
rificing thermal comfort.

However, it is anticipated that in some cases the occupant may
not feel comfortable with the decision made by autonomous sys-
tem. Inevitably, the adjusted set point temperature is overridden
by user manually. In this study, an Adaptive Fuzzy Logic Model
(AFLM) utilizing WSN capabilities is developed to learn and adapt
to new user’s preference and schedule changes.

The rest of paper is organized as following. In Section 2, the big
picture of the problem and ‘autonomous thermostat’ is discussed.
The AFLM utilizing WSN capabilities is presented in Section 3.
The decision-making process and routines are described in Sec-
tion 4. We will go through the simulation results and the perfor-
mance of the developed AFLM in Section 5. The paper is
concluded in Section 6.
Please cite this article in press as: Keshtkar A, Arzanpour S. An adaptive fuzzy lo
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2. Problem description

Generally speaking, an autonomous system is a self-ruling and
independent system based on the learned data. Indeed, user is
not required to concentrate on controlling the system. Nowadays,
due to various factors such as users’ preferences and users’ negli-
gence; self-adjusting and self-scheduling of the operation of in-
home energy management devices such as thermostats should be
gaining increasing attention because of difficulties in their manual
adjusting. It is being more difficult particularly when the relevant
energy management factors such as electricity prices, ambient
temperature, and energy demand continually vary with time.
Hence, the need for developing thermostat to work autonomously
while saving energy and cost but maintaining user thermal com-
fort is necessary.

In Fig. 1, a conceptual design of ‘‘adaptable autonomous ther-
mostat” in a house platform is shown. In this figure, different infor-
mation is received from various distributed wireless sensor nodes
in order to provide information with the main controller unit
called ‘‘smart thermostat”. These sensor nodes are used to measure
indoor and outdoor temperatures or to detect occupant activities
such as presence in different zones (rooms) of the house. The ther-
mostat can also communicate with the deployed smart meter
through ZigBee or Wi-Fi communication to read price signals
applied by utilities.

As illustrated in Fig. 1 the ‘‘smart thermostat” utilizes fuzzy
rule-based algorithms to make decision(s) to autonomously adjust
new set point temperatures based on the new information received
from wireless sensors and smart grid (i.e., dynamic electricity
prices). In this situation the thermostat plays the role of an ‘‘au-
tonomous thermostat”. It finally sends the control signals to actu-
ate a relay which results in turning on/off a residential HVAC
system.

Fig. 2 shows a one day scenario that the ‘‘autonomous ther-
mostat” sets the set point temperatures based on ten multiple
changes applied to input parameters. The objective of fuzzy rules
is to save energy and cost by autonomously responding to chang-
ing in input parameters as well as maintaining user thermal com-
fort in ASHRAE thermal comfort-zone. The developed
‘‘autonomous thermostat” integrates residential HVAC systems
into smart grids. More details regarding the developed
‘‘autonomous thermostat” and its input-output parameters have
been discussed in [39]. Additionally, the details related to ‘‘house
energy simulator” and the house thermodynamic model used in
the simulator were elaborated in [24].

However, it can be anticipated that in some cases the occupant
may not feel comfortable with the set point value(s) adjusted by
autonomous thermostat. Hence, the occupant may take a correc-
gic system for residential energy management in smart grid environments.
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Fig. 1. Synergy of wireless sensors, electricity prices, and smart thermostat in a house platform for control of a HVAC system.

Fig. 2. Adjusted set points by autonomous thermostat for one day based on information from wireless sensors and electricity prices.
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tive action which can be performed by manually overriding the set
point values (refer to consumer feedback block in Fig. 1). This
action leads to changing in that specific set point which has already
been adjusted by autonomous system. Based on the changes
occurred to user preference(s), two questions arise and will pose
challenges:

(i) How to build and update a rule-based model without elim-
inating existing knowledge (existing SFLL rules)?

(ii) How the thermostat can differentiate between a corrective
interaction (overridden values) and a normal behavior that
is autonomously performed by ‘‘autonomous thermostat”?

To answer these questions, there must be an adaptive learning
principle in background in order to enable the thermostat to learn
and adapt to new user preferences as well as to act differently in
these situations.
Please cite this article in press as: Keshtkar A, Arzanpour S. An adaptive fuzzy lo
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3. Adaptive fuzzy logic model

3.1. Model formulation

Automating the operations of an in-home device is not a long-
term solution because inhabitants are likely to change their activ-
ity and usage patterns with time depending on the factors such as
weather conditions and electricity prices. As a result, in addition to
making autonomous systems, we need to find a solution to adapt
to the user behavior changes that may occur over time. This leads
us to go through the problem from ‘systems perspective’, where
the interaction of different subsystems, each with its own attribute
exists. In this way, we can maintain the generality of the system so
that the developed ‘adaptable autonomous system’ such as our
developed thermostat can be employed in any house.

