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a b s t r a c t

Power Line communication (PLC) is an attractive approach to provide information transfer services for
future smart grids. However, since various modulations are adopted, it is a great challenge to add new
nodes to collect the data from the devices or sensors in in-home PLC networks. In this paper, we propose
an approach to automatically access to the PLC network by identifying the modulation of signals. To
improve the correct recognition rate on identification of modulations, we propose a multiple input
and multiple output (MIMO) based cooperative modulation identification scheme. After receiving the
recognition results from accessing nodes, the central server makes the comprehensive and accurate
recognition decision on the modulation of the PLC network. Furthermore, the fourth-order cumulants for
multiple users are adopted as the feature for this modulation classifier. With the feature, we propose an
improvedmodulation classification algorithmbased on themaximum likelihood. Simulations show that a
high detection rate and low false positive rate can be achieved as we employ the cooperative modulation
identifying scheme and the improved recognition algorithm.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Increasing interest in smart home automation systems, in-
home networks, or multimedia systems requires a new network
paradigm to connect all indoor communication devices, such as an
indoor local-area network (LAN) [1]. This requirement has driven
the use of low-voltage power lines as a high-speed communication
channel because the power-line grid over a house is a better and
more widely distributed pre-deployed network than any other
communication networks in the home [2–4]. Hence, the power
line communication (PLC) is an appropriate network technology
for in-home applications when compared to other communication
methods.

In order to achieve high spectral efficiency, differential modu-
lations are employed in the PLC networks. The differential phase
shift keying (DPSK), as in [5], is an effective approach for PLC,
where the constellation has one magnitude and different phase
changes. In order to improve its efficiency, researchers often in-
crease the points in the constellation. However, the performance of
this modulation is degraded as its points exceed sixteen due to the
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close points location. Thus, authors in [6] prove the constellation
with 8PSK is most effective. Additionally, authors of [7] address
the usage of M-QAM modulation for PLC systems under impulsive
noise. By adopting M-QAM, PLC systems with Orthogonal Fre-
quency DivisionMultiplexing (OFDM) scheme can achieve a better
performance on bit error rate than those of systemswithout OFDM.
Unfortunately, various modulations used in PLC networks bring a
great challenge to addnewsensors into the system, since the added
sensors cannot communicate with original nodes in PLC network –
this limits the scope of PLC networks.

For the sake of providing automatic access for sensors, the
practical scheme for the PLC network is designed as a cognitive
sensor network. With this approach, sensors can add in PLC net-
works as nodes by identifying the adopting demodulation and
estimating demodulation parameter [8]. Hence, in these added
sensors, we need to install a modulation recognizing component.
Generally, the modulation recognizing component is composed by
two subsystems, feature extraction subsystem and pattern recog-
nizing subsystem. The feature extraction subsystem extracts the
key features from received signals [9]. According to [10], the most
appropriate feature for modulation recognition are higher-order
statistics (HOS), including cumulants and moments. To improve
the performance of a classifier, the combination of second and
fourth order cyclic cumulants (CC) magnitudes has been proposed
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in [11]. Similarly, the higher-order up to eighth-order CC magni-
tudes is adopted in [12] and nth-order warped CC magnitudes are
utilized in [13] in order to improve the recognizing rate. Validating
the results in [14] shows cumulants are preferred as the features
due to their favorable properties. However, when adopting cumu-
lants with order higher than four, longer time is needed to train
data and process recognition.

The second subsystem is the pattern recognizer, which pro-
cesses features and determines the modulation of signals accord-
ing to pre-designed decision rules. There are two classes of algo-
rithms that can be used to identify modulations, the likelihood-
based (LB) [15,16] and feature-based (FB) [17]methods. The former
is based on the likelihood function of received signals and its deci-
sion is made by comparing the likelihood ratio against a threshold.
A solution offered by the LB algorithm is optimal in the Bayesian
sense, which minimizes the probability of false classification [18].
Unfortunately, the optimal solution often suffers from computa-
tional complexity, which in many cases of interest naturally gives
rise to suboptimal classifiers. However, the FBmethod can identify
the modulation with a different scheme [19]. First, it extracts
several features of various given modulations with a prepared
training data set. By capturing signals, the modulation identifica-
tion algorithm can then calculate values for the features of the
modulation used in the specified network. At last, the algorithm
makes a choice on the modulation by comparing the calculated
results with the training ones. Hence, a FB method may not be
optimal. Nonetheless, according to [15,20], it is usually simple
to be implemented, with near-optimal performance, if designed
properly.

