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Demand management in residential buildings is a key component toward sustainability and efficiency in
urban environments. The recent advancements in sensor based technologies hold the promise of novel
energy consumption models that can better characterize the underlying patterns.
In this paper, we propose a probabilistic data-driven predictive model for consumption forecasting in

residential buildings. The model is based on Bayesian network (BN) framework which is able to discover
dependency relations between contributing variables. Thus, we can relax the assumptions that are often
made in traditional forecasting models. Moreover, we are able to efficiently capture the uncertainties in
input variables and quantify their effect on the system output. We test our proposed approach to the data
provided by Pacific Northwest National Lab (PNNL) which has been collected through a pilot Smart Grid
project.
We examine the performance of our model in a multiscale setting by considering various temporal (i.e.,

15 min, hourly intervals) and spatial (i.e., all households in a region, each household) resolutions for ana-
lyzing data. Demand forecasting at the individual households’ levels is a first step toward designing per-
sonalized and targeted policies for each customer. While this is a widely studied topic in digital
marketing, few researches have been done in the energy sector. The results indicate that Bayesian net-
works can be efficiently used for probabilistic energy modeling in residential buildings by discovering
the dependencies between variables.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Smart Grid which represents the future generation of power
systems, is composed of multiple interacting systems such as
renewable supply network, distribution and storage systems and
communication systems. The underlying idea which has entailed
this transition is the growing need for optimized energy consump-
tion and management. This goal is sought with the aid of digitized
systems and sensors which are capable to monitor the system and
collect relevant data at various scales. The information network,
ensures the viability of data-driven and data-aware perspectives,
both on the side of utilities and consumers. This enables both con-
sumers and utilities to share in the responsibility and benefits of
access to advanced technology. Being constituted of multiple
stochastic, dynamic and distributed components, the need for an
automated and intelligent framework to predict the overall system
behavior in Smart Grids is accentuated. In this paper, we aim to
enhance our stochastic modeling capability in complex systems
by adapting a data-driven approach.
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Predictive modeling such as load forecasting is one of the core
problems that is studied in power grids. However, the advent of
smart meters in the context of Smart Grids introduces some new
aspects to this traditional problem. Smart meters facilitate a real
time interaction between power supplier and households in terms
of collecting high frequency consumption data from households as
well as sending incentive prices to the customers. The utility com-
panies seek to manage demand at the customers’ side by commu-
nicating incentives to them such as real time electricity prices. The
pricing policy is aimed at shifting the demand from peak hours to
off-peak hours. Accordingly, we encounter a huge amount of high
resolution data collected at various time scales at the households’
level. The rich entity of data enables decision makers to design per-
sonalized policies for each specific household. Thus, the availability
of these high resolution data introduces potential benefits as well
as some complexities to predictive problems in Smart Grid.

The particular characteristics of Smart Grids call for a new pre-
dictive framework that is able to efficiently capture these features.
First, we need a predictive model that well suits high dimensional
settings where the number of predictors is large. Historical con-
sumption, weather variables, time parameters and real time price
signals are among the contributing variables in predicting demand.
Moreover, the availability of data at varying spatial and temporal
granularities introduces new challenges in terms of multiscale
models and the effect of model resolution on the results. Further-
more, given the detailed customers’ consumption data, utility com-
panies are interested in having models at the customers’ scale
which are able to recommend personalized policies. Finally, quan-
tifying the uncertainty associated with the involved components
and formalizing their effect on the prediction result in not a trivial
task in this context.

In this paper, we propose Bayesian network framework as a
probabilistic tool to model the dependencies between various con-
tributing factors in demand forecasting in the Smart Grid context.
Bayesian networks provide a single framework for density estima-
tion, probability propagation and inference in complex systems. It
is argued that Bayesian networks are an appropriate tool for prob-
abilistic modeling in complex systems when the number of vari-
ables is high. In this regard, we seek to probabilistically predict
demand subject to real time prices (as well as other factors) at
multiple spatial and temporal scales. The load forecasting problem
is studied at 15 min and hourly time resolutions. Here, the goal is
to find the optimal time interval for sending, receiving and analyz-
ing the data to/from customers. Besides, we develop a model to
predict the demand at the households’ scale which can be used
as an aid for personalized policy making. We demonstrate the per-
formance of our model using a real data set provided by Pacific
Northwest National Lab (PNNL).

Therefore, the main contribution of this paper is to investigate
whether Bayesian network model can be applied to sensor based
probabilistic load forecasting problem. This modeling framework
has significant implications. First, the structure of the model is
purely learned from the data and no prior assumptions are
inserted. Second, the high number of influencing variables as
expected in sensor based models will not pose any modeling chal-
lenges, since BNs well adopt to high dimensional settings. More-
over, introducing new variables to the model can be well
digested by the algorithm. Third, the full probability distribution
of the demand variable can be inferred even if all predictor vari-
ables are not observed. Fourth, prediction at high granularity
levels, specifically at the households’ scale can be conducted which
has major benefits for utility companies in designing targeted and
personalized policies.