Fig. 3 shows the conceptual block diagram of AFLM and depicts
the main blocks of the system. As shown in Fig. 3, AFLM consists of
gic system for residential energy management in smart grid environments.
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Fig. 3. Conceptual block diagram of AFLM.
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different subsystems that sharing their knowledge and data to gain
a better outcome. In this Figure the fuzzy logic rule-based provides
the decision rules, and continually compares the existing knowl-
edge with the new knowledge received from sensor nodes as the
system inputs. The current state of output (set point values) must
constantly be compared with existing set point in order to realize
whether or not it was manually overridden by user. The Knowl-
edge Base (KB) contains information about membership functions
(MFs), parameters of HVAC system, house parameters such as
house dimensions, wall and windows thicknesses, as well as ther-
mal characteristics of the house such as thermal coefficients of the
wall and windows materials [22]. In terms of MFs, KB consists of
MFs of input parameters such as outdoor/indoor temperatures,
electricity prices, and occupancy to provide information for auton-
omous decision-making which adjusts the output parameter
which is set point temperature of HVAC system [37]. KB also con-
tains MFs of changes in user preferences and schedules which are
reflected from overriding the decisions made by autonomous sys-
tems (overriding set point values by users) and/or changing in
occupancy which will be explained in details in Section 4.

The role of learning vectors shown in Fig. 3 is to learn prefer-
ences based on the user feedback and sensors. These preferences
are returned in the weight factor of each element. The adapting
vectors extract information from the learning vectors and adapt
to new preferences based on the defined fuzzy rules if new changes
are detected.

3.2. Model of the system

In order to model the system we consider the problem as
follows:

Let l1; l2; . . . ; ln�1; ln represent the elements of the ‘‘learning vec-
tor” and w1;w2; . . . ;wn�1;wn represent their associated weights
respectively. Therefore, we define the vector Lv as learning vector
as follows:

Lv ¼ hl1; l2; . . . ; ln�1; ln;w1;w2; . . . ;wn�1;wni ð1Þ
In statement (1), l1; l2; . . . ; ln�1; ln represent the actual values of

interest such as time intervals of a day or set point (SP) values
adjusted by autonomous system. The weights are the error
between the values adjusted by autonomous thermostat and cor-
rective values (overridden by user). Therefore, w1 to wn are the
weights associated with learning elements l1 to ln respectively.
Please cite this article in press as: Keshtkar A, Arzanpour S. An adaptive fuzzy lo
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Furthermore, let a1; a2; . . . ; ak represent the elements that must
be adapted if any change happens to occupant schedules and pref-
erences. They are called ‘‘adapting vector” elements. In order to
adapt to new changes, the system has to realize whether the out-
put has been set based on normal behavior of the system (autono-
mously) or it has been overridden by user. For this purpose, a
separate ‘‘override flag” is assigned to each element of adapting
vector. Hence, we define the adapting vector as follows:

Av ¼ ha1; a2; . . . ; ak; f 1; f 2; . . . ; f ki k 6 n ð2Þ
In statement (2), f 1; f 2; . . . ; f k is the ‘‘override flags” associated

with elements a1; a2; . . . ; ak. Therefore, the vector Av only includes
the elements of interest and their associated flags. Hence, for each
element l1 to ln in the learning vector, there is a corresponding ele-
ment of the adapting vector a1 to ak.

Since the users’ schedules and preferences may change during a
day or week, we cluster the days of week into seven slots as ‘‘week-
day clusters”. We assign 1 for Monday cluster, 2 for Tuesday clus-
ter, etc. There are seven different clusters under consideration
corresponding to a week. Therefore, we assume Cij as weekday
clusters that are under monitor. In this cluster i shows the day of
week and j ¼ 1;2;3; . . . ;m shows the number of occurrences
within a particular day. For example, C1j;C2j; . . . ;C7j shows differ-
ent weekdays fromMonday to Sunday and j represents the number
of occurrences for every element under monitor for each day of
week.

Besides, let Â indicate corresponding adapting vectors as
follows:

Â ¼ hAvci1 ;Avci2 ; . . . ;Avcim i ð3Þ

The vectors Avci1 ;Avci2 ; . . . ;Avcim show a set of adapting vectors under
observation for each weekday occurrences.

Moreover, L̂v represents a set of learning vectors under observa-
tion defined follows:

L̂v ¼ hLvci1
; Lvci2

; . . . ; Lvcim
i ð4Þ

It is assumed that the initial weight conditions for every learn-

ing vector bLv are wn ¼ 1 and � 1. ‘�1’ indicates that the value of
element corresponding to its associated weight has not changed;
while, ‘1’ shows a change has been detected.
gic system for residential energy management in smart grid environments.
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Fig. 4. Membership function associated with shifting in set point values as system
input (weights).
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3.3. Adaptation model for autonomous thermostat

As pointed out in previous subsection, the ‘‘override flag” with
conditional checks is used in order to detect the state of system
when it swaps from autonomous control mode to event-based con-
trol mode. Hence, in event-based control mode it is important to
know ‘‘when” (Start Time) a decision has been overridden, ‘‘until
when” (End Time) it has been lasted, and finally ‘‘how much” the
new value(s) has been shifted from the value(s) initialized by user
or autonomous system.

