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Highlights 

 A novel method is proposed for optimal locating and sizing of RES and 

EV charging stations simultaneously. 

 An optimal strategy for managing electric vehicle charging process is 

provided.  

 A multi-objective optimization problem is formulated based on electric 

vehicles parameters and the renewable energy sources model. 

 GA-PSO hybrid improved optimization algorithm is used to solve the 

optimization problem. 
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Abstract 

Due to the stochastic nature of renewable energy sources (RES) and electric vehicles (EV) 

load demand, large scale penetration of these resources in the power systems can stress the 

reliable network performance, such as reducing power quality, increasing power losses, and 

voltage deviations. These challenges must be minimized by optimal planning based on the 

variable output from RES to meet the additional demand caused by EV charging. In this 

paper, a novel method for optimal locating and sizing of RES and EV charging stations 

simultaneously and managing vehicle charging process is provided. A multi-objective 

optimization problem is formulated to obