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� Optimal selling price is determined in the smart grid environment.
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a b s t r a c t

In this paper, bilateral contracting and selling price determination problems for an electricity retailer in
the smart grid environment under uncertainties have been considered. Multiple energy procurement
sources containing pool market (PM), bilateral contracts (BCs), distributed generation (DG) units, renew-
able energy sources (photovoltaic (PV) system and wind turbine (WT)) and energy storage system (ESS)
as well as demand response program (DRP) as virtual generation unit are considered. The scenario-based
stochastic framework is used for uncertainty modeling of pool market prices, client group demand and
variable climate condition containing temperature, irradiation and wind speed. In the proposed model,
the selling price is determined and compared by the retailer in the smart grid in three cases containing
fixed pricing, time-of-use (TOU) pricing and real-time pricing (RTP). It is shown that the selling price
determination based on RTP by the retailer leads to higher expected profit. Furthermore, demand
response program (DRP) has been implemented to flatten the load profile to minimize the cost for
end-user customers as well as increasing the retailer profit. To validate the proposed model, three case
studies are used and the results are compared.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In the smart grid environment, determination of selling price to
end-user customers by the electricity retailer is necessary [1]. In
this issue, the electricity retailer should procure demand of cus-
tomers from power market [2], distribution generation units [3],
bilateral contracts [4], wind turbine [5], photovoltaic system [6],
energy storage systems [7,8], and demand response program
[9,10] under uncertainties modeling [11]. Therefore, it is essential
that the retailer manage the purchased power from alternative
energy resources to maximize his own expected profit. High selling
price makes the customers not purchase from this retailer and
leads to reduction of retailer profit. Also, low selling price
decreases the expected profit of retailer. Therefore, the retailer
should determine the optimal selling price with the aim of maxi-
mizing the expected profit. Furthermore, the retailer can deter-
mine the selling price based on fixed price, time-of-use price or
real-time price. Finally, the retailer should manage the uncertainty
of pool market price, demand of end-user, wind speed, irradiation
and temperature. Finally, demand response program can be used
by the retailer as an option enabled via smart grid technology to
increase the expected profit.
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Nomenclature

Index
b bilateral contract index
h the generation block index of DG units
i the minimum OFF-time and ON-time limits modeling

index
j DG unit index
s scenario index
t time period index
z segment index in the price-quota curve

Sets
B number of bilateral contracts
H number of production blocks of the DG units
I the maximum amount of minimum OFF-time and ON-

time value of DG units running from 1 to max {MUTj,
MDTj}

J number of DG units
S number of scenarios
T number of time periods
Z number of segments in the price-quota curve

Parameters
Dnj;i auxiliary variable for modeling of the MDT constraint

Dofferðl; z; t; sÞ offered energy of client group in the price-quota
curve (kW)

DRPmax maximum percentage of demand that can be partici-
pated in DRP (%)

Ga
t;s irradiation of sun in each time and scenario (W/m2)

Ga0 irradiation of sun at the standard condition (W/m2)
NOCT normal operating cell temperature of PV system (�C)
qs the probability of scenario
Pmax
b maximum limit of bilateral contracts (kW)

Pmin
b minimum limit of bilateral contracts (kW)

PMAX
j;h rated block power of DG units in a piecewise linear cost

modeling (kW)
PPV
t;s available power of PV system (kW)

PM
Max;0 maximum power of PV panel at the standard condition

(kW)
Pwind
t;s available power of wind-turbine (kW)

pr nominal power of wind-turbine (kW)
Pmax
ch arg e maximum power limit in charging mode (kW)

Pmax
disc maximum power limit in discharging mode (kW)

Rup
j ramp up rate limit of DG units (kW/h)

Rdown
j ramp down rate limit of DG units (kW/h)

Sdgj;h rated block cost of DG units in a piecewise linear cost
modeling ($/kWh)

SPofferðl; z; tÞ offered price of client group in the price-quota curve
($/kWh)

Ta
t;s temperature at each time and scenario (�C)

TM;0 module temperature at the standard condition (�C)
Upj;i auxiliary variable for modeling of the MUT constraint

Vw
t;s wind speed (m/s)

Vr ;Vci;Vc0 rated, cut-in and cut-out wind speed (m/s)

Xmax
b maximum limit of stored energy in the energy storage

system (kW)
Xmin
b minimum limit of stored energy in the energy storage

system (kW)
v charging efficiency of energy storage system (%)
g discharging efficiency of energy storage system (%)
kb;t energy price of bilateral contracts ($/kWh)

kt;s the price for pool market ($/kWh)
Variables
Aðl; z; tÞ binary variable for selecting the selling price offered by

the retailer to the client group from the price-quota
curve [0,1]

CB energy procurement cost from the bilateral contracts
($)

CP energy procurement cost from the pool market ($)
CDG energy procurement cost from the DG units ($)
Dðl; t; sÞ supplied demand to the client group by the retailer

(kW)
DRPðl; t; sÞ free variable for possibility of DRP implementation

(positive for demand increase and negative for demand
decrease) (kW)

DDRPðl; t; sÞ supplied new demand considering demand response
program to the client group by the retailer (kW)

Pb;t energy procurement from the bilateral contracts (kW)

PBC
t total energy procurement from the bilateral contracts

(kW)
Pch arg e
t;s charged power of energy storage system (kW)

Pdisc
t;s discharged power of energy storage system (kW)

PP
t;s energy procurement from the pool market (kW)

PDG
j;h;t;s purchased power from the DG units (kW)