To simplify the expressions from now on, ‘S’ indicates ‘Start
Time’, ‘E’ stands for ‘End Time’, and ‘C’ and ‘H’ represent the current
cool/heat set point value for different times of day. The set of learn-
ing vectors under monitor based on set point values of a day
(Hkzm cij;Ckzm cij; k ¼ 1;2; . . . ;24) associated with Zone1 and Zone2
ðm ¼ 1;2Þ for each active day i ði ¼ 1;2; . . . ;7Þ, can be described
as follows:

LZm ¼hHkzm cij;Ckzm cij;Skzm cij;Ekzm cij;WHkzm
cij;WCkzm

cij;WSkzm
cij;WEkzm

ciji
ð5Þ

In the expression (5), the elements from 1 to 4 are Heat Set
Point, Cool Set Point, Start and End time of Set Points, and from 5
to 8 are their respective weights. In addition, j represents the num-
ber of occurrences for learning vectors under observation.

The set of adapting vectors for smart thermostat for zones 1 and
2 ðm ¼ 1;2Þ are defined as follows:

Azm ¼ hI1zm ; I2zm ; . . . ; ITzm i ð6Þ
Each element in Azm represents a time interval for each day of

week that has a ‘Start Time’ and ‘End Time’. In turn, they start from
00:00 A.M. until 24:00 for each day of week. In statement 6, each
interval contains set point values for 24 h of a day which are auton-
omously computed by SFLL based on information received from
wireless sensors and electricity prices.

We assume the information from wireless sensors and electric-
ity prices are received every one hour, therefore, we have 24 set
points as shown in (7). These set points values are
SP1zm ; SP2zm ; . . . ; SP24zm .

In Eq. (7), f 1zm ; f 2zm ; . . . ; f 24zm represent the ‘override flags’ associ-
ated with S1zm ; S2zm ; . . . ; S24zm respectively if any corrective action is
taken by user. Therefore, Azm has a structure as follows:

Azm ¼ hSP1zm ; SP2zm ; . . . ; SP23zm ; SP24zm ; f 1zm ; f 2zm ; . . . ; f 23zm ; f 24zm i ð7Þ
The system automatically assigns each of set points

SP1zm to SP24zm to intervals for each day of week.
However, as long as the ‘override flags’ are ‘off’ the smart ther-

mostat keeps operating as an autonomous system based on the
SFLL proposed in Section 2. When the state of ‘‘override flag” asso-
ciated with each element in (7) changes to ‘on’ at any time, it
means there must be a change related to elements in learning vec-
tor. Therefore, the system records as well as assigns this change to
each element of interest in (5). The elements of adapting vector
shown in (7) are populated only after they compared with the
learning vector data. These elements are adapted by a proposed
fuzzy rule-based algorithm explained in Section 4 if ‘j’ consecutive
changes occur to each of them. The number of occurrences (j) in
order to adapt to new patterns can vary depending on the applica-
tion of the developed AFLM.

4. Fuzzy logic decision-making for adaptation

4.1. Inputs of system and their membership functions

A fuzzy membership function is assigned to each weight in
learning vector if any change is detected in learning vectors. Figs. 4
Please cite this article in press as: Keshtkar A, Arzanpour S. An adaptive fuzzy lo
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and 5 show membership functions of weights associated with each
element in learning vector. The reasons for defining triangular MFs
are based on a few assumptions. We predict the user habit after
three consecutive changes and the range of changes are not too
large. Moreover, assigning other types of MFs such as trapezoidal
do not have that effect on the accuracy of predicted values while
choosing other MFs exponentially increase the number of rules
which make the system computationally expensive. These weights
are assigned to each particular element in the learning and adapt-
ing vectors for any daily cluster under observation based on their
shifts from initial values. In these Figures, the weight ‘High’ indi-
cates the major shift from initial values, while the ‘Low’ signifies
a small shift from typical existing value. Additionally, the user
can decide to override the set point value(s) at any time if he/she
does not feel comfortable with the current indoor temperature.
In this case, the system must detect as well as take into consider-
ation the overridden value(s) as an event to the operation of main
system (autonomous system), in order to swap to event-based con-
trol which might be new user’s preference or habit. Hence, the
HVAC controller (thermostat) keeps checking the state of the cur-
rent set point and gives out the user override value as a fuzzy vari-
able if any change occurs. To do so, we consider the state of
‘‘override flag” pointed out in the statement (7) as an input to
the system. This value is fuzzified into two different linguistic vari-
ables ‘off’ and ‘on’ as shown in Fig. 6. It can be observed from Fig. 6;
only one membership function can be received at one time. In the
cases that the ‘override flag’ is ‘on’ meaning that the decision made
by SFLL has been overridden by user. Therefore, the new decision
(s) has to be recorded for adapting in future depending on the time
of day. If the state of ‘override flag’ is ‘off’ meaning the system is
still on normal mode.

4.2. Outputs of system and their membership functions

As pointed out in Section 3.3, the adaptation is performed if an
occurrence is repeated for three consecutive times (j = 3). For
example, if the user changes a set point temperature (e.g. set point
number 8, S8) in three consecutive days (Monday, Tuesday, Wed-
nesday), this occurrence is considered for adaptation as user new
habit. It is based on several assumptions. For example, when a per-
son increases or decreases the current set point temperature sat by
autonomous system at a specific time of day, this action (overrid-
ing the existing set point) might be due to very sedentary or activ-
ity at home. Another scenario can be when the inhabitant overrides
temporarily the heat set point due to an extremely cold winter day
or a sudden drop/rise in outdoor temperature. All these scenarios
gic system for residential energy management in smart grid environments.
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Fig. 5. Membership function associated with shifting in start time and end time as
system input (weights).