Automatic recognition can identify themodulated signalwithin
specific frequency range, which makes the users change corre-
sponding mechanism of transmission and reception according to
the external spectral environment, and thus improves the spec-
trum utilization [21]. However, the existing ways of modulation
modes recognition mainly focus on monitoring and identifying
the single signal whereas little attention was paid to study the
recognition of multiuser signal modulationmode. In order to solve
the aforementioned problem, the technology of recognizing mul-
tiuser signal modulation mode is automatically developed in [22].
However, modulation identification for a PLC system is a challeng-
ing task, especially in a non-cooperative environment, where in
addition to multi-path propagation, frequency-selectivity and no
prior knowledge of the incoming signal is available [23].

In this paper,wepropose to use themodulation identification to
help sensors to automatically access to the PLC in-home networks.
To the best of the authors knowledge, ourwork is the first of its kind
to construct a PLC in-homenetworkwithMIMO to aid the coopera-
tive modulation recognition. Compared to many other modulation
identificationmethod,we build fourth order cumulants ofmultiple
nodes as the feature, with which we can identify modulations
with received recognition results from several accessed nodes. In
particular, we propose the following five-fold contributions:

• We design a model for PLC in-home networks, where sen-
sors can access the network as new nodes via PLC sockets.
This scheme provides a newway to collect information from
PLC sensors network.

• Wepropose a cooperativemodulation identificationmethod
in PLC in-home network based on PLCMIMO channel, where
several wires are used for communication. The central
server can simultaneously receive the modulation recogni-
tion information from accessing nodes.

• We adopt the fourth-order cumulants of multiple nodes as
the feature for the modulation classifier, which can rec-
ognize modulation of signals by collecting samples from
several accessing nodes.

Fig. 1. A typical structure of an in-home PLC network by using the cooperative
modulation recognition. The adaptively accessed sensor is the new adding node
which need to identifymodulation of the system, the central server CS is the central
node which can receive modulation identification results from multiple ASs, and
PLC FNs can be composed by a sensor and a PLC modem.

• We design an improved modulation recognition algorithm
based onmaximum likelihood by introducing theweighting
factor.

• Simulations show that a higher recognition rate and a lower
false positive rate are achievedwhen adopting the proposed
cooperative modulation recognition algorithm.

The remainder of this paper are organized as follows. Section 2
describes the cooperativemodulation identification scheme for the
PLC in-home network systems. Section 3 formulates the feature
extraction method for the modulation classifier. Then, Section 4
presents the improvedmodulation classification algorithm. In Sec-
tion 5, we present numerical results to demonstrate the perfor-
mance of proposed algorithms. Finally, Section 6 concludes the
paper.

2. Systemmodel and assumptions

In the PLC network system, as shown in Fig. 1, the PLC flexed
nodes (FN) are installed at the loads, such as themeters or electrical
lights. The automatically accessed sensor (AS) is a new node added
into PLC network, which needs to identify the modulation used
by FN to transmit signals. These ASes sent their results about the
modulation identification to a central server (CS). That is, by ob-
tained the feature of signals, the ASes can estimate themodulation
primitively and send the estimated results to the CS. According to
these received features from ASs, CS makes the final decision on
the modulation used in the system. At last, CS feeds back the final
identification results to ASs.