RRðl; tÞ the revenue obtained from the client group ($)
sb binary variable for selecting the bilateral contracts

[0,1]
SPðl; z; tÞ price of the interval of the price-quota curve for the cli-

ent group ($/kWh)
SPRTPðl; tÞ real-time selling price by the retailer for the client

group ($/kWh)
SPFixedðlÞ fixed selling price by the retailer for the client group ($/

kWh)
SPTOU

L ðlÞ time-of-use selling price in low load level by the retai-
ler for the client group ($/kWh)

SPTOU
M ðlÞ time-of-use selling price in medium load level by the

retailer for the client group ($/kWh)
SPTOU

P ðlÞ time-of-use selling price in peak load level by the retai-
ler for the client group ($/kWh)

Uch arg e
t;s binary variable for charging mode of energy storage

system [0,1]
Udisc

t;s binary variable for discharging mode of energy storage
system [0,1]

UDG
j;t binary variable for on or off statues of DG units [0,1]

Xb
t;s stored energy in the energy storage system (kWh)

Abbreviations
BCs bilateral contracts
DG distributed generation
DRP demand response program
ESS energy storage system
FP fixed pricing
GAMS general algebraic modeling system
MINLP mixed-integer non-linear programming
PM pool market
PV photovoltaic
RTP real-time pricing
RESs renewable energy sources
TOU time-of-use pricing
WT wind turbine
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1.1. Literature review

The researches on retailer for determination of selling price is
generally categorized to three time periods containing long-term,
medium-term and short-term planning. In long-term planning,
the review of papers is summarized in Table 1. Table 1 is divided
based on objective function, type of selling price determination,
solution methodology, uncertainty modeling, participation in
demand response program and considering the smart grid tech-
nologies. According to Table 1, it is obvious that [12] minimizes
total cost without pricing, uncertainty modeling, DRP and smart
grid technology, and maximizing the expected profit considering
uncertainty modeling using scenario-based stochastic model is
considered in [13] without pricing.

Furthermore, the review of papers related to medium-term
planning of retailer is summarized in Table 2, which is categorized
in similar way to Table 1. Refs. [14–33] are reviewed and compared
in Table 2. According to Table 2, the objective function of these ref-
erences is minimizing cost [14,15,28–30], maximizing profit [16–
28,31–33] or minimizing selling price [32,33]. The types of consid-
ered selling price is no pricing [14,15,29,30], fixed pricing [16–24
,26–28,31–33] and TOU pricing [25]. Also, the solution method is
based on hybrid binary imperialist competitive algorithm-binary
particle swarm optimization (BICA–BPSO) [14] or GAMS optimiza-
tion package [15–33]. Furthermore the uncertainty model includes
Monte Carlo simulation (MCS) [16], scenario based method [17–
28,32,33], robust optimization approach (ROA) [29,30] and infor-
mation gap decision theory (IGDT) [31]. Only, in Refs.
[15,26,27,30], demand response program is considered while in
none of the 20 references the smart grid technologies are
considered.

Finally, Table 3 summarizes the researches related to short-
term scheduling of retailer in electricity market. Also, Table 3 is
organized similar to Tables 1 and 2, which Refs. [34–46] are
reviewed and compared with each other. The objective function
of short-term planning is maximizing profit [35–39,42–46] or min-
imizing cost [34,39–41,45,46]. Unlike medium-term planning,
real-time pricing [36,45] as well as fixed pricing [35,39,42–44,46]
and time-of-use pricing [37] are used as types of selling price in
short-term scheduling. Also, Stackelberg game [45], genetic algo-
rithm [34,38] or GAMS [35–37,39–44,46] are used to solve the
problem. Furthermore, in Refs. [34–39] the uncertainty modeling
is not considered. Also, scenario based method [40–43], robust
optimization approach (ROA) [44,45] and information gap decision
theory (IGDT) [46] are used as uncertainty modeling approaches. In
none of the references the smart grid technologies are used while
in Refs. [47,45], demand response program is considered.

In this paper, the expected profit of electricity retailer in the
presence of smart grid technologies is maximized. In the proposed
model, the power pool market, bilateral contracts and DG units
plus renewable energy sources containing wind turbine, PV system
as well as energy storage system are used as alternative energy
options thorough the smart grid by the retailer. Also, the selling
price by the retailer is determined in three case including fixed
pricing, time-of-use pricing and real-time pricing. Furthermore,
demand response program is used as flexible option to increase
the expected profit. Finally, the scenario-based stochastic frame-
Table 1
Review of papers in long-term planning.

Ref. Objective
function

Selling
Price

Solution methodology Uncerta
model

[12] Min cost No pricing Regression analysis and survival
analysis

No

[13] Max profit No pricing Simulation package Scenari
work is used for uncertainty modeling of pool market price,
demand of end-user, wind speed, irradiation and temperature.

The differences of proposed work with previous works are
clearly presented in the last row of Table 3 for more clarification.
In this paper, the stochastic expected profit maximization problem
of electricity retailer is proposed based on real-time selling pricing
determination in the smart grid which is much closer to reality
unlike the fixed pricing and time-of-use pricing. Also, the charge
and discharge power management of energy storage system and
utilizing of demand response program are used through smart grid
technologies. Finally, the uncertainties of demand, pool market
price and renewable output power are modeled based on scenario
approach.