Fig. 6. Membership function of override flag.

Fig. 7. Membership function associated with shifting in start time and end time as
system output (weights).

Fig. 8. Membership function associated with shifting in set point values as system
output (weights).
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might happen one time, and not be a preferred set point or a per-
manent habit of the user. Therefore, the system considers the
changes that occur consecutively for three times. Figs. 7 and 8
show membership functions of system outputs based on changes
in elements of learning vectors if a pattern is persistent for three
successive times. These membership functions are defined based
on some assumptions. As shown in Figs. 7 and 8, membership func-
tions are in trapezoidal form in order to take into consideration
user’s thermal comfort based on the Predicted Mean Vote (PMV)
and Predicted Percent Dissatisfied (PPD) [40]. In this way, the sys-
tem can adapt to set point values which are closer to lower band of
thermal comfort-zone [29,41]. By doing so, the thermostat can
potentially save more energy and cost.
4.3. Fuzzy rules for adaptation

Three different weights were assigned to any daily vector based
on their shifts from the initial values, for three successive occur-
rences of each day. The fuzzy rules for adaptation are based on
the possible combinations listed in Table 2. There totally exist 27
combinations for each element under observation. In Table 2, O1

represents the first occurrence, O2 stands for second, and O3 indi-
cates the third one. In addition, in this table L, M, and H represent
Low, Medium, and High respectively.

The final value (adapted output) reflected from changing
weights is computed based on the weights of occurrences. For
example, if all three daily/weekly occurrences have had the same
weights, the same fuzzy value of three daily/weekly elements is
returned as adapted output (i.e., rules 1 and 14). Another example,
if only the weights of first two daily or weekly occurrences of the
particular vector elements are high while the weight of third one
is low, the weight of adapted output is medium (refer to rule 25).
Please cite this article in press as: Keshtkar A, Arzanpour S. An adaptive fuzzy lo
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4.4. Implementation steps and routines of the fuzzy decision-making

The main sequences of the algorithm based on the proposed
AFLM to implement an ‘Adaptive Smart Thermostat’ are shown in
Fig. 9. In this flowchart each block has an associated number that
is used to provide additional details as presented in the following.

(1) Load ‘Data’ file and generate a new ‘data object’ which con-
tains read data to mimic all sensory information. Therefore,
the generated file has different occupant’s preference and/or
schedule changes, different outdoor temperature, TOU and
RTP prices, house and HVAC parameters for simulation of
different scenarios. ‘Data’ file which is a CSV file contains
fuzzy rules and fuzzy membership functions of system
inputs and outputs.

(2) Initialize and fuzzify all inputs loaded from ‘Data’ file. For
example, occupancy sensors can consist of different sensors
such as motion sensors, door sensors, and PIR sensors and
have different attributes in order to detect the user in the
zones. Ultimately, the smart thermostat can receive pres-
ence or absence of the occupant at any time of the day in
the zones. In this research the user status is loaded from a
CSV file.

(3) The learning vectors presented in Eq. (5) are created and ini-
tialized for each day of week. This is conducted by collecting
data from wireless sensor nodes in real platform. This infor-
mation is gathered from ‘Data’ file. As shown in Eq. (5), the
learning vectors contain information based on the interval
of a day and have 8 elements for each zone. We also divide
gic system for residential energy management in smart grid environments.
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Fig. 9. Flowchart of implementation of AFLM.

Table 2
Fuzzy rules for adapting to pattern changes.

#Rule O1 O2 O3 Output #Rule O1 O2 O3 Output

R1 L L L L R15 M M H M
R2 L L M L R16 M H L M
R3 L L H L R17 M H M M
R4 L M L L R18 M H H H
R5 L M M M R19 H L L L
R6 L M H M R20 H L M M
R7 L H L L R21 H L H M
R8 L H M M R22 H M L M
R9 L H H M R23 H M M M
R10 M L L L R24 H M H H
R11 M L M M R25 H H L M
R12 M L H M R26 H H M H
R13 M M L M R27 H H H H
R14 M M M M
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a day of week into 6 time slots (intervals), thus, 6 elements
for adapting intervals. Therefore, we have a size of 8 ⁄ 6 that
is 48 for each occurrence in a ‘particular daily schedule’ (i.e.,
number of elements in learning vector multiplied by number
of elements in adapting intervals). Therefore, for 3 consecu-
tive daily occurrences there will be 48 ⁄ 3 that is 144 data
available for each zone and ultimately 248 for both zones
for three changes.

(4) Adapting vectors and their associated ‘override flags’ based
on the learning vectors are created and initialized for each
day of week. The value of 0 is assigned to each adapting vec-
tors and their associated ‘override flags’. This value shows
that no change has happened to the set points in that speci-
fic interval. Adapting vectors are populated only after com-
parison with the learning vector data and ‘adapt flag’. The
Please cite this article in press as: Keshtkar A, Arzanpour S. An adaptive fuzzy lo
Appl Energy (2016), http://dx.doi.org/10.1016/j.apenergy.2016.11.028
system also has an ‘adaptdaily’ flag if three successive
changes occur to each element in adapt vectors in three
consecutive days of week. As mentioned in Eq. (7), the adapt
vector structure for each set point of a day is as following:
‘‘Heat SetPoint, Cool SetPoint, Start Time, and End Time”. We
do not consider the ‘override flags’ for adaptation. Adapt
vector is extracted only after comparison with the learn-
vector.