Since the CS can collect primitive modulation identification
results from independent ASes, it canmake a comprehensive judg-
ment on the modulation. In this way, the cooperative modula-
tion recognition approach can improve the performance of correct
recognition rate and false positives rate i.e., a modulation of the
signals being detected as one when it was not. However, in our
model, the CS is required to receive signals from several ASes
quickly, so that the training and recognizing process would not be
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Fig. 2. The PLC channel for a 3-wire installation, where signals are transmitted and
received differentially between pairs of wires. There are three input (or transmis-
sion) ports: N − PE , P − N , and P − PE , and four output (or receiving) ports
N − PE , P − N , P − PE , and sum(P,PE,N ) − earth.

delayed at CS. Thus, we design a PLC-MIMO structure for the in-
home network to implement simultaneous transmission from ASs
to the CS, shown as Fig. 2.

The PLC-MIMO system is constructed by combining the power
line structure with the typical MIMO model. According to the
structure of three-wire power line, the power line is composed
of a phase (P), a neutral (N ), and a protective earth (PE) [24].
Signals are transmitted as the voltage difference between two
power wires, and thus there are three kinds of transmission ports,
i.e.,P toN ,P toPE , andN toPE . Generally, this voltage difference
between two powerwires can be called as port. However, only two
ports can be exploited as communication ports for the reason that
the sum of the voltage differences between the three wires is zero,
according to Kirchhoff’s law in the circuit [25].

Generally, the PLC-MIMO channel with N transmitting ports
and M receiving ports has the channel matrix H , described by

H =

⎡⎢⎢⎢⎢⎢⎣
h1,1 · · · h1,n · · · h1,N
...

. . .
...

. . .
...

hm,1 · · · hm,n · · · h2,N
...

. . .
...

. . .
...

hM,1 · · · hM,n · · · hM,N

⎤⎥⎥⎥⎥⎥⎦ , (1)

where hm,n is the complex channel transfer function coefficient
from the nth (n = 1, . . . ,N) transmitting port to the mth (m =

1, . . . ,M) receiving port. As in [26], the time domain expression of
hm,n can be given by

hm,n (t) =

ηm,n∑
i=1

gm,n,iAm,n,i(f , ℓm,n,i) · e−jφiδ(t − τm,n,i), (2)

where ηm,n is the number of propagation paths from the nth trans-
mitting port to the mth receiving port, f is the natural frequency,
ℓm,n,i is the power line length from the nth transmission port to
the mth reception port over the ith propagation path, τm,n,i is the
delay related with ℓm,n,i, gm,n,i is the weighting factor comprised of
the reflection and transmission factors along a propagation path,
δ(·) is the impulse function, and Am,n(f , ℓm,n,i) is the attenuation
that increases with the frequency f . With the assumption that
the signals are transmitted at the same speed over each path,
Am,n(f , ℓm,n,i) can be approximated as

Am,n
(
f , ℓm,n,i

)
= e−(a0+a1·f q)·ℓm,n,i , (3)

where the constants a0, a1, and q are obtained by measuring the
frequency response of the system.

For the mth reception port, where 1 ≤ m ≤ M , the received
signal ym can be expressed as

ym =

N∑
n=1

hm,nxn + zm , (4)

where xn is the signal transmitted from the nth transmitting port,
and zm is the receiving noise at themth receiving port.

According to (1) and (4),we candescribe the PLC-MIMOchannel
model as

y = Hx + z, (5)

where x = [x1, x2, . . . , xN ]
T is the transmitting signal vector,

y = [y1, y2, . . . , yM ]
T is the receiving signal vector, and z =

[z1, z2, . . . , zM ]
T is the noise vector.

We can pre-process the obtained signals and a baseband se-
quence composed of samples acquired from the signal. If the jth
AS sends the signal x to the ith port of CS with different path, it can
be written as

yi = hi,jx (0) + hi,jx (1) ω−1
+ · · · + hi,jx (L) ω−L, (6)

where L is the sampling timemoment number,ω−1 is the unit delay
operator.

In this system, we have the following assumptions on the PLC
MIMO channels:

• The mean of x(l) is zero, and the transmitting signals of
different users are independent

E
[
x (l) ∗ x∗ (l + τ)

]
=

{
Il, τ = 0
O, τ ̸= 0, (7)

where I and O are the unit matrix and the zero matrix
respectively.

• z(l) is an additive white Gaussian noise with zero mean and
variance of σ 2

z .