1.2. Demand response program modeling

In the smart grid environment, demand response programs can
be used for flexible load management to reduce peak load and
decrease the purchased energy cost which are introduced in [48].
In this paper, the time-of-use rate of demand response programs
has been provided [49]. In this program, the load profile is flatten
because some percentage of load can be shifted from peak time
periods to off-peak time periods which will lead to expected oper-
ation cost reduction as the energy price is high in peak periods in
comparison with off-peak periods. In other words, total load has
not changed in all time periods, but it can be transferred from peak
periods to the other periods. Also, decreased load should be equal
to the increased load during the operation times. In addition, the
increased and decreased load must be less than the percentage of
base load. Finally, it is worth mentioning that these amounts are
set to 20% in this paper.

1.3. Novelty and contributions

Based on our scientific information, no selling price determina-
tion for an electricity retailer in the smart grid environment has
been reported in the literature. Therefore, in this paper this issue
is considered. In the proposed model, the selling price is deter-
mined in three approaches using fixed pricing, time-of-use pricing
and real-time pricing and compared with each other. In the smart
grid, it is necessary that the selling price be determined based on
real-time pricing by the retailer to increase the expected profit.
Also, the all uncertainties of price, demand and renewable energy
are considered in the stochastic framework. Also, demand response
program is used as virtual generation unit in peak periods which
uses load management to increase the expected profit of retailer.
Therefore, the novelty and contributions of this research can be
listed as:

1. Optimal selling price is determined in the smart grid
environment.

2. Fixed pricing, time-of-use pricing and real-time pricing are
determined for selling to client group.

3. Demand response program is investigated for client group
demand to increase the flexibility of demand and to increase
the expected profit of retailer.
inty Considering demand response
program

Considering smart grid
technologies

No No

o No No



Table 2
Review of papers in medium-term planning.

Ref. Objective function Selling price Solution methodology Uncertainty model Considering demand
response program

Considering smart
grid technologies

[14] Min cost No pricing BICA–BPSO No No No
[15] Min cost No pricing GAMS No Yes Yes
[16] Max profit Fixed Pricing GAMS MCS No No
[17] Max profit Fixed Pricing GAMS Scenario No No
[18] Max profit Fixed Pricing GAMS Scenario No No
[19] Max profit Fixed Pricing GAMS Scenario No No
[20] Max profit Fixed Pricing GAMS Scenario No No
[21] Max profit Fixed Pricing GAMS Scenario No No
[22] Max profit Fixed Pricing GAMS Scenario No No
[23] Max profit Fixed Pricing GAMS Scenario No No
[24] Max profit Fixed Pricing GAMS Scenario No No
[25] Max profit TOU Pricing GAMS Scenario No No
[26] Max profit Fixed Pricing GAMS Scenario Yes Yes
[27] Max profit Fixed Pricing GAMS Scenario Yes Yes
[28] Max profit Fixed Pricing GAMS Scenario No No

Min cost
[29] Min cost No pricing GAMS ROA No No
[30] Min cost No pricing GAMS ROA Yes Yes
[31] Max profit Fixed Pricing GAMS IGDT No No
[32] Max profit Fixed Pricing GAMS Scenario No No

Min selling price
[33] Max profit Fixed Pricing GAMS Scenario No No

Min selling price

Table 3
Review of papers in short-term planning.

Ref. Objective
function

Selling
price

Solution
methodology

Uncertainty
model

Considering demand response
program

Considering smart grid
technologies

[34] Min cost No pricing GA No No No
[35] Max profit Fixed

pricing
GAMS No No No

[36] Max profit RTP pricing GAMS No No No
[37] Max profit TOU pricing GAMS No No No
[38] Max profit No pricing GA No No No
[39] Max profit Fixed

pricing
GAMS No Yes Yes

Min cost
[40] Min cost No pricing GAMS Scenario No No
[41] Min cost No pricing GAMS Scenario No No
[42] Max profit Fixed

pricing
GAMS Scenario No No

[43] Max profit Fixed
pricing

GAMS Scenario No No

[44] Max profit Fixed
pricing

GAMS ROA No No

[45] Max profit RTP pricing Stackelberg game ROA Yes Yes
Min cost

[46] Max profit Fixed
pricing

GAMS IGDT No No
Min cost

Current
paper

Max profit Fixed
pricing

GAMS Scenario Yes Yes

TOU pricing
RTP pricing
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4. The client group demand, pool market price, renewable energy
output power uncertainties are modeled using the scenario-
based stochastic framework.

5. The renewable energy resources containing PV system and
wind turbines are used as energy procurement sources of retai-
ler in the smart grid.

6. Determination of charging/discharging decisions of energy stor-
age system for proper status operation.
1.4. Structure of paper

The structure of proposed paper is targeted as follows. A
stochastic framework for optimal selling price determination
and bilateral contracting problem for an electricity retailer in
the smart grid environment under uncertainties is modeled in
Section 2. Section 3 presents the comparison results of fixed,
time-of-use and real-time pricing for selling to the client group



Cost ($)

Power

Fig. 1. Linear operation cost model of DG units.
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in a case study. Finally, the relevant conclusions are presented in
Section 4.

2. Problem formulation

The objective of retailer is to maximize the expected profit (rev-
enue minus cost) in the energy market. The revenue is obtained
from selling energy to the end users. Also, total procurement cost
of retailer includes the purchased costs of energy from pool mar-
ket, bilateral contracts and distributed generation units (DGs). In
the proposed short-term scheduling for the retailer, it should be
mentioned that the operation cost of renewable energy resources
such as wind turbine and PV system as well as charging/discharg-
ing of energy storage system are ignored.