Another novelty of our work owes to the data set that we use.
The scarcity of high resolution sensor data at household level
makes any such data set worthy. Our data set is consisted of con-
sumption values at 5 min intervals for 25 customers over a year.
Also, the real time price that has been communicated to customers
is available at 15 min intervals. This provides a unique opportunity
to investigate whether pricing policy has been effective in reducing
or changing the consumption behavior of customers.
2. Related work

Load forecasting problem has been extensively addressed in the
literature. Generally speaking there have been two main lines of
research. The first direction of research is based on ‘‘parametric”
statistical models such as time-series and linear regression (e.g.,
[1,2],3). The second trend encompasses ‘‘nonparametric” models
such as support vector regression, neural networks and fuzzy logic
models [4,5]. A comprehensive literature survey of load forecasting
techniques is presented in [6]. Despite being intuitive, parametric
methods often suffer from the limitations posed by the underlying
assumptions in their construction. The form of the parametric
model is set in advance and thus it can’t incorporate unspecified
relationships between the target variable and the predictors. More-
over, these models are not generally suited for high dimensional
problems (when the number of predictors grow) since they will
need a prohibitively large number of parameters to be calibrated.
Additionally, these models fail in treating the fine resolution data
provided by the smart sensors at households’ levels.

Nonparametric models which are heavily based on machine
learning algorithms, have gained much popularity for sensor based
energy forecasting [7]. In this data-driven approach, data from var-
ious sources such as energy smart meters, weather stations and
resident occupancies are fed into a machine learning algorithm
aiming to find the model that gives the best match between the
model output and the observed data. In this category, the two most
common algorithms used for sensor based energy forecasting are
artificial neural networks [8,9] and support vector machines
[10,11]. A comprehensive study of the performance of various
machine learning algorithms for load forecasting is presented in
[7].

Scarcity of sensor based data for residential buildings when
contrasted to commercial buildings has caused the majority of sen-
sor based energy forecasting literature to be focused on commer-
cial buildings [12]. Moreover, most sensor based models for
residential buildings are conducted based on monthly data gath-
ered from monthly utility statements. Therefore, there is a need
to explore additional techniques for modeling residential energy
consumption with higher granularity data sets and provide more
insight regarding appropriate modeling approaches for this prob-
lem. Residential load forecasting with higher granularity data sets
is studied in [13,14].

While deterministic load forecasting is quite valuable, possible
sensor errors, intrinsic weather uncertainties and renewable inte-
gration requirements mean that probabilistic load forecasting
needs to be adopted more in energy planning and operations.
The literature on probabilistic load forecasting (PLF) is quite lim-
ited especially when comoared to probabilistic wind power fore-
casting (PWPF) [15]. However, [16] claims that PLF should be
regarded just as important as PWPF in the utility industry. The
authors argue that typical 15% error in day ahead wind power
forecasting, where wind penetration is around 20%, gives a similar
absolute error as 3% error in day ahead load forecasting for a med-
ium sized US utility with an annual peak of 1GW-10GW . It is
claimed that reducing the forecasting error by only 1%, in terms
of mean absolute percentage error (MAPE), can save hundred thou-
sand dollars per GW peak for a utility company [16]. Thus, it is
quite evident that uncertainty quantification and probabilistic
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modeling in load forecasting is a much needed and missing puzzle
piece that needs to be thoroughly addressed.

The literature on probabilistic load forecasting is not well devel-
oped. The authors in [17] propose an approach based on Gaussian
process with hierarchical Bayesian estimation for probabilistic
one-step-ahead daily peak load forecasting. Moreover, a modified
bootstrap method for simulating the forecasting residuals and then
generating prediction intervals for the electricity demand has been
studied in [18]. Probabilistic load forecasting in smart grids has
been addressed in [19] using a Bayesian approach. Vlachopoulou
et al. [20] use dynamic Bayesian network to predict water heater
load variations over time. Bayesian network framework has also
been used in citebnpredict5 for predictive control of smart
buildings.

The remainder of this article is organized as follows: in Sec-
tion 3, we introduce the concept of Bayesian networks and provide
necessary notations to learn and use the model as a probabilistic
predictive model. Section 4 discusses the problem and develops
Bayesian network model to forecast demand at multiple spatial
and temporal resolutions. We conclude the paper in Section 5.
3. Bayesian networks

A Bayesian network (BN), is a directed acyclic (i.e. having no
cycles) graphical (DAG) model that encodes the joint probability
distribution of a set of random variables by making conditional
independence assumptions [21]. Bayesian networks have become
popular representations for extracting knowledge from data in
complex uncertain systems in recent years. According to [22],
BNs have at least four remarkable advantages over the state-of-
the-art data analysis techniques for density estimation, regression,
classifications and clustering. First, since BNs are able to encode
the dependencies between the input variables, they can easily han-
dle incomplete datasets. Second, in a BN model the causal relation-
ships between the variables can be learned. This provides valuable
insights regarding the specific domain under study. Third, Bayesian
networks provide an intuitive way to incorporate the prior expert
knowledge into the model. This is achieved by using Bayesian sta-
tistical techniques in modeling. Finally, BNs provide a principled
framework to avoid overfitting of data. A typical BN is shown in
Fig. 1.

In this paper, we consider a Bayesian network over a finite set of
discrete random variables, X ¼ X1; . . . ;Xnf g. A BN represents a joint
pdf over X by encoding conditional independence assertions as
well as a collection of pdfs. The assertions of conditional indepen-
dence are modeled through a directed acyclic graph (DAG) struc-
ture. Thus, we use the pair B ¼ S;Hh i to define a BN where S is
the BN structure (a DAG) in which nodes represent random vari-
ables X1; . . . ;Xn and edges express direct dependencies between
Fig. 1. An example BN [23].
the variables. Moreover, H is a set of pdfs corresponding to that
structure.

The chain rule of probability implies that a joint distribution can
always be represented as follows, using any ordering of the
variables:

q X1; . . . ;Xnð Þ ¼ qðX1ÞqðX2 j X1ÞqðX3 j X2;X1Þ . . .qðXn j X1:n�1Þ ð1Þ

As n gets large, evaluation of qðXi j X1:i�1Þ becomes more and more
complicated. In a multinomial setting where each variable has K
states, qðX1Þ is represented as a table of OðKÞ numbers (In fact, there
are only K � 1 free parameters, but we use OðKÞ for simplicity). Sim-
ilarly qðX2 j X1Þ is a table with OðK2Þ parameters. Thus, there will be
OðKnÞ parameters in the model, learning which requires lot of data.