E
[
z (l) ∗ z∗ (l + τ)

]
=

{
σ 2
z Im, τ = 0

O, τ ̸= 0 .
(8)

3. Characteristics specification

Currently, among the methods of modulation recognition, clas-
sifier with high order cumulant is an effective method to identify
modulation for signals. In this paper, we introduce a cooperative
modulation recognition approach, whichwill predictively improve
the performance of the classifier.

3.1. Fourth order cumulant

In this subsection, we can preprocess the obtained signals and a
baseband sequence composed of samples {x (l)}Ll=1 acquired from
the signal. Then, our aim is to identify the constellation of samples
sequence {x (l)} drawn from a known constellation collection. That
is, given L samples, {x (l)}, we wish to decide whether the signal is
drawn from one of the known constellations.

To identify the modulation, we use the fourth order cumulants.
To present the definition on the fourth order cumulants, we need
first to feed the second order cumulants for a stochastic process x(l)
in the following two ways

C20 = E
(
x2 (l)

)
, (9)

C21 = E
(
|x (l)|2

)
, (10)
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Second, we present three definitions of the fourth order cumu-
lants in three ways as follows

C40 = C (x (l) , x (l) , x (l) , x (l)) , (11)

C41 = C
(
x (l) , x (l) , x (l) , x∗ (l)

)
, (12)

and

C42 = C
(
x (l) , x (l) , x∗ (l) , x∗ (l)

)
, (13)

where the function C(·) is a fourth order cumulant. Given four
stochastic variables w, x, y and z with the mean zero, C(·) can be
defined as
C (w, x, y, z) = E (wxyz) − E (wx)E (yz)

−E (wy)E (xz) − E (wz)E (xy) .
(14)

In following, we demonstrate how to use the fourth order
cumulant to estimate. From (11) and (14), we have

Ĉ40 =
1
L

L∑
n=1

x4 (l) − 3Ĉ2
20, (15)

where Ĉ2
20 is the estimated second order cumulant of x (l), given by

Ĉ20 =
1
L

L∑
l=1

x2 (l) . (16)

Similarly, according to (11), (12) and (14), another two fourth order
cumulants of x(n) can be estimated by

Ĉ41 =
1
L

L∑
l=1

x3 (l) x∗ (l) − 3Ĉ20Ĉ21 , (17)

and

Ĉ42 =
1
L

L∑
l=1

|x (l)|4 −

⏐⏐⏐Ĉ20

⏐⏐⏐2 − 2Ĉ2
21 , (18)

where Ĉ2
21 is the estimated second order cumulant of x (l), given by

Ĉ21 =
1
L

L∑
l=1

|x (l)|2. (19)

Without losing the generality, if we normalize the power of the
signals, the standardized fourth order cumulant for the signal with
different modulation modes can be expressed as

C̃4k =
Ĉ4k

Ĉ2
21

, k = 0, 1, 2 . (20)

As there is one user transmits signal with PLC channel, the
received signal can be expressed as

y =

L−1∑
k=0

hi,jx (l − k) + z (l) , (21)

where y is the received signal, x (l) is the transmitted signal, z (l) is
the noise in the PLC channel, and h (l) is the mitigation coefficient
in the corresponding path.

In this case, the fourth order cumulant and second order cumu-
lant of the received signal for the PLC channel can be formulated
as

C40,y =

L−1∑
k=0

⏐⏐hi,j
⏐⏐4C40, (22)

and

C21,y =

L−1∑
k=0

⏐⏐hi,j
⏐⏐2C21 + σ 2

ω . (23)

As given in (20), then, we derive the standardized fourth order
cumulant for the received signal

C̃40,y =
C40,y(

C21,y − σ 2
ω

)2 . (24)

3.2. Cumulant for multiple users

In this subsection, we consider the fourth order cumulant in
multiple users scenarios. As the multiple users transmit signals to
CS, the receiving signals at the ith port is given as

yi = h1,ix1 (l) + h2,ix2 (l) + · · · + hM,ixl (l) + zi (l) , (25)

According to the (20) and (22), the Ĉ4k,yi , (k = 0, 1, 2) of xj (l)
can be expressed as