2.1. Bilateral contracts cost modeling

The energy procurement cost due to bilateral contracts, which
the retailer is faced with, can be modeled as (1) according to [47].

CB ¼
XB

b

XT
t¼1

kb;t Pb;t ð1Þ

It should be noted that the bilateral contracts variables are clas-
sified as first-stage or here-and-now. In other words, these deci-
sions are made before realization of stochastic process.

The allowable limits and energy procurement from bilateral
contracts are expressed in (2) and (3), respectively [50].

Pmin
b sb < Pb;t < Pmax

b sb 8b; t ð2Þ

PBC
t ¼

XB

b¼1

Pb;t ; 8t ð3Þ
2.2. Pool market cost modeling

The purchased energy procurement cost from the pool market
can be calculated as (4) [51].

CP ¼
XS

s¼1

qs �
XT
t¼1

kt;s P
P
t;s ð4Þ

It should be mentioned that the pool market prices uncertainty
is modeled by scenario-based stochastic framework. Also, the vari-
able used for purchased power from the pool market is classified as
second-stage or wait-and-see. In other words, these decisions are
made after realization of stochastic process.

2.3. Operation cost of DG units modeling

A piecewise linear operation cost modeling of DG units is
expressed in (5) according to Fig. 1 [52]. The technical constraints
are presented in Eqs. (6)–(13) based on [53].

CDG ¼
XS

s¼1

qs �
XT
t¼1

XJ

j¼1

XH
h¼1

Sdgj;hP
DG
j;h;t;s ð5Þ

0 6 PDG
j;h;t;s 6 PMAX

j;h � PMAX
j;h�1 8j; t; s; h ¼ 2; . . . ;N ð6Þ

0 6 PDG
j;1;t;s 6 PMAX

j;1 8j; t; s ð7Þ

XH
h¼1

PDG
j;h;t;s �

XH
h¼1

PDG
j;h;t�1;s 6 Rup

j � UDG
j;t ; 8j; t; s ð8Þ
XH
h¼1

PDG
j;h;t�1;s �

XH
h¼1

PDG
j;h;t;s 6 Rdown

j � UDG
j;t�1; 8j; t; s ð9Þ

UDG
j;t � UDG

j;t�1 6 UDG
j;tþUpj;i

; 8j; t; i ð10Þ

UDG
j;t�1 � UDG

j;t 6 1� UDG
j;tþDnj;i

; 8j; t; i ð11Þ

Upj;i ¼
i i 6 MUTj

0 i � MUTj

� �
ð12Þ

Dnj;i ¼
i i 6 MDTj

0 i � MDTj

� �
ð13Þ

The purchased energy from DGs is limited by Eqs. (6) and (7).
Also, the ramp up/down rate limits is expressed in constraints
(8) and (9), respectively. Finally, Eqs. (10) and (11) describe the
minimum up/down time constraints. Also, the auxiliary variables
Upi,j and Dni;j are defined in (12) and (13) for linear modeling of
minimum up/down time constraints of DGs [53,54].

2.4. Wind-turbine and photovoltaic system models

The available power from wind turbine in each time period and
scenario is a function of related speed. Therefore, the available
power of wind turbine can be calculated using Eq. (14) according
to Ref. [53]. Also, it should be noted that the Weibull distribution
curve is used to generate scenarios for wind speed.

Pwind
t;s ¼

0 Vw
t;s < Vci

pr � Vw
t;s�Vci

Vr�Vci

� �3
Vci < Vw

t;s < Vcr

pr Vr < Vw
t;s < Vc0

0 Vw
t;s > Vc0

8>>>>><
>>>>>:

ð14Þ

Furthermore, the available power from photovoltaic system in
each time period and scenario can be computed using Eq. (15)
according to Ref. [54]. Also, the normal distribution curve is used
to generate scenario for radiation and temperature uncertainty
modeling in stochastic model.
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PPV
t;s ¼ Ga

t;s

Ga0

� PM
Max;0 þ lPmax � Ta

t;s þ Ga
t;s �

NOC T � 20
800

� TM;0

� �� �
ð15Þ
Fig. 2. Price-quota curve of the demand supplied by the retailer.
2.5. Energy storage system modeling

The technical constraints of ESS are presented in Eqs. (16)–(21)
according to [54]. The initial condition and energy of ESS is cap-
tured in (16). Eqs. (17) and (18) consider the power limits of charg-
ing and discharging modes. The lower and upper limits of stored
energy in ESS are captured in Eq. (19). Eq. (20) shows the binary
mode of charge and discharge which cannot be operated simulta-
neously. The energy dynamic model of ESS is shown in Eq. (21).
It should be mentioned that the variables related to ESS are
second-stage or wait-and-see. In other words, these variables are
dependent on scenario.

Xb
t0
¼ Xb

0 ð16Þ

Pch arg e
t;s � Pmax

ch arg e � Uch arg e
t;s ; 8t; s ð17Þ

Pdisc
t;s � Pmax

disc � Udisc
t;s ; 8t; s ð18Þ

Xmin
b � Xb

t;s � Xmax
b ; 8t; s ð19Þ

Uch arg e
t;s þ Udisc

t;s � 1; 8t; s ð20Þ

Xb
t;s ¼ Xb

t�1;s þ v� Pch arg e
t;s � Pdisc

t;s

g
; 8t; s ð21Þ
2.6. Demand supplied by the retailer considering demand response
program

It should be mentioned that the clients are flexible versus the
determination of selling real-time pricing by the retailer (SPðl; tÞ).
Also, the retailer sets a quantity from client demand based on
price-quota curve of the clients that is offered to the retailer to pro-
cure their demand (Dðl; t; sÞ) according to Fig. 2. This figure shows
the price-quota curve of clients for one hour.