The key solution to characterizing large joint distributions is to
make some assumptions about conditional independence (CI). We
say that X and Y are conditionally independent given Z, denoted by
X ? Y j Z if and only if:

X ? Y j Z () qðX;Y j ZÞ ¼ qðX j YÞqðY j ZÞ ð2Þ

Assume that the structure of the directed acyclic graph is known.
There exists efficient algorithms to find the ordering of the nodes
such that parents come before children [24]. The parent and chil-
dren notion in a directed graph coincides with their common sense
meaning, i.e. parent of a node is the set of all nodes that feed into it
and the children of a node is the set of all nodes that feed out of it.
Given this ordering, which is known as topological ordering,
ordered Markov Property is defined as the assumption that a node
only depends on its immediate parents, not all predecessors in the
ordering [25], so:

Xs ? XpredðsÞnpaðsÞ j XpaðsÞ ð3Þ

where paðsÞ are the parents of node s, and predðsÞ are the predeces-
sors of node s in the ordering. This is in fact a generalization of the
first order Markov assumption where we assume that variable at
time t þ 1 is independent of all variables up to time t � 1 given that
variable at time t is observed. This assumptions generalizes Markov
property from chains to DAGs. Accordingly, the chain rule (1) for the
topological ordering is reduced to a factorized expression given by:

q X1; . . . ;Xnð Þ ¼
Yn
i¼1
q Xi j paðXiÞð Þ ð4Þ

where each term q Xi j paðXiÞð Þ is a conditional probability
distribution (CPD). Here, we have used the relation
q Xi j X1; . . . ;Xi�1ð Þ ¼ q Xi j PaðXiÞð Þ based on ordered Markov
assumption to reduce the model. This factorized joint distribution
only holds if the CI assumptions encoded in the associated DAG
are correct. In case each node has OðFÞ parents and K states, there
will be OðnKFÞ parameters in the model which is much less than
the OðKnÞ needed by a model which makes no CI assumptions.

In the discrete setting, we associate with each node in the graph
a conditional probability table (CPT) which tabulates q Xi j PaðXiÞð Þ.
By convention, each row in the table corresponds to a specific con-
figuration of the parent variables and has a separate multinomial
distribution. Assume variable Xi and its parents PaXi

have ri and
qi mutually exclusive configurations respectively. Thus, the table
has ri � qi entries covering all possible combinations [26]. Each
entry in the table is denoted by hijk ¼ pðXi ¼ k j PaðXiÞ ¼ jÞ which
is the probability that node Xi is in state k given that its parents
are in state j. Similarly the set of parameters for each row is
denoted by Hij and the set of all the parameters of the BN model
is represented by H.
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3.1. Learning Bayesian networks

Learning a Bayesian network consists of learning the graph
structure and the corresponding CPT parameters that best fit the
available data. In general, Bayesian network structure learning
has two main applications: knowledge discovery and density esti-
mation. By knowledge discovery we mean that a BN structure can
efficiently reveal the conditional independencies between vari-
ables. This topic will be elaborated in Section 3.3. On the other
hand, the BN structure can be used in conjunction with the CPT
parameters to uniquely specify a joint density function over the
random variables. These two tasks can not be carried out indepen-
dently. First, in order to learn the structure, we need some estima-
tion of the parameters to quantify the goodness of fit. On the other
hand, to estimate the conditional probabilities, we must know the
graphical structure in advance.

Generally, there are two categories of BN structure learning. The
first one is search-and-score which assigns a score to each possible
BN structure based on its match to the observed data and then
searches for the best network. The other one is called constraint-
based algorithm, which runs conditional independence tests to
learn the structure. In this paper, we are only interested in the
search-and-score approach. In this setting, learning a Bayesian net-
work consists of a search conducted over some search space to
optimize a scoring metric. The scoring functions are based on dif-
ferent principles, such as information theory and minimum
description length [27,28], or Bayesian methods [29,30]. As far as
the search algorithm is concerned, since finding the globally opti-
mal graph takes exponential time in most cases, some heuristic
search method is usually used. This can be greedy search (such
as hill-climbing or tabu search), simulated annealing or genetic
algorithms to name the most popular ones. At last, the search space
is dominantly the DAG space, however, it can be either equivalence
classes of DAGs or orderings over the network variables (an equiv-
alence class refers to a set of DAGs in which all the members imply
the same set of conditional independence assertions).

In this paper, we focus on the Bayesian score for discrete Baye-
sian networks and use tabu search to find the best DAG structure.
Let D ¼ C1; . . . ;Cmf g be the set of m observed instances of C (where
each case Ci assigns values to one or more variables in X). Our goal
is finding a network S that best matches the dataset D. The deriva-
tions in this section are mostly based on [30]. Posterior probability
of a network structure may be used as a Bayesian measure to score
a structure:

qðS j DÞ ¼ qðD j SÞqðSÞP
SqðD j SÞqðSÞ

ð5Þ

in which the denominator is a normalization constant. Calculating
this constant requires summing over all possible structures which
is computationally expensive even for small domains. Thus, we
resort to computing the numerator as the network score. Thus,
the Bayesian score is defined as qðD; SÞ ¼ qðD j SÞqðSÞ. We start
deriving the Bayesian score by calculating qðD j SÞ. Applying the
chain rule, we obtain