Ĉ4k,yi = µ1,iĈ4k,x1 + · · · + µM,iĈ4k,xM , (26)

where k = 0, 1, 2, and µ can be given as

µm,i =

M∑
m=1

h4
m,i, (27)

Similarly, Ĉ21,yi of the received signal at the ith port can be
expressed as

Ĉ21,yi = h2
1,iĈ21,x1 + · · · + h2

M,iĈ21,xM + σ 2
z = ∆i + σ 2

z , (28)

Since Ĉ21,xj = 1, (j = 1, 2, . . . ,M) for the random transmitting
signal xj (l), we can derive

∆i = h2
1,i + · · · + h2

M,i, (29)

With (20) and (24), it follows that

C̃4k,yi =
Ĉ4k,yi(

Ĉ21,yi − σ 2
w

)2 =

M∑
i=0

µm,i

∆2
i
Ĉ4k,xm , k = 0, 1, 2. (30)

We then transform (30) into a vector form, given as

⎛⎜⎝ Ĉ4k,y1
...

Ĉ4k,yM

⎞⎟⎠ =

⎛⎜⎜⎜⎜⎝
µ1,1

∆2
1

. . .
µ1,N

∆2
1

...
. . .

...
µM,1

∆2
M

· · ·
µN,M

∆2
M

⎞⎟⎟⎟⎟⎠
T ⎛⎜⎝ Ĉ4k,x1

...

Ĉ4k,xM

⎞⎟⎠ . (31)

We further simplify (31) as

C⃗4k,y = UC⃗4k,x, k = 0, 1, 2, (32)

where the matrix U is given as⎛⎜⎜⎜⎜⎝
µ1,1

∆2
1

. . .
µ1,N

∆2
1

...
. . .

...
µ1,M

∆2
M

· · ·
µN,M

∆2
M

⎞⎟⎟⎟⎟⎠
T

. (33)

Since signals are received by different ASs, these input signals can
be assumed to be independent. Thus, according to (1),H is full rank.
Therefore, according to (28) and (29), U is full rank. As a result, the
solution of (32) can be expressed as

C⃗4k,x =
(
UHU

)−1
C⃗4k,y. (34)

Note that, the channel matrix H in U is usually unknown to ASes.
Then, we calculate the matrix U in order to estimate the channel
matrix H.
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Fig. 3. Comparison of the PDF of the channel gain for different modulations as we
use |C40,x| to estimate the signals with different SNR.

Fig. 4. Comparison of the PDF of the channel gain for different modulations, where
|C42,x| is used to estimate the signals with different SNR.

In following, we estimate the H by calculating PDF of differ-
ent modulations of transmitting signals using simulation settings.
Since the absolute value

⏐⏐⏐Ĉ4k,y

⏐⏐⏐ indicates the PDF of modulations,

we need to estimate
⏐⏐⏐Ĉ4k,y

⏐⏐⏐ by calculating the absolute value
⏐⏐⏐Ĉ4k,x

⏐⏐⏐
with (30). For simplicity, we denote

⏐⏐⏐Ĉ40,x

⏐⏐⏐ and ⏐⏐⏐Ĉ42,x

⏐⏐⏐ asMC40x and
MC42x . Then, we calculateMC40x andMC42x of signals modulated by
BPSK, 4PAM, 4PSK, 8PSK, and 16QAMwith SNR from−50–−20 dB.

The estimated results PDF of the channel gain for different
modulations against MC40x and MC42x are shown in Figs. 3 and 4.
As shown in the two figures, when the SNR is 5 dB and 10 dB,
the simulation results ofMC40x andMC42x are approximately equal
to the computational value as listed in Table I of [10]. Simulation
results of Figs. 3 and 4 also demonstrate that MC40x and MC42x of
the transmitting signals can be used to detect the modulations
effectively.

Fig. 5 demonstrates the plots of joint PDF for the channel
gain of multi-users as we use MC40x and MC42x to estimate the
signals with different SNR. We observe that the scheme of multi-
user cooperative modulation identification is better than that of
the single receiver users, especially when the modulation scheme
of 4PSK and 8PSK are adopted. The reason is that the multiuser

Fig. 5. Comparison of the joint PDF of different modulations as we use |C40,x| and
|C42,x| to estimate the signals with different SNR.

cooperative modulation can combine all the identification data
from several ASes.