Furthermore, the clients can use the time-of-use (TOU) rates of
demand response program to minimize the energy procurement
cost [55]. In TOU program, the clients can shift some percentage
of demand from peak period to off-peak period to flatten the load
profile and to minimize the cost. Therefore, the participation of cli-
ents has advantages for end-user customers and retailer.

The supplied demand by the retailer considering DRP is com-
puted by equations shown in below:

Dðl; t; sÞ ¼
XZ

z¼1

Dofferðl; z; t; sÞAðl; z; tÞ; 8l; t; s ð22Þ

DDRPðl; t; sÞ ¼ Dðl; t; sÞ þ DRPðl; t; sÞ; 8l; t; s ð23Þ

DRPðl; t; sÞ 6 þDRPmax � Dðl; t; sÞ; 8l; t; s ð24Þ

DRPðl; t; sÞ P �DRPmax � Dðl; t; sÞ; 8l; t; s ð25Þ

XT
t¼1

DRPðl; t; sÞ ¼ 0; 8l; s ð26Þ
SPðl; tÞ ¼
XZ

z¼1

SPðl; z; tÞ ; 8l; t ð27Þ

SPofferðl; z� 1; tÞAðl; z; tÞ � SPðl; z; tÞ � SPofferðl; zÞAðl; z; tÞ; 8l; z; t
ð28Þ

XZ

z¼1

Aðl; z; tÞ ¼ 1; 8l; t ð29Þ

Through Eqs. (22)–(29), it is clear that the demand of each client
group supplied by the retailer in each period is a function of selling
price. Also, constraints (23)–(26) show the new demand based on
demand response program. It is emphasized that the small part of
demand that can be shifted from peak period to off-peak period
to flatten the demand curve whereas total consumed energy over
the planning horizon is fixed [56]. According to Eq. (23), the new
demand with time-of-use rate of demand response program consid-
eration is equal to the amount of primary demand plus DRPðl; t; sÞ. If
demand increases, the variable DRPðl; t; sÞ would be positive and if
demand decreases, it would be negative. As it can be seen from
Eq. (23), due to improvement of intelligent network technology,
we can transfer some amount of demand from peak periods to
off-peak periods. Also, as expressed in constraints (24) and (25)
the increasing/decreasing demand should not exceed the percent-
age of based demand which is presented by DRPmax. In the proposed
paper, the maximum amount of increasing/decreasing demand is
considered to be 20%. Also, Eq. (26) expresses that the total load
does not decrease or increase and it is just transferred from peak
periods to off-peak periods meaning that the increasing load and
decreasing load should be equal during a day.

The revenue obtained from client l in time period t by selling
energy to the end-user customers can be computed as following:

RRðl; tÞ ¼
XS

s¼1

qs � SPðl; tÞDDRPðl; t; sÞ ð30Þ

The energy balance constraint for a retailer in each time period
is indicated as following:

XB
b¼1

Pb;t þ
XJ

j¼1

XH
h¼1

PDG
j;h;t;s þ PP

t;s þ Pwind
t;s þ PPV

t;s þ Pdisc
t;s

¼
XL

l¼1

DDRPðl; t; sÞ þ Pch arg e
t;s 8t; s ð31Þ



Fig. 3. Probability distribution function for uncertainty parameters.
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Finally, the objective function of retailer can be expressed in
(32) which is expected profit (revenue minus cost) in energy mar-
ket. The revenue is obtained from selling energy to the end users
that is presented in first term of objective function. Also, the pur-
chased energy cost from pool market, DGs and bilateral contracts
are presented in second, third and fourth terms of objective
function.

Max
XS

s¼1

qs

�
XT
t¼1

XL

l¼1

SPðl; tÞDDRPðl; t; sÞ �
XT
t¼1

kt;s P
P
t;s �

XT
t¼1

XJ

j¼1

XH
h¼1

SDGj;h P
DG
j;h;t;s

( )

�
XB
b

XT
t¼1

kb;t Pb;t

ð32Þ
Table 4
Probability of scenarios approximated normal distribution function.

Scenario
number

Value of each relevant
scenario

Probability of each relevant
scenario

S1 l� 2:5r 0.0123
S2 l� 1:5r 0.136
S3 l 0.682
S4 lþ 1:5r 0.136
S5 lþ 2:5r 0.023
2.7. Determination of real-time price (RTP), fixed price and time-of-use
(TOU) price

The proposed objective function (32) should be maximized sub-
ject to constraints (1)–(31). In the proposed model, the selling price
is generally modeled based on time index. Therefore, this selling
price is similar to real-time pricing that should be determined by
the retailer according to constraint (33) in the proposed model.

SPðl; tÞ ¼ SPRTPðl; tÞ ð33Þ
Also, the constraint (33) should be replaced with constraint (34)

in fixed price determination by the retailer in time periods. Accord-
ing to constraint (34), the selling price is determined fixed based
on decision maker of retailer for all time periods.

SPðl; tÞ ¼ SPFixedðlÞ ð34Þ
Furthermore, the constraint (33) should be replaced with con-

straint (35) in determination of time-of-use pricing by the decision
maker of retailer. The constraint (35) emphasizes that the selling
price is determined for low, medium and peak periods by the
retailer.