qðD j SÞ ¼
Ym
l¼1
q Cl j C1; . . . ;Cl�1; Sð Þ

¼
Ym
l¼1

Z
h
q Cl j H; Sð Þq H j C1; . . . ;Cl�1; Sð Þ ð6Þ

Here, H is dependent on structure S, but we skip this notation for
brevity. Thus, to calculate qðD j SÞ we sum over all possible values
of model parameters. The first term in the above integral is the
probability of observing a particular case given that the model is
fully specified (known structure and known parameters). Here, we
assume that each observed case is a multinomial sample from some
BN with some structure and parameters. Moreover, if we assume
that the dataset is complete (no missing or hidden variables), then
using the factorized expression for joint distribution in BNs as in (4),
we have

q Cl j H; Sð Þ ¼
Y
i

Y
j

Y
k

h
alijk
ijk ð7Þ

where alijk is 1 if and only if Xi ¼ k and PaðXiÞ ¼ j in case Cl and 0
otherwise. To simplify the second term in the integral, researchers
assume parameter independence which implies that the parame-
ters associated with each node in the BN (each variable) can be
computed independent of the other nodes. This is called global
independence. Moreover, in each node the parameters of each
row of the CPT table (associated with each particular configuration
of the node parents) can be determined independent of other rows.
This is referred to as local independence. These assumptions lead to
the following

q H j Sð Þ ¼
Y
i

Y
j

q HijjS
� � ð8Þ

where Hij is the set of parameters of node i when its parents are in
configuration j. Plugging (7) and (8) into the integral in (6) and
doing some manipulations yields [30]

qðD j SÞ ¼
Y
i

Y
j

Y
k

Y
l

E hijk j C1; . . . ;Cl�1; S
� �alijk ð9Þ

where E denotes the expectation of hijk with respect to qðHijÞ. To cal-
culate the expectation in (9) we need to know qðHijjD; SÞ which is
the parameter posterior. On the other hand, we already assumed
that qðDjHij; SÞ has a multinomial distribution. Since the Dirichlet
distribution is the conjugate for multinomial distribution, by
assuming a Dirichlet prior for parameters the parameter posterior
would also follow a Dirichlet distribution. Accordingly, we assume
that qðHijjSÞ has a Dirichlet distribution and thus the posterior dis-
tribution, qðHijjD; SÞ, is also Dirichlet. It is well known that the mean
of the Dirichlet distribution for each of the variables is

E hijk j D; S
� � ¼ N0ijk þ Nijk

N0ij þ Nij
ð10Þ

where Nijk is the number of cases in dataset where Xi ¼ k and
PaðXiÞ ¼ j and Nij ¼

P
kNijk. Similarly, N0ijk is the prior Dirichlet

hyperparameter which serves as a pseudo count. In other words,
we can assume that there is an imaginary (equivalent) sample with
size N0 which reflects our belief in the prior distribution and N0ijk is
the number of cases in the imaginary dataset where Xi ¼ k and
PaðXiÞ ¼ j. By plugging in (10) into Eq. (9) and summing over l, we
get an expression for qðD j SÞ. As discussed earlier we pick
qðD; SÞ ¼ qðD j SÞqðSÞ as the network score, thus

qðD; SÞ ¼ qðSÞ
Y
i

Y
j

cðN0ijÞ
cðN0ij þ NijÞ

Y
k

cðN0ijk þ NijkÞ
cðN0ijkÞ

ð11Þ

where c is the Gamma function [30]. This is called BD metric which
stands for Bayesian metric with Dirichlet priors. Here qðSÞ refers to
our prior belief regarding the network structure which is usually
assumed to follow a uniform distribution. The BDmetric is not score
equivalent, i.e. it does not give the same score for different networks
in the same equivalence class. As discussed earlier, an equivalence
class is a set of networks that imply the same assertions of condi-
tional independency. Thus, it is desirable that our metric assigns
the same score to all the members of the same class. [30] shows that
the only Dirichlet hyperparameters that give a score equivalent
metric are

N0ijk ¼ N0q0ðXi ¼ k;paðXiÞ ¼ jÞ ð12Þ
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where q0 is some prior joint probability distribution. Substituting
(12) into the BD metric, we obtain a new metric called BDe metric.
This represents a score equivalent Bayesian metric with Dirichlet
priors. Typically the prior distribution q0 is assumed to be uniform,
i.e. q0ðXi ¼ k; PaðXiÞ ¼ jÞ ¼ 1

riqi
. Consequently, the hyperparameters

would be equal to

N0ijk ¼
N0

riqi
ð13Þ

where ri is the number of different categories for variable Xi and qi

is the number of different parent configurations for the same vari-
able. Hence if we sum the pseudo counts over all ri � qi entries in
the CPT, we get a total equivalent sample size of N0. This prior is
called the BDeu prior, where the ‘‘u” stands for uniform.

3.2. Probabilistic inference in BNs

Bayesian networks provide full representation of the joint prob-
ability distribution over their random variables. Thus, we can use
them to answer any conditional probabilistic queries about the
domain. This is called probabilistic inference and usually deals with
inferring the state of a set of query variables given the state of
some evidence (or observation) variables. Probability propagation
and belief updating are also popular terms that are used in the lit-
erature for addressing this problem.