4. Modulation identification

In this section, we adopt a centralized modulation recognition
algorithm based on joint probability distribution of fourth order
cumulant MC40x and MC42x . Each AS receives signals from FNs and
then estimates the MC40x and MC42x of transmitting signals. Then
these fourth order cumulants of ASs are uploaded to the CS, which
form a fourth-order cumulant vector.With this vector, CSmake the
final judgment on modulation.

4.1. Decision rule

As shown in Fig. 1, we assume that there are M ASes S =

S1, S2, . . . , SM , where each AS receives signals from FNs. The chan-
nel between AS and FN can be modeled as a PLC-MIMO channel.
Suppose there are Θ modulations, M = [M1,M2, . . . ,MΘ ]. In
addition, the energy of signals are assumed as one.

Each AS can calculate SNR and estimate the MC40x and MC42x of
receiving signals. Then, ASes upload their

(
MC40x ,MC42x , γ

)
to the

CS. The obtained fourth order cumulants vector is given as

C =

((
MC40x1

,MC42x1

)
,

(
MC40x2

,MC42x2

)
,

· · · ,

(
MC40xN

,MC42xM

)) (35)

where MC40xi
and MC42xi

are the absolute value of the four order
cumulant of ith AS, sent to the CS.

As given in C in (35), CS can make the decision on the
modulation D (D ∈ M) of signals with their SNR vector γ =

(γ1, γ2, . . . , γM). Since the computation of the four order vectors
depend on the calculation of MC40x and MC42x at CS, which has an
intensive computational ability, the system can work efficiently.
Additionally, the transmission of the four order cumulants in ASes
does not require a high bandwidth.

By using the Bayes’ formula on probability theory,we obtain the
conditional probability, written as

Pr
(
D = Mς |(MC40,MC42, γ )

)
=

Pr
(
(MC40,MC42, γ )

⏐⏐D = Mς

)
Pr

(
D = Mς

)∑Θ

i=1 Pr ((MC40,MC42, γ ) |D = Ml ) Pr (D = Ml)
,

(36)
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where Pr
(
D = Mς

)
is the prior probability of the ς (1 ≤ ς ≤ Θ)

modulationMς . By assuming probabilities of the occurrences of all
modulation are same, we can obtain

Pr
(
D = Mς

)
=

1
Θ

. (37)

Since each AS can independently estimate the cumulative value,
we can derive the conditional probability ofMC40x andMC42x under
the condition of modulation mode D = Mm and γ , expressed as

Pr
(
(MC40,MC42, γ )

⏐⏐D = Mς

)
=

N∏
i=1

Pr
((

MC40xi
,MC42xi

, γi

) ⏐⏐D = Mς

)
,

(38)

whereMC40i andMC42i is the theoretical value of the absolute value
of standardized fourth order cumulant of the modulation signal at
the ith AS.

In (38), Pr
((

MC40xi
,MC42xi

, γi

)
|D = Mς

)
is the probability of

cumulative value estimated by the single AS, which thus can be
given as

Pr
((

MC40xi
,MC42xi

, γi

) ⏐⏐D = Mς

)
=

Pr
((

MC40xi
,MC42xi

)
|γi ,D = Mς

)
∑Θ

l=1 Pr
((

MC40xi
,MC42xi

)
|γi ,D = Ml

) .
(39)

With the maximum likelihood method, we set up the decision
rule as follow

D = argmaxς

{
Pr

(
(MC40,MC42, γ )

⏐⏐D = Mς

)}
, (40)

Substituting the (39) and (40) in (38), the final decision can be
expressed as

D = argmaxς

{
Pr

(
(MC40,MC42, γ )

⏐⏐D = Mς

)}
= argmaxς

⎧⎨⎩
M∏
i=1

Pr
((

MC40xi
,MC42xi

)
|γi ,D = Mς

)
∑Θ

l=1 Pr
((

MC40xi
,MC42xi

)
|γi ,D = Ml

)
⎫⎬⎭ .