SPðl; tÞ ¼
SPTOU

L ðlÞ for t 2 low load level
SPTOU

M ðlÞ for t 2 medium load level
SPTOU

P ðlÞ for t 2 peak load level

8><
>:

9>=
>; ð35Þ

In order to model the uncertainty of pool market prices,
demand, temperature, irradiation and wind speed, the forecast
error distribution curves are divided into five intervals with the
width of one standard deviation [57]. In uncertainty modeling,
the used values for parameter in deterministic solution are consid-
ered as mean values. The standard deviation for uncertain param-
eters is considered to be 10%. Fig. 3 shows a sample discrete form
of the predication error probability distribution function. It is
essential that for every available scenario two values be computed
[57]:

1. By integrating the area below the probability distribution curve
in every period, we can acquire each scenario’s probability.

2. The realized prediction error in each relevant scenario is consid-
ered to be the average amount of period.

Table 4 shows the amount and its probability in each relevant
scenario.

Therefore, for five uncertainty parameters in this paper, five
scenarios are independently generated based on probability distri-
bution function. Therefore, total number of scenarios will be
55 = 3125. Since the proposed model is complex and to decrease
the computing time, the scenarios are reduced to five scenarios
based on scenario reduction technique by Kantorovich distance
approach [58].

The proposed stochastic framework of selling price determina-
tion by the retailer in the smart grid environment under demand
response program is modeled using MINLP and it is solved using
SBB solver [59] under GAMS [60] optimization package.
3. Numerical simulation

In this section, a case study is used to show the results of selling
price determination in three cases containing fixed pricing, time-
of-use pricing and real-time pricing. Also, the results of these cases
are compared with each other. Table 5 provides the size of each
problem, which is expressed as the number of binary variables, real
variables and equations for more clarification about the complexity
of proposed model.

3.1. Data

Three load levels containing the valley, shoulder and peak peri-
ods are assumed for daily demand which is presented in Table 6.
Also, data of twelve bilateral contracts are presented in Table 7
containing the maximum and minimum energy and related price
for the peak and all load levels. Table 8 provides the characteristics
of self-distributed generation units. Furthermore, Table 9 presents
the forecasted daily temperature, irradiation and wind speed for a
sample day [53]. Finally, Tables 10 and 11 provide the parameters
of PV system [54], wind turbine [54] and energy storage system,
respectively. According to Tables 9 and 10 and Eqs. (14) and (15),
the available power by wind turbine and PV system in all scenarios
are shown in Fig. 4(a) and (b), respectively. Also, Fig. 5 shows the
relationship between selling price and demand of client groups
which are supplied by the retailer. This figure comprises 100 steps
as a stepwise price-quota curve for each client. The forecasted pool
price and the load curve of retailer for the time periods are
depicted in Figs. 6 and 7, respectively. It should be mentioned that
the maximum percentage of demand which can be shifted from



Table 5
Computational size of the proposed model.

Options Case 1 Case 2 Case 3

Without DRP With DRP Without DRP With DRP Without DRP With DRP

Number of binary variables 927 927 7827 7827 7827 7827
Number of real variables 4163 4883 18,332 19,052 18,032 18,752
Number of equations 7248 8343 27,717 28,812 21,117 22,212

Table 6
Classification of daily load levels.

Level Hours of the day

Valley (V) 1, 2, 3, 4, 5, 6, 7, 8
Shoulder (S) 9, 10, 11, 12, 13, 14, 15, 16
Peak (P) 17, 18, 19, 20, 21, 22, 23, 24
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peak period to off-peak period to flatten the demand curve is
assumed to be 20% (DRPmax ¼ 0:20).

3.2. Case 1: fixed pricing determination

In this case, the selling price is determined as fixed pricing

(SPðl; tÞ ¼ SPFixedðlÞ) for all time periods. Therefore, the proposed
objective function (32) is maximized subject to constraints (1)–
(31) and (34) with and without demand response program.

The simulation results of case 1 with and without demand
response program are presented in Table 12. It can be seen from
Table 12 that the expected profit of retailer with and without
DRP is 1123.666 $ and 1036.756 $, respectively in which the
expected profit is increased 8.38% due to implementation of DRP.
Also, the fixed selling price for residential, commercial and indus-
trial with and without DRP are presented in Table 10. For imple-
mentation of DRP, the fixed selling price is decreased 1.50%,
1.42% and 1.35% for residential, commercial and industrial, respec-
tively. This is favorable for both retailer and end-user customers.

The supplied load by the retailer from price-quota curves for cli-
ents with and without DRP is shown in Fig. 8. Also, the power pro-
curement from PM, BC and all DG units with and without
considering DRP in the third scenario are shown in Figs. 9–11,
respectively. Finally, the charged and discharged power and stored
energy level of ESS in the third scenario are depicted in Figs. 12 and
13, respectively.

3.3. Case 2: time-of-use pricing determination

In time-of-use pricing model, the retailer determines the selling
price for low, medium and peak periods according to Eq. (35).
Table 7
Bilateral contracts specification.

Contract number Validity level Min Max Price

1 V, S, P 50 15 0.040
2 P 40 10 0.043
3 V, S, P 50 15 0.050
4 P 40 10 0.048
5 V, S, P 70 25 0.032
6 P 60 20 0.041
7 V, S, P 70 25 0.051
8 P 60 20 0.048
9 V, S, P 70 25 0.043
10 P 60 20 0.058
11 V, S, P 70 25 0.052
12 P 60 20 0.057

V: valley; S: shoulder; P: peak.
Unlike the fixed pricing, the time-of-use pricing by the retailer is
closer to reality. In this case, the proposed objective function (32)
is maximized subject to constraints (1)–(31) and (35) with and
without demand response program.