(5) At this stage, the AFLM detects the mode of operation. There
are two modes of operation namely ‘Autonomous Mode’ and
‘Manual Mode’. ‘Autonomous Mode’ works based on devel-
oped SFLL and consists of ‘Economy Mode’ and ‘Comfort
Mode’. In ‘Manual Mode’ all schedules and preferences such
as time intervals of a day and set point values are defined
and initialize by user.
gic system for residential energy management in smart grid environments.
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(6) Based on step 5, the thermostat equipped with AFLMwas set
on ‘Autonomous Mode’ or ‘Manual Mode’. However, the
received information and the sat schedule and preferences
are not permanent and may vary over time or overridden
by user. Therefore, in this step the system keeps monitoring
and receiving new information from environment. If any
change was detected then goes to step 7.

(7) Upon any change was detected by ‘smart thermostat’, the
system checks to realize that the occurrence is due to chang-
ing in environmental conditions (i.e., outdoor temperature)
or the decision initialized by user or SFLL has been
overridden.

(8) If the ‘override flag’ is ‘on’, it shows the decision made by
SFLL or the schedules sat by user (step 5) has been canceled
by user, then it goes to step 10.

(9) In the event of changing in environmental conditions, AFLM
measures, fuzzifies, and applies the particular rules associ-
ated with these changes using SFLL.

(10) In this step adapting procedure is applied for each day of
week by creating three temporary vectors with a limit of
24 elements (refer to steps 3 and 4). AFLM updates those ele-
ments that have changed in learning vector with value of ‘1’,
and if no change detected update with value of ‘0’.

(11) Verification is performed for each element and specific day
occurrence in order to assure if the change is persistent.
Therefore, if the number of changes related to each element
in adapting vector meets the limit, it is considered for adap-
tation. If not, it goes back to step 6 for next hours/days.

(12) The weights of elements that have overridden for three con-
secutive times are updated. To do so, the active daily file is
read; all data added in a ‘weightread’ list for future actions.
In addition, all the necessary data is stored into a ‘decision-
weight’ vector (size of 48 elements). Then, another ‘learn-
weight’ vector exploits the data from the specific learning
vector of the daily cluster in order to compare with the ‘deci-
sionweight’ vector. It does the above routine for all the ele-
ments of interest in learn-vector
Please
Appl E
hHkzm cij;Ckzm cij; Skzm cij; Ekzm cij;WHkzm
ciji ð8Þ

Finally, it performs a weight check for each day/week (first,
second and third), while all the data elements from the ‘deci-
sionweight’ and ‘learnweight’ are compared.
Table 3
Schedules and set point values for weekdays.

SP Time of day (Start time to End time) Heat SP (�C) User status

SP1 00:00–06:00 21 Sleep
SP2 06:00–08:00 23 Home
SP3 08:00–11:00 17 Away
SP4 11:00–17:00 18 Away
SP5 17:00–19:00 23 Home
SP6 19:00–24:00 21 Home
(13) From AFLM description we already defined three different
weights which can be allocated to any daily vector based
on its shift from the initial value for three consecutive occur-
rences of a particular day. Then, the difference between new
value and existing value is fuzzified by membership func-
tions shown in Figs. 5 and 6.

(14) The fuzzy rule-based decision-making based on the rules
shown in Table 2 is applied in order to adapt to new prefer-
ence changes. Each time that the weight check process is
performed, the result is assigned to that particular element
of the daily cluster schedule.

(15) The AFLM checks the new pattern if it is not in daily cluster,
this new preference is updated as new knowledge.

5. Simulation results and performance of the developed
algorithm

The simulations are run for several scenarios in order to verify
the performance of the developed algorithmwith respect to energy
saving as well as its functionality for adapting to user preference
changes. The AFLM approach is verified for both ‘‘Manual Mode”
and ‘‘Autonomous Mode”.
cite this article in press as: Keshtkar A, Arzanpour S. An adaptive fuzzy lo
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5.1. Manual mode

The thermostat sat on ‘‘Manual Mode” is a PCT equipped with
AFLM. In this way more intelligence has been added to existing
PCTs in order to address lack of learning and adapting to user pref-
erence and schedule changes in these thermostats (i.e., resulting in
an adaptable PCT). As pointed out, in ‘‘Manual Mode” all schedules,
preferences, and set point values are initialized by users.
5.1.1. Energy saving and load reduction using SFLL enabled
The first case is dedicated to verify the functionality of decision-

making with and without enabling SFLL in ‘‘Manual Mode”. In this
case the importance of input parameters in energy saving is con-
sidered as well. It is assumed that the initialized schedules set
points and intervals do not change during simulation. In addition,
the initialized settings for the simulation such as user schedules
and their associated set points values for weekdays and weekends
and house parameters are listed in Tables 3–5 respectively. TOU
rates used for the simulation are taken from Hydro One utility in
Ontario, Canada and are in effect in 2014 for winter season shown
in Table 6. The weather data for outdoor temperature is taken from
the Canada’s National Climate Archive for winter 2014.

Fig. 10 shows the energy consumption for different configura-
tion for one month simulation. As shown in Fig. 10, the potential
energy saving for the entire house with SFLL enabled versus entire
house with SFLL disabled is 386 kW h. In addition, the first right
bar in Fig. 10 represents energy consumption of house for one
month simulation when the effect of electricity prices is not taken
into account as system input in decision making process by SFLL. In
this case, the energy consumption of house increases about
185 kW h due to lack of considering electricity prices. Hence,
designing price-responsiveness devices in current and future smart
grids is necessary. Based on results shown in Fig. 10 the improve-
ments in terms of energy management and saving with and with-
out SFLL during one month simulation are apparent. This is
because SFLL keeps evaluating information received from wireless
sensors and electricity prices and changes the set point values to
save energy without sacrificing thermal comfort. Fig. 11 depicts a
one day sample scenario that the SFLL responds to input parame-
ters for demand-side management. As it can be observed from
Fig. 11, from 5:00 P.M. to 7:00 P.M. that the electricity price is
on-peak and the home is occupied, the ‘‘Manual Mode” thermostat
equipped with SFLL reduces the set point temperature from 22 �C
to 19 �C (3 �C) to participate in DR programs by applying specific
fuzzy rules.
5.1.2. Learning and adapting to user preference changes and relative
energy saving

In this section multiple changes are applied to user schedules
and preferences in order to validate the performance of the devel-
oped AFLM with respect to learning and adapting to new user’s
habits while ‘‘Manual Mode” is the preferred mode. The objective
of considering the problem from this aspect is to demonstrate that
AFLM can be embedded into existing PCTs as well.
gic system for residential energy management in smart grid environments.
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Table 4
Schedules and set point values for weekends.

SP Time of day (Start time to End time) Heat SP (�C) User status

SP1 00:00–08:00 21 Sleep
SP2 08:00–14:00 23 Awake
SP3 14:00–19:00 17 Away
SP4 19:00–24:00 18 Away

Table 5
House parameters for simulation.

Parameters Values Unit

House length 15 m
House width 8 m
House altitude 5.5 m
Number of windows 6
Window length 1.5 m
Window height 1 m
Windows thickness 0.01 m
Walls thickness 0.3 m
Wall thermal coefficient 0.038 W/m K
Window thermal coefficient 0.78 W/m K
Initial house temperature 0 �C

Table 6
TOU rates for winter 2014.

Time of day Price ($) Description

00:00–07:00 0.077 Off-peak
07:00–11:00 0.129 On-peak
11:00–17:00 0.109 Mid-peak
17:00–19:00 0.129 On-peak
19:00–24:00 0.077 Off-peak

Fig. 10. Energy consumption for one month with SFLL.
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To do so, the first three weeks are dedicated to training the ther-
mostat for learning user schedules, preferences, etc. This means the
system only compares the changes related to similar weekdays
(Monday to Monday, Tuesday to Tuesday, etc.). A scenario for par-
ticipating in demand response programs is emulated in order to
predict pattern changes of user with respect to the ‘set point start
time’, ‘set point end time’, and ‘heat set points of weekdays’.

As shown in Table 7, the SP5 has been initially set by occupant
on 23 �C between 17:00 and 19:00 for all weekdays (refer to
Table 3), where the price and load demand are normally high at
this period of day. In order to predict consumer patterns after three
successive changes in SP5, a scenario is considered as follows:

In the first week the user reduces SP5 from 23 �C to 21 �C (heat
set point) from 16:30 (start time) to 18:30 (end time). In the next
Please cite this article in press as: Keshtkar A, Arzanpour S. An adaptive fuzzy lo
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week SP5 is reduced to 22 �C from 17:30 (start time) to 18:00 (end
time). Finally, the set point temperature (SP5) is decreased to 20 �C
from 18:00–19:00 in the third week.

The thermostat equipped with AFLM detects three consecutive
changes corresponding to all elements of SP5 in all weekdays clus-
ter (Monday to Friday). Therefore, the new preferences must be
considered for adaptation. The outputs of AFLM that indicate the
adapted values after three weeks of learning are shown in Table 7
(last row). As a matter of fact, the thermostat detects the changes
associated with each element in learning and adapting vectors, and
then compares initial values with new values (overridden by user),
and finally fuzzifies these changes (weights) based on Figs. 5 and 6.
Since three successive changes have been detected in the elements
of learning vectors; AFLM applies the corresponding fuzzy rules
shown in Table 2 in order to predict new pattern, while considering
energy conservation aspects.

Comparing the two last rows of Table 7, it can be observed that
the adapted values using AFLM after the third occurrence for ‘start
time’ is different from the adapted values using averaging
approach. The adapted ‘start time’ value using averaging is 17:20,
while it is 17:08 using AFLM. This demonstrates that AFLM adapts
to the value that is closer to initial (17:00) occurrences where
applying tuned fuzzy rules shown in Table 2.