(41)

4.2. Identification algorithm

In this subsection, we develop an improved method to identify
modulations of signals based on maximum likelihood ratio with
the weighting factors. They are designed according to MC40 and
MC42, which can strengthen the character to improve the perfor-
mance of the identification algorithm. The modulation identifica-
tion algorithm is given as Algorithm 1.

Algorithm 1 TheWeights Based Maximum LikelihoodModulation
Identification Algorithm (WMLMIA)
Require: Set P = 1,Q = 0,D = 0.
1: whilem = 1 to Θ do
2: for i = 1; i < M; i + + do
3: Compute wi,ς with (42);
4: Compute Pi|ς with (39);
5: Determine P = P ∗ (wi,ς ∗ Pi|ς );
6: end for
7: if P > Q then
8: Q = P,D = Mς ;
9: end if
10: end while

At the line 3 of the Algorithm 1, wi,ς (ς = 1, 2, . . . , Θ) is the
weighting factor, designed according toMC40x andMC42x . The factor

Table 1
Simulation parameters setting.

Parameter name Value

Path parameter gi −0.15
Path number parameter η 3
Fading parameter a0 0
Fading parameter a1 7.8 × 10−10

Impulsive noise power σw −15 dB
Impulsive occurrence probability p 0.01
Gauss noise power σg 3.5 dB

wi,ς can be estimated at a single AS by

wi,m =

1(
MC42xi

−MC42xς

)2
+

(
MC40xi

−MC40xς

)2∑Θ

l=1
1(

MC42xi
−MC42xl

)2
+

(
MC40xi

−MC40xl

)2 . (42)

We use Pi|ς to represent Pr
(
MC40x ,MC42x , γi|D = Mς

)
at the

line 4, which can be calculated with (39). Q is the maximum
likelihood probability andD is themodulation identification result.
Note that the SNR γ is obtained by

γ =

∑N
i=1 E

(
|xi|2

)∑N
i=1 E

(
|w|

2) . (43)

At the line 5 of Algorithm 1, the condition probability
Pr

(
MC40x ,MC42x |γi,D = Mς

)
is multiplied by the weighting fac-

tor. The variable P indicates the likelihood of the modulation,
which needs to be identified. By multiplying weighting factor,
we strength the difference between various modulations, which
can predictively improve the correct recognition rate (ACRR) and
reduce the FPR.

With line 7 and line 8, we achieve maximum likelihood for the
modulation, which needs to be identified. Hence, given a modula-
tion Mm, the maximum likelihood can be estimated with

D = argmaxς

⎧⎨⎩
M∏
i=1

wi,ς

Pr
((

MC40xi
,MC42xi

)
|γi ,D = Mς

)
∑NM

l=1 Pr
((

MC40xi
,MC42xi

)
|wi ,D = Ml

)
⎫⎬⎭ . (44)

According to (38) and (44), we can present a metric to calculate
the successful probability to recognize a modulation, called the
average correct recognition rate, given by

Pav =

Θ∑
i=1

Pr (D = Mi |Mi ) Pr (Mi) . (45)

In Algorithm. 1, we need to compute Pi|ς , which equals to com-
pute

∏N
i=1 Pr

((
MC40xi

,MC42xi
, γi

) ⏐⏐D = Mς

)
with the complexity

O(Θ × M × N2
× L). Furthermore, the computing complexity of

MC40xi
andMC42xi

isO(M×N×L). Finally, there areO(Θ×M) loops in
Algorithm 1. Therefore, the computation complexity of Algorithm
1 is O(Θ2M2N2L).

5. Simulations

In this section,we useMATLAB to build simulations for identify-
ing frequently used modulations in PLC networks. The conditional
probability distribution functions MC40, (k = 0, 2) are estimated
when the γ is set from 0 dB to 20 dB. The simulation parame-
ters for the PLC channel are chosen based on the HomePlug AV2
standard [27], which are configured as in Table 1. In Table I, the
parameters g is the weighting factor of the PLC paths according to
the Eq. (2) and η the number of paths from a transmitting port to a
receiving port. a0 and a1 are the parameters in Eq. (3), and σg and
σw are the powers of Gaussian noise and impulsive noise.
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Fig. 6. Comparison of recognition rate for classifier of 8PSK and 16QAMwith three
schemes, single AS, two ASes with ML and WML with two ASes.