Table 13 presents the simulation results of case 2 with and
without DRP. According to Table 13, 562% more profit is achieved
due to implementation of DRP while the expected profit of retailer
with and without DRP is 1170.850 $ and 1108.541 $, respectively.
Also, the time-of-use selling price for low, medium and peak peri-
ods for residential, commercial and industrial customers with and
without DRP are depicted in Fig. 14. According to Fig. 14, it can be
seen that the time-of-use selling price in DRP mode is less than
without DRP mode. Therefore, these results are favorable for both
retailer and end-user customers.

Furthermore, Fig. 15 shows the supplied load by the retailer for
clients with and without DRP. Also, Figs. 16–18 depict the energy
purchased from PM, BC and all DG units with and without consid-
ering DRP in the third scenario, respectively. Finally, Figs. 19 and
20 express the charged and discharged power and stored energy
level of ESS in the third scenario, respectively.
3.4. Case 3: real time pricing determination

In the smart grid environment, determination of selling price
using real-time pricing by the retailer is much closer to reality
unlike the fixed pricing and time-of-use pricing. Therefore, the pro-
posed objective function (32) should be maximized subject to con-
straints (1)–(31) and (33) with and without demand response
program. Furthermore, the real-time pricing should be determined
by the retailer according to constraint (33) (SPðl; tÞ ¼ SPRTPðl; tÞ).

The simulation results of case 3 with and without DRP are pre-
sented in Table 14. It should be mentioned that 2.94% more profit is
gained due to implementation of DRP while the expected profit of
retailer with and without DRP is 1210.002 $ and 1175.436 $,
respectively. Also, Fig. 21 depicts the real-time selling pricing for
each time periods with and without DRP. According to Fig. 21, it
can be seen that real-time selling pricing in DRP mode is less than
without DRP mode. Therefore, these results are favorable for both
retailer and end-user customers.

In case 3, the supplied load of clients by the retailer with and
without DRP is shown in Fig. 22. Also, the power procurement from
PM, BC and all DG units with and without considering DRP in the
third scenario are shown in Figs. 23–25, respectively. Finally, the
charged and discharged power and stored energy level of ESS in
the third scenario are depicted in Figs. 26 and 27, respectively.
3.5. Comparison results of cases 1, 2 and 3

The comparison results of different cases containing the
expected costs of purchasing from PM, BCs, DG units and the
expected total cost as well as expected revenue, expected profit
and percentage of profit increase versus case 1 (without DRP) in
three cases are presented in Table 15. According to Table 15, in
fixed pricing, the expected profit of retailer with and without
demand response program is $1123.666 and $1036.756, respec-



Table 8
Distributed generations data.

Parameters First DG Second DG Third DG

Maximum power output 150 180 200
Minimum power output 0 0 0

SDG1 0.030 0.037 0.044

SDG2 0.036 0.040 0.049

SDG3 0.039 0.045 0.054

PMAX
1

60 80 100

PMAX
2

110 120 150

PMAX
3

150 180 200

MUTj 2 2 2
MDTj 2 2 2

Rup
j

80 90 100

Rdown
j

80 90 100

Table 9
Forecasted daily wind speed, temperature and irradiation for a sample day.

Time (h) Wind speed Temperature Insulation

1 10.5 24.7 0
2 13.5 24.5 0
3 14.9 24.3 0
4 15.6 24.4 0
5 19.5 24.5 93.5
6 20.6 26.5 219
7 14.4 27.5 467.5
8 14.1 28 637.5
9 11.3 28.5 780
10 9.7 28.8 916
11 7.0 29 1100
12 5.9 29.7 1033
13 8.9 29.8 850
14 9.5 30 680
15 10.4 29.8 595
16 8.8 29.5 255
17 7.1 29 212.5
18 8.3 27.7 153
19 9.9 26.5 63
20 7.5 24.8 0
21 8.8 25 0
22 9.8 24.8 0
23 9.2 24.6 0
24 8.4 24.8 0

Table 10
Wind-turbine/PV system parameters data.

Wind-turbine PV system

Parameters Values Parameters Values

pr 1200 PM
Max;0

700

Vci 2 Ga0 1000
Vr 14 TM;0 25
Vc0 25 NOCT 44

Table 11
Energy storage system
parameters data.

Parameters Values

Xmax
b 1000

Xmin
b

50

Pmax
ch arg e 600

Pmax
disc 600
v 90
g 80

Fig. 4. Available power in all scenarios; (a) wind turbine and (b) PV system.

Fig. 5. Price-quota curves.
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Fig. 6. Forecasted pool price.

Fig. 7. Forecasted load curve of retailer.

Table 12
Simulation results of case 1.

Parameters Without
DRP

With
DRP

Expected profit ($) 1036.756 1123.666
Expected revenue ($) 2222.538 2331.381
Expected total cost ($) 1185.782 1207.715
Expected cost of purchased of pool market ($) 897.042 908.595
Expected cost of purchased of DG units ($) 163.140 173.520
Expected cost of purchased of bilateral contracts ($) 125.600 125.600
Fixed selling price for residential ($/MWh) 46.600 45.900
Fixed selling price for commercial ($/MWh) 49.150 48.450
Fixed selling price for industrial ($/MWh) 51.700 51.000

Fig. 8. Supplied load of clients by the retailer in case 1.

Fig. 9. Power procurement from the PM in case 1.