In addition, as shown in Table 7, in comparison to using averag-
ing approach with respect to energy conservation; AFLM partici-
pates in DR programs 12 min earlier (start time 17:08) and this
engagement in DR lasts 11 min longer (end time 18:42). This func-
tionality of AFLM can improve energy saving while maintaining
user thermal comfort. In addition to this, the adapted ‘heat set
point value’ is 1.15 �C lower compared to averaging approach
(21 �C). As a result, AFLM adapts to the value that is near to user’s
third pattern (20 �C) detected during new preferences, and at the
same time leads to better energy saving.

Furthermore, in order to validate the functionality of AFLM in
terms of energy management and conservation, a two months sim-
ulation is conducted. The simulation is run for the same changes
related to SP5 explained in Table 7. Therefore, the new preferences
take effect from the fourth week of simulation (first three weeks
for training system). Hence, the thermostat sets the SP5 on
19.85 �C in the interval of 17:08–18:42 from the fourth week until
the end of two months of simulation. The result shows the relative
energy saving for adapting to a very limited time (1 h and 42 min)
in SP5 compared to non-adapting is 73.54 kW h.

5.2. Autonomous mode

This section is dedicated to verification of the functionality of
AFLM with respect to learning and adapting to new preferences
of user when the thermostat is set on ‘‘Autonomous Mode”. In
order to compare different cases, we provide similar conditions
for similar days of the month. Hence, some assumptions are taken.
We assume the variations of outdoor temperature for similar days
of month are identical during the one month simulation (i.e., out-
door temperature of all Mondays are similar). The variations of
load demand and dynamic pricing are similar and assumed not
to change for similar days of month during the simulation (i.e., load
demand of all Tuesdays are similar). In addition, the settings used
for daily intervals and their associated set points are depicted in
Tables 8. Therefore, the adjusted set points for different days of
the first week based on information received from wireless sensor
nodes and electricity prices are shown in Fig. 12. In fact, these are
set points S1 to S24 distributed within 6 intervals listed in Table 8.
However, the robustness of the system might be one of concerns
based on above-mentioned assumptions. To do so, we considered
the robustness of system by changing parameters in the fuzzy con-
troller and house parameters such as buildings mass, hear trans-
gic system for residential energy management in smart grid environments.
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Fig. 11. Load reduction using SFLL added to ‘‘Manual Mode”.

Table 7
Adapting to user pattern changes in ‘‘Manual Mode”.

Occurrence Start time value End time value Heat SP value (�C)

Initial New Weight (min) Initial New Weight (min) Initial New Weight

First week 17:00 16:30 �30 19:00 18:30 30 23 21 3
Second week 17:00 17:30 30 19:00 18:00 60 23 22 5
Third week 17:00 18:00 60 19:00 19:00 0 23 20 4
Average adapted value 17:20 18:31 21
AFLM adapted value 17:08 18:42 19.85

Table 8
Intervals and associated set points in ‘‘Autonomous Mode”.

Intervals Time of day Occupancy Associated SP

I1 00:00–6:00 Occupied S1, S2, S3, S4, S5, S6
I2 6:00–8:00 Occupied S7, S8
I3 8:00–13:00 Unoccupied S9, S10, S11, S12, S13
I4 13:00–17:00 Unoccupied S14, S15, S16, S17
I5 17:00–21:00 Occupied S18, S19, S20, S21
I6 21:00–24:00 Occupied S22, S23, S24
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mission coefficient, etc. based on several real data which a part of
them has been shown in Table 5.

In order to validate the performance of AFLM, the period of
learning and adaptation of system is set on three successive days.
This means if any element(s) in learning vector changes for three
consecutive days, it is considered for adaptation as new habit of
user. The first week is also dedicated to training system as well
as initializing all information described in AFLM decision-making
process.

As shown in Table 9 multiple changes are applied to decisions
made by autonomous thermostat in order to validate and analyze
the functionality of AFLM algorithm statistically. Hence, the deci-
sions made by autonomous thermostat (i.e., set point values and
their associated ‘start and end times’) are overridden to mimic
user’s pattern changes for three consecutive days; Monday, Tues-
day, and Wednesday clusters of the second week.

As it can be observed from Table 9, the first change is for Mon-
day cluster of the second week, where the user overrides the set
point S3 ¼ 22 �C and reduces it to 21 �C (overridden value) at
2:30 A.M. (start time). Hence, the set point stays on 21 �C until
the user increases it (21 �C) to 23 �C at 4:30 A.M. (end time). Based
on these changes, the ‘override flags’ F3 and F5 associated with set
points S3 and S5 become ‘on’ (shown in Table 9). Therefore, the
associated weights for all elements within interval ‘I1’ [0:00 A.
M.–6:00 A.M] after comparing with initial values are recorded.
Please cite this article in press as: Keshtkar A, Arzanpour S. An adaptive fuzzy lo
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For example, in this case (Monday) the weights associated with
‘heat set point’ ðS3Þ and ‘start time’ are 1 �C and 150 min (2:30 A.
M.–0:00 A.M. = 2:30) respectively. In addition, the weights associ-
ated with S5 and ‘end time’ are 2 �C and 90 min
(6 : 00� 4 : 30 ¼ 1 : 30) respectively. Similarly, the other changes
applied to the system for Tuesday and Wednesday clusters of the
second week are shown in Table 9.