To answer these queries we need to compute a conditional
probability distribution. We denote this by pðQ j EÞ where Q and
E are query and evidence subsets of variables respectively. We
can use Bayes theorem to compute this distribution:

pðQ j EÞ ¼ pðQ ; EÞ
pðEÞ ð14Þ

Here, the joint distribution learned by the Bayesian network, which
has a factorized expression as in (4), can be used to compute the
joint distributions. In fact, we can use marginalization (summing
out over unwanted variables) to compute any desired probability.
However, this will take exponential time. Therefore, researchers
have looked for more efficient algorithms to address this problem.
Variable elimination algorithm [31] systematically marginalizes
out the irrelevant variables to compute the desired marginal distri-
bution. Junction tree algorithm, which is a general-purpose algo-
rithm for computing conditional and marginals on graphs, is the
other inference method that is used for BNs. In a very brief sum-
mary, the steps in junction tree algorithm are as follows: First, the
BN is converted to a moral graph meaning that arc directions are
removed and all co-parents of a common child are connected to
each other. Then the moral graph is triangulated meaning that we
add chords so that every cycle in the graph has a chord. The next
step is to build a graph in which each node corresponds to each
maximal clique in the triangulated graph. By definition, a clique is
a fully connected subset of nodes in a graph. Finally we find the
associated junction tree from this clique graph. The basic idea
behind building the junction tree is that the probability distribution
can be represented as a product of clique distributions. Having built
the junction tree, we can use Pearl’s message passing algorithm [21]
to update our belief regarding the conditional and marginal distri-
butions in the graph. The core idea is to use Bayes theorem to
update clique distributions in a local manner. For a detailed discus-
sion about this algorithm readers are referred to [32,33]. Although
these exact inference algorithms improve the computation process,
they are still very slow for problems with many variables. Therefore
for more complex problems researchers resort to approximate
techniques.

Sampling (Monte Carlo) methods are an important class of
approximate techniques for inference in BNs. This is done by
drawing a large number of random configurations over the random
variables using the Bayesian network model. Then, any probabilis-
tic quantity can be approximated by using these samples. Many
different algorithms are proposed to perform this type of sampling.
These algorithms propose different methods to generate the sam-
ples and also the way the probabilities are computed given the
samples. Probabilistic logic sampling [34], likelihood weighting
[35] and Gibbs sampling [36] are among the most popular methods
in this context.

3.3. Conditional independence properties of a BN

The pure structure of a Bayesian network can be used to infer
the conditional independencies between random variables. By def-
inition X and Y are conditionally independent given Z if and only if:

X ? Y jZ () pðX;YjZÞ ¼ pðxjZÞpðYjZÞ ð15Þ
This means that if we observe Z, knowing Y will not provide us with
any additional information about X. Inferring conditional indepen-
dencies from a BN is based on the underlying idea that ‘‘depen-
dence” is associated with ‘‘connectedness” in the graph and
‘‘independence” with ‘‘separation”. In other words, two nodes X
and Y are d-separated if all the paths between them are blocked.
In finding a path, the direction of the arcs is not important. There
are two main rules that determine if an existing undirected path
between two nodes is blocked or not.

1. A so-called collider or v-structure, s! m t, blocks a path
unless m or one of its descendants is in Z.

2. A collider-free path is blocked by Z if any member of Z is present
in the path.

The extension of the above definition to sets of variables is
straightforward (i.e., two sets are separated if and only if each ele-
ment in one set is separated from every element in the other).
Using the d-separation rules we can obtain useful insights regard-
ing the conditional independencies between variables. D-
separation criteria has an important implication in the Bayesian
networks. Each node is independent of all the other nodes given
its Markov blanket (By definition, the Markov blanket of a node
in a DAG consists of its parents, its children and other co-parents
of its children). These expressions prove to be highly informative
when we want to extract some knowledge about the conditional
independencies encoded by a Bayesian network.
4. Results and discussion

It is desirable for decision makers to discover the structure and
dependencies among multiple factors which form the behavior of a
complex system and use them to forecast the future behavior of
the system. Building such a model enhances the general insight
about the system and facilitates decision making tasks. In this
paper, we address the demand response issue in the context of
Smart Grid technology. This is a complex system which comprises
of multiple random components. Our goal is to discover the depen-
dencies between the contributing factors and probabilistically
quantify their impact on the electricity demand. We seek to
develop predictive models at the local (each customer) and global
(aggregate customers) scales. In this regard, we use Bayesian net-
works to learn the dependencies as well as quantifying the joint
probability distribution.

In order to learn a Bayesian network structure we need to
choose a scoring metric as well as a search strategy. In this regard,
we pick BDeu score and use tabu search algorithm in searching for
the optimal network. We initially start with some arbitrary
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network structure and find its score. Then the score change for all
legal arc operations, one at a time, is calculated. By arc operations
we mean arc addition, arc deletion and arc reversal. Next, we pick
the arc operation with the highest score gain and apply it. We con-
tinue this procedure until a desired convergence rate in score is
satisfied. This algorithm is not guaranteed to find a global optimum
but only a local optimal structure. To avoid this problem, we can
repeat the procedure for multiple initial structures and pick the
best one. We use bnlearn package from R repository to conduct
the simulations [37,38].

Learning the Bayesian network structure and parameters fully
defines the joint probability distribution. To evaluate the quality
of the learned model we need to assess its goodness of fit for a
training dataset. Moreover, we can use a test dataset to quantify
the generalization power of the learned model when applied to
new datasets. We consider 90% of the data as training and 10%
as the test set. In our problem, we pick normalized root mean
squared error (NRMSE) to evaluate the performance of the model
in predicting demand. NRMSE is defined as:

NRMSE ¼ 100% �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1ðyi � ŷiÞ2

q
ymax � ymin

ð16Þ

where yi denotes the observed value for variable y; ŷi represents the
predicted value by the model, ymax � ymin is the variable range and n
is the number of observed samples. In our problem, we take ŷi to be
the mean of the learned probability distribution for node demandt .
Since we discretize the domain of demandt to some bins, the BN
model finds a probability mass function over the bins. We use bin
midpoints to compute the distribution mean and standard
deviation.