Table 2
Results of modulation recognition.

Modulation SNR = 5 SNR = 10

ACRR(%) FPR(%) ACRR(%) FPR(%)

BPSK 92.82 6.84 94.85 2.00
4PSK 92.15 8.02 94.79 2.02
8PSK 91.97 8.52 94.22 2.76
4QAM 92.77 6.07 94.91 2.07
16QAM 92.96 7.63 95.07 3.03

ACRR: Average Correct Recognition Rate; FPR: False Positive Rate.

Here we evaluate the performance of the proposed algorithm
WMCA by running the Monte-Carlo of PLC channel modeled ac-
cording to the Table 1 for 1000 times to the generate simulation
samples. The sample size for a signal is 500. Also, we use two FNs
to transmit signals at the same time, and two (or three) ASes coop-
eratively receive these signals for recognizing their modulation.

Fig. 6 demonstrates the average correct recognition rate
against the SNR of three the modulation identification algorithms,
WMLMIA, maximum likelihood modulation identification algo-
rithm (MLMIA), and the fourth order cumulants with single AS. In
the simulation, themodulation is selected as 8PSK and 16QAM and
the number of AS are set as two. The average correct recognition
rate is calculated with the (45). We can observe that, compared
to the algorithm with only one AS, the cooperative algorithm
MLMIAwith twoASes can improve the recognition rate around five
percent. The reason is that more decision results on modulation
from different ASes which can effectively remove some irregularly
distributed data. Furthermore, when the weighting factors are
introduced, about ten percent improvement is achieved on the
correct recognition rate. The reason is that the weighting factors
can make the difference from various sample collections more
obvious, which improve the correct recognition rate.

Fig. 7 illustrates the recognizing performance of the different
number of the involvedASs contributed to the algorithmWMLMIA.
In the simulation, the modulations are selected as BPSK, 4PAM.
According to Fig. 7, the correct recognition rate is enhanced signifi-
cantlywith the increasing the participated ASes number. However,
we can see from the figure that with the increasing of the AS
number, the increase of the ACRR drops. The reason is that the
fourth order cumulants received from ASes tend to be the same
with the increasing of the AS number. As a result, according to this
simulation, three ASes can be enough for us to design a cooperative
modulation identification system.

Fig. 7. Comparison of recognition rate for classifier of BPSK, 4PAM ofWML for three
scenarios, single AS, WML with two ASes, and WML with three ASes.

In our final simulation, the average correct recognition rate
and the false positive rate are computed and listed in the Table 2
for five modulations i.e., BPSK, 4PAM, 4PSK, 8PSK, and 16QAM by
adopting WMLMIA with 3 ASes. In the simulation, SNR of trans-
mitting signals is set as 5 dB and 10 dB. As shown in Table 2,
the average correct recognition rate is better than 91% as the SNR
of transmitting signals is 5dB. Furthermore, if the SNR is set to
10 dB, the correct detection rate is higher than 94% with a false
positive rate less than 4%. Hence, the modulation classification
algorithm WMLMIA can be effectively used in practical PLC in-
home networks.

6. Conclusions

In order to solve the problem of collecting information fromPLC
in-home sensor networks, we propose an automatic access scheme
for sensors by identifying the modulation of signals. We improve
the correct recognition rate by presenting a PLC-MIMO channel
to aid different ASes exchanging the modulation identification
information with the central server. By formulating the fourth-
order cumulants, we propose to adopt the fourth-order cumulant
for multiple users as the classifier’s feature, which is especially fit
for our cooperative identification systems. Based on the received
characteristic information, we develop a weighting factor based
recognition algorithm to recognize modulation of the signals. Sim-
ulation results affirm that the cooperative modulation recognition
algorithm can significantly improve the correct recognition rate
and reduce the false positive rate.
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