As shown in Table 9, AFLM adapted value after the third occur-
rence is not the average value of three successive changes. The
adapted values of AFLM after one week training fall within the
interval of the 95 percent ‘fuzzy confidence interval’ of the sample
mean values [42]. Fuzzy confidence interval will assure whether or
not the AFLM adapted values are in the appropriate interval after
three consecutive occurrences. Hence, it implies that AFLM con-
form to the value that is near to frequent habits. Referring to
gic system for residential energy management in smart grid environments.
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Fig. 12. Adjusted set points for different days of week in ‘Autonomous Mode’.

Table 9
Adapting to User Pattern Changes in ‘‘Autonomous Mode”.

# Weekday cluster Affected
flags

Affected
set points

Initial
value (�C)

Overridden SP
value (�C) [start]

Start time Overridden SP
value (�C) [end]

End time

Monday F3, F5 S3, S5 22 21 2:30 23 4:30
Tuesday F2, F4 S2,S4 20.2 18 1:45 21 3:30
Wednesday F1, F3 S1, S3 23 19 00:30 23 2:45
Average N/A 21.66 19.33 1:25 22.33 3:15
Fuzzy confidence N/A N/A (17.5, 21.3) (0:18, 2:43) (20.4, 23.6) (2:31, 4:46)
Adapted values N/A N/A 18.46 1:06 20.8 3:30

A. Keshtkar, S. Arzanpour / Applied Energy xxx (2016) xxx–xxx 13
Table 9, the AFLM adapted value for set point temperature after
three times overriding of the made decisions for next daily clusters
is 18.46 �C. As it can be observed it is closer to the patterns that
occurred on the second and third day. Hence, AFLM does not
accommodate to the average value of three daily occurrences
(19.33 �C). In this way we can save more energy, while the adapted
set point is still in thermal comfort interval ð18 6 PPD 6 19:5 �CÞ.
Furthermore, referring to Table 9, the AFLM adapted value for the
days after Wednesday cluster (start time of set point changing) is
1:06 A.M. which, in fact is closer to the habits on second and third
days. Hence, AFLM does not adapt to the average value of three
daily occurrences, which is 1:25 A.M.

As a result, the ‘start time’ is not affected by a change of pattern
on first day of occurrence 2:30 A.M. the AFLM adapts to the value
that is closer to the typical user preferences observed during the
first and third occurrence, and at the same time leads to energy
saving because it reduces the adapted set point 19 min earlier than
average value.

Furthermore, the AFLM adapted value for ‘end time’ for next
days is 3:30 A.M. while the average value is 3:15 A.M. Therefore,
the ‘end time’ is not influenced by a change of pattern on the third
day 2:45 A.M. AFLM accommodates to the value that is closer to
frequent user preferences recorded during the first and second
occurrence. In addition, the adapted set point related to ‘end time’
is 20.8 �C. Hence, the set point is not influenced by the changes of
preferences on the first and third habits which are 23 �C. Therefore,
the adapted values for ‘end time’ and its corresponding set point
value result in more energy saving because the set point remains
longer on the adapted value that is lower than overridden set
points (last two columns). Furthermore, one of the main advan-
tages of the developed AFLM was that the user thermal comfort
Please cite this article in press as: Keshtkar A, Arzanpour S. An adaptive fuzzy lo
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was not threatened during the process. Instead, occupant’s prefer-
ences were maintained, while energy savings were achieved.

6. Conclusion

This paper presented an implementation of adaptable autono-
mous approach utilizing fuzzy logic and wireless sensors capabili-
ties in smart grids to develop an ‘adaptable smart thermostat’ for
residential energy management. The result of SFLL performance
added to the thermostat for load reduction with respect to energy
saving for one month simulation was around 21.3%, where any
interaction on user side for modifying the set points in response
to input parameters was not required.

Furthermore, in the cases that the user overrode the initialized
set points both in ‘Manual Mode’ and ‘Autonomous Mode’, an
AFLMwas developed in order to adapt to new user’s habit changes.
In order to verify the functionality of AFLM with respect to adapt-
ability and energy saving; multiple changes were applied to user
schedule and preference changes. The results from a two months
simulation with and without enabling AFLM showed that the rela-
tive energy saving for only adapting to a very limited time com-
pared to without enabling AFLM was 1.03% saving, while the
learning and adapting process was taken place as well.

Moreover, it was observed when the ‘Autonomous Mode’ was
the user preferred mode; the thermostat equipped with AFLM
was able to adapt to new schedules and preferences after three
consecutive changes applied to elements of learning vectors. In this
case, the adapted values of AFLM after one week training fell
within the interval of the 95% ‘fuzzy confidence interval’ of the
sample mean values. Thus, it implied that AFLM adapted to the
value(s) which is close to frequent habits, while the adapted set
gic system for residential energy management in smart grid environments.
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point(s) was in thermal comfort-zone. In addition, the adaptable
autonomous thermostat reduced the adapted set point earlier than
average approach, and in this case the thermostat also remained
longer on the adapted set point which resulted in more energy sav-
ing and conservation.
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