4.1. Dataset description

We use the electricity consumption data collected by Pacific
Northwest national lab (PNNL) in a project called ‘‘Olympic Penin-
sula”. The data consists of smart meter readings, i.e. electricity con-
sumption (Watts), for 82 customers in three zip codes in the state
of Washington. The project was carried out between April 1st 2006
and March 31st 2007 with a resolution of 5 min in recording the
meter readings [39]. The customers were divided into three cate-
gories based on the pricing policy that was assigned to them: real
time price (RTP), time-of-use price (TOU) and fixed price groups.
One of the primary goals of this paper is to model the effect of price
variations on the demand pattern, thus we only study the behavior
of RTP customers (25 households) who received price signals every
15 min. We process the data to design 3 experiments, namely:

1. Aggregated customers - hourly temporal granularity.
2. Aggregated customers - 15 min temporal granularity.
3. Individual households - hourly temporal granularity.

Granularity refers to the temporal scale that we pick for aggre-
gating price and consumption data. In case of aggregated cus-
tomers, we extract the following attributes from data: month of
year, time index of day (based on 15 min or hourly time resolu-
tions), outside temperature, electricity price, day of week, is it
Table 1
NRMSEð%Þ in predicting aggregated demand using discrete Bayesian network.

Cluster

5 30 50 5

Hourly 7.90 7.20 7.22 7.27
15-min 5.94 4.91 4.97 5.23
weekend or not, demand at the current time step, demand at pre-
vious time step and demand at two previous time steps. Addition-
ally, when dealing with the problem at the households level we
also include customer ID (which uniquely distinguishes each
household), aggregated demand of all customers, usage base and
usage variations. The last two attributes represent the mean and
standard deviation of consumption data for a particular household.
The underlying idea is that they are supposed to characterize the
household’s consumption behavior. For the sake of space saving,
these variables are denoted as follows in the associated graphs:
month, timeindex, temperature, price, dayofweek, isweekend,
demandt ; demandt�1; demandt�2;CID, agg-demand, use-avg and use-
var.
4.2. Tuning discretization parameters

It is evident that some of the involved variables in our current
problem take continuous values and some other take discrete val-
ues. Since we would like to use a discrete Bayesian network as our
predictive model, we need to discretize continuous variables. To do
so we use Fayyad and Irani [40] discretization method which is a
widely used technique in the machine learning community. This
method partitions the intervals according to a criterion that is
based on minimum description length principle. Since, this is a
supervised method we need to introduce the class variable to the
algorithm. The class variable needs to be discrete beforehand. In
our problem, we take the demand at current time as the class vari-
able and discretize it to k bins. Then we use Fayyad and Irani tech-
nique to discretize other continuous variables. We use three
different discretization criteria, namely equal width intervals,
equal frequency intervals and k-means clustering for discretizing
the demand variable.

By increasing the discretiztaion granularity, we will be able to
predict at a finer scale but this will be at the cost of more param-
eters to be estimated.When the sample size is not big enough, this
increase in the number of parameters will degrade the accuracy of
the model. Therefore, we should always be mindful to keep a good
balance between number of parameters and the sample size. The
greater the number of observations, the finer granularity of the
variables permitted.

Table 1 illustrates the effect of discretization method and num-
ber of bins on the model error for 15 min and hourly time
granularities.

The dicretization scheme may also influence the shape and
smoothness of the predicted probability distribution. We show this
effect in Fig. 2 where three BNs with different discretization
schemes are used to predict qðdemandt jprice > 48Þ. We use junc-
tion tree algorithm from gRain package to infer any desired (condi-
tional) probability distribution using the learned BN model [41].
The resulting distribution would be a histogram over the bins.
We have used kernel density estimation with Gaussian kernels to
assign a continuous distribution to the learned histograms. Fig. 2
shows that the equal width discretization gives the smoothest
pdf. It should be mentioned that data outliers should be removed
before using equal width discretization method since they can dra-
matically influence the results. Hereafter, we pick the BN obtained
Equal width Equal frequency

30 50 5 30 50

7.29 7.25 9.37 7.31 7.45
4.91 4.94 9.46 5.28 5.11



Fig. 4. Expected value of aggregated demand with hourly granularity-comparing
the observed mean versus the conditional and unconditional predicted mean.

Table 2
NRMSEð%Þ in predicting aggregated demand by discrete and Gaussian Bayesian
networks – hourly granularity.

Gaussian BN discrete BN-6 variables

Hourly 6.97 7.29
15-min 4.77 4.91

Fig. 2. Effect of discretization scheme on predicting hourly aggregated demand.

Fig. 3. Learned Bayesian network structure for modeling aggregated demand –
hourly granularity.
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from discretizing the demand to 30 equal width intervals for fur-
ther analysis while we emphasize that this is a modeling choice.