Fig. 10. Power procurement from the BC in case 1.
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tively which has 8.38% more profit due to implementation of
demand response program. Furthermore, in time-of-use pricing,
6.92% more profit is gained due to implementation of time-of-
use pricing while the expected profit of retailer without demand
response program is $1108.541. Also, in time-of-use pricing and
utilizing of demand response program, the expected profit of retai-
ler is $1170.850 which is 12.93% more profit. Finally, determina-
tion of selling price based on real-time pricing by the retailer is



Fig. 11. Power procurement from the DG units in case 1.

Fig. 12. Charged and discharged power of ESS in case 1.

Fig. 13. Stored energy level of ESS in case 1.

Table 13
Simulation results of case 2.

Parameters Without
DRP

With
DRP

Expected profit ($) 1108.541 1170.850
Expected revenue ($) 2112.107 2256.109
Expected total cost ($) 1003.567 1085.258
Expected cost of purchased of pool market ($) 714.827 786.019
Expected cost of purchased of DG units ($) 163.140 173.640
Expected cost of purchased of bilateral contracts

($)
125.600 125.600

Fig. 14. Time-of-use selling pricing with and without DRP in case 2.

Fig. 15. Supplied load of clients by the retailer in case 2.
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much closer to reality unlike the fixed pricing and time-of-use
pricing. Therefore, 13.37% more profit is gained due to implemen-
tation of real-time pricing while the expected profit is 1175.436.
Also, it can be seen from Table 15 that the expected profit in case
3 is higher than cases 1 and 2 because the retailer determined sell-
ing price based on real-time pricing and utilized demand response
program simultaneously which leads to 16.71% more profit.

Finally, Figs. 28–30 depicted the comparison results of selling
price determination based on fixed pricing, time-of-use pricing



Fig. 16. Power procurement from the PM in case 2.

Fig. 17. Power procurement from the BC in case 2.

Fig. 18. Power procurement from the DG units in case 2.

Fig. 19. Charged and discharged power of ESS in case 2.

Fig. 20. Stored energy level of ESS in case 2.

Table 14
Simulation results of case 3.

Parameters Without
DRP

With
DRP

Expected profit ($) 1175.436 1210.002
Expected revenue ($) 2180.976 2283.321
Expected total cost ($) 1005.541 1073.319
Expected cost of purchased of pool market ($) 755.201 812.370
Expected cost of purchased of DG units ($) 163.140 173.750
Expected cost of purchased of bilateral contracts ($) 87.200 87.200
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and real-time pricing for residential, commercial and industrial
consumers by the retailer. According to Figs. 28–30, it can be seen
that fixed pricing, time-of-use pricing and real-time selling pricing
in demand response program mode is less than without demand
response program mode. Therefore, these results are favorable
for both retailer and end-user customers. In other words, demand
response program reduces the selling price which is beneficial for



Fig. 21. Real-time selling pricing with and without DRP in case 3.

Fig. 22. Supplied load of clients by the retailer in case 3.

Fig. 23. Power procurement from the PM in case 3.

Fig. 24. Power procurement from the BC in case 3.

Fig. 25. Power procurement from the DG units in case 3.

Fig. 26. Charged and discharged power of ESS in case 3.
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Fig. 27. Stored energy level of ESS in case 3.
Fig. 28. Comparison results of selling price for residential customers.
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customers and increases the expected profit which is useful for
retailer which is a win-win strategy between retailer and cus-
tomers. Furthermore, selling price determination based on real-
time pricing and utilized demand response program simultane-
ously is much closer to reality which leads to retailer expected
profit increase.
Fig. 29. Comparison results of selling price for commercial customers.
4. Conclusion

In this paper, the selling price determination problem by the
retailer in the presence of demand response program under the
smart grid environment is proposed. To demonstrate the efficiency
of proposed model, three cases including fixed pricing, time-of-use
pricing and real-time pricing with and without demand response
program are considered. In the proposed model, the pool market
price, demand of clients, wind speed, irradiation and temperature
are considered as stochastic framework and are modeled using a
scenario approach. The comparison results of three cases show that
the expected profit in case 3 (real-time selling pricing) is increased
16.71% and 12.93% in comparison with cases 1 and 2, respectively.
Also, the simulation results show the positive effects of demand
response program for both retailer (increasing the expected profit)
and end-user clients (decreasing the selling price). Finally, from the
proposed model it can be concluded that the selling price determi-
nation based on real-time pricing by the retailer as well as partic-
Table 15
Comparison results of cases 1, 2 and 3.

Cases Case 1

Parameters Without DRP With DRP

Expected cost of purchased of PM ($) 897.042 908.595
Expected cost of purchased of DG units ($) 163.140 173.520
Expected cost of purchased of BCs ($) 125.600 125.600
Expected total cost ($) 1185.782 1207.715
Expected revenue ($) 2222.538 2331.381
Expected profit ($) 1036.756 1123.666
Increased profit (%) 0 8.38%
ipation in demand response program leads to retailer expected
profit increase and decreases the selling price for end-user cus-
tomers that is favorable for both retailer and end-user customers.
Case 2 Case 3

Without DRP With DRP Without DRP With DRP

714.827 786.019 755.201 812.370
163.140 173.640 163.140 173.750
125.600 125.600 87.200 87.200
1003.567 1085.258 1005.541 1073.319
2112.107 2256.109 2180.976 2283.321
1108.541 1170.850 1175.436 1210.002
6.92% 12.93% 13.37% 16.71%



Fig. 30. Comparison results of selling price for industrial customers.
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