4.3. Modeling aggregated demand - hourly granularity

The learned BN structures for hourly time scale using 30 equal
width intervals to discretize demandt is depicted in Fig. 3. As dis-
cussed in Section 3.3, the pure structure of the learned BN can be
used to infer conditional dependencies and independencies among
the variables. The Markov blanket of demandt is demandt�1, which
means that demand at the previous time step can be used to fully
specify the demand at a desired time step. The learned model can
be used to answer any probabilistic query in the domain. For
instance, we can forecast aggregated demand at any time
conditional on any desired subset of variables that are observed.
Fig. 4 illustrates expected value of demand given a particular
month and temperature and compares it versus the observed
demand and unconditional demand mean. The unique modeling
capability of Bayesian networks allows us to conduct any condi-
tional inference even if only a subset of variables are observed. In
other words, even if only one predictor variable is observed we
can still get a reliable prediction for the target variable. However,
most of the traditional forecasting methods need a complete
instantiation of the predictor variables in order to compute a pre-
diction for the target dependent variable.
4.3.1. Gaussian versus discrete Bayesian networks
Discretization is one way to deal with continuous variables in

BNs. The other most widely used model to deal with continuous
variables is to use the so-called Gaussian Bayesian networks
(GBN). Here, we assume that each variable has a Gaussian distribu-
tion where its mean is a linear combination of its parents’ values
and its standard deviation is constant. It is shown [42] that given
these local distributions the global joint pdf over all random vari-
ables would be a multivariate normal distribution. Similar to dis-
crete Bayesian networks a Bayesian scoring metric can be used in
searching for the best BN model when the structure is unknown.
This score is called BGe which represents a Bayesian and score
equivalent metric for Gaussian networks. For a detailed discussion
about GBNs and the Gaussian score refer to [42]. In this research
we have also considered the Gaussian BN model. The idea is that
discretizing continuous variables (even with fine resolution) leads
to some information loss while using the continuous distributions
eliminates this problem. However, by discretizing the variables in
the BN we are not imposing any particular distribution to the data
and the approach is totally data-driven. On the contrary, in Gaus-
sian BNs we are imposing a strong assumption on the variables,



Fig. 5. Learned discrete Bayesian network structure for modeling aggregated
demand – hourly granularity.

Fig. 6. Learned Gaussian Bayesian network structure for modeling aggregated
demand – hourly granularity.

Fig. 7. Comparison of conditional probability distribution of hourly aggregated
demand given price, qðdemandt jprice > 48Þ, using Gaussian and discrete BNs.
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that they follow a Gaussian distribution. In practical applications
this assumption almost always deviates from reality but still it
might be a good choice depending on the specific data.

In this work, the original data consists of both discrete and con-
tinuous variables (hybrid problem). In order to apply the Gaussian
BN we disregard three discrete variables namely month, dayofweek
and isweekend since assuming a Gaussian distribution for them
seems meaningless. Then, we learn a Gaussian and also a discrete
BN for the remaining 6 variables. As before, we use equal width
discretization with 30 bins for learning the discrete BN. The NRMSE
for these two models is tabulated in Table 2. Based on Table 2 we
can observe that the error of predicting demand is lower when
using the Gaussian BN, however the improvement is not signifi-
cant. Figs. 5 and 6 compare the structure of the two learned BNs
for hourly time scale. We can see that these two graphs imply dif-
ferent conditional independency assertions. For instance the Mar-
kov blanket of demandt in discrete BN model is consisted of
demandt�1; temperature while in the Gaussian BN it is
demandt�1; demandt�2; price; temperature. Besides, the price and
demandt are directly dependent in the Gaussian BN while in the
discrete BN they are dependent through the temperature or
demandt�1.

To get more insight regarding the differences of the two models,
we compute the probability distribution of an arbitrary conditional
query using the two models. Fig. 7 illustrates the unconditional
distribution of demandt as well as the conditional distribution
qðdemandtjprice > 48Þ using the discrete and Gaussian BNs. It is
observed that the general shape of the conditional pdf obtained
from the discrete model is more similar to the unconditional distri-
bution. This result is somewhat expected, since the discrete BN is a
nonparametric data-driven model that tries to capture the true dis-
tribution while the Gaussian BN always assigns a Gaussian pdf to
the variables.
4.4. Modeling aggregated demand - 15 min granularity

The learned BN structure for 15 min granularity using 30 equal
width intervals to discretize demandt is depicted in Fig. 8. Compar-
ing Figs. 8 and 3, we observe that the learned BN structure for
demand modeling at hourly and 15 min granularities are different.
This is reasonable, since data at various time scales might show dif-
ferent hidden structures and this is in fact a question that has been
tried to be answered in this paper. For instance, aggregating data
from 15 min to 1 h may cause us to lose some fine scale variations
and thus discover new dependency structures in the data. Never-
theless, many important dependency relations are still unchanged.
For example, demandt is directly dependent to demandt�1 in both
structures. Also, price variable is directly dependent on dayofweek,
month and demandt�1 in both models. It is clear from the present
analysis that the dependence structure in the data depends on
the time resolution at which the data is observed. Training and cal-
ibration of predictive models should therefore be adapted to speci-
fic resolutions. Besides, BN models are defined by their structure
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and their estimated parameters (not shown in the figures) and
their reliability is validated through tables and graphs reporting
on NRMSE and confidence intervals which are presented through-
out the paper.

We can use the learned model to predict the system’s behavior
for the case of unobserved situations. We use the test datset to
demonstrate the generalization power of the model. Fig. 9 illus-
trates the model results for predicting demand using 50 random
samples from the test dataset for 15 min time scale. Here, the black
points show the predicted mean and the blue bars represent 2r
uncertainty bound around the mean. The red points represent
the actual observed value for the demand. We can see that almost
all of the observed values fall within the predicted range.
ig. 9. Uncertainty interval in predicting aggregated demand with 15 min granu-
rity-red dots represent the observed demand, the black points are the predicted
ean and the blue bars correspond to 2r interval around the mean.
4.5. Modeling individual demand - hourly granularity

The advent of smart meters enables decision makers to set indi-
vidualized policies for each particular customer in the electricity
market. By studying the consumption behavior of each household,
the strategists are able to target certain groups of customers and
enforce appropriate policies to them in order to shape the market
as needed. The first step in designing individualized policies is to
have a predictive model that can envision the expected behavior
of the customers in response to the implemented policies. The tra-
ditional regression models used in predicting the demand usually
are not successful in predicting at the households scale. They will
need too may parameters to tune and often get too complicated
to handle easily. Here, we propose the use of Bayesian networks
to predict demand at the households level and also to capture
the dependencies between the involved variables.

The dataset used to train the model has 139,277 samples which
consists of the meter readings for 25 customers over the course of a
year as discussed earlier. We use hourly scale to aggregate the
price and consumption data. Thus each sample represents the con-
sumption of one particular customer at some specific time subject
to some price and temperature values. We use 30 equal width
intervals to discretize the demand and then Fayyad and Irani algo-
rithm is applied to the rest of the continuous variables. The learned
BN is depicted in Fig. 10. The NRMSE in predicting demand using
Fig. 8. Learned Bayesian network structure for modeling aggregated demand –
15 min granularity.
F
la
m

Fig. 10. Learned Bayesian network structure for predicting individual demand –
hourly granularity.
this model is 11:82%. This error is relatively higher than the error
of predicting the aggregated demand for all customers. This is rea-
sonable, since the demand has much more variations at the house-
hold’s scale while in general aggregating smooths the behavior.
The Markov blanket of demandt in this problem is consisted of
demandt�1 and use-avg. The average of usage is a variable that
reflects the customer’s consumption pattern.

Fig. 11 illustrates the predicted mean and an error bound in pre-
dicting demandt for 50 samples picked randomly from the test
dataset using the learned BN. The black line represents the mean
of the predicted distribution and the shaded area corresponds to



Fig. 11. Uncertainty interval in predicting individual demand with hourly granu-
larity-red dots represent the observed demand, the black line is the predicted mean
and the shaded area corresponds to 2r interval around the mean.

Fig. 12. Probability distribution of demand for customer number 671 at 10 am for 3
different price ranges.

Fig. 13. Hourly variations of expected value of demand for customer number 680
for 4 different price ranges.

Fig. 14. Probability distribution of demand for customer IDs 707, 855, and 867, at
10am given that 51 < price < 59 $/MW h.
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2r deviation from the mean. Additionally, the red dots denote the
actual observed value of demandt for each sample of the test data-
set. The figure shows that the majority of the red points fall within
the error bound limits and many of them are close to the mean.
This suggests that the model is pretty successful in predicting
the demand for unseen cases.

Using the learned BN model, we are able to predict the
probability distribution of any desired variable conditional on
any set of observed variables. For instance we can compute
qðdemandtjtimeindex;CID; priceÞ to get the probability distribution
of demand at a specific time for a particular customer given the
price. Here CID is treated as a random variable that uniquely distin-
guishes each individual household.

Assume the utility company is interested in testing the effect of
price variations on consumption behavior of a target household at
a particular time. Fig. 12 probabilistically answers this question
for the utility company by quantifying qðdemandtjtimeindex ¼
10;CID ¼ 671; priceÞ for customer number 671. The variations of
demand distribution with regard to different price intervals are
clearly quantified. A strong trend is observed in this figure as the
unit price is raised with a marked decrease in low-level demand,
matched by an increase in high-level demand. This may be attrib-
uted to a strong correlation between external effects (such as tem-
perature) and demand paired with a pricing mechanism that
anticipates this correlation. Thus the low-level demand is not asso-
ciated with external effects and was thus reduced as price was
increased. The high level demand, on the other hand, could be
associated with external effects and its rise coincides with an
increase in price to mitigate peak usage (eg. the high-level rise
might have been more pronounced without such a price increase).



Fig. 15. Hourly variations of expected value of demand for 9 different customers
given that 20:6 < price < 35:7 $/MW h.
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Similarly, Fig. 13 illustrates hourly variations of the predicted
mean of demand for a particular customer subject to various price
intervals. We can see that the household’s daily consumption pro-
file has been altered due to the price variations.

As another application, we demonstrate the capability of the
model in differentiating various categories of customers based on
their response sensitivity to price incentives. The probability distri-
bution of demand given the price value for 3 different customers is
depicted in Fig. 14. This graph quantifies different behaviors of cus-
tomers subject to a particular price. Fig. 15, similarly, depicts the
temporal variations of predicted mean of demand for 9 customers
in a day. These consumption profiles show the different consump-
tion patterns of different households. These results can be used to
design targeted pricing policies for different households while
effectively capture the uncertainties in predictions. Moreover, it
is observed that the demand of individual customers may deviate
significantly from aggregated demand, and the ability of the pre-
sent BN model to anticipate both types of demand demonstrates
its value for a wide range of potential users.
5. Conclusion

In this paper, we attempt to provide solutions to some chal-
lenges in Smart Grids from a stochastic and data-driven point of
view to help decision makers make more informed decisions. The
boom of data streams in energy industry necessitates system
modelers to utilize this data in order to improve the system perfor-
mance. In this research, we introduced a framework to conduct
multiscale probabilistic queries on electricity consumption data
provided by Pacific Northwest National Lab.

To be more specific, we study the problem of probabilistic sen-
sor based residential load forecasting. Multiple stochastic variables
that shape the customer consumption behavior pose a challenge to
this problem. We propose using Bayesian network, which is able to
estimate the joint probability distribution in a complex system, as
the framework for capturing the uncertainties and conducting
probabilistic inferences. We also study the forecasting problem at
the aggregated and individualized scales. The availability of the
usage data at the households level provides a unique opportunity
for modeling households consumption behavior which can lead
to targeted pricing policies for each household. The results show
that our model can assist in quantifying the confidence in predic-
tions at the aggregate and personalized scales. Also the model
can be used for demand response policies in order to assess the
effect of pricing policies on the consumption behavior of the
customers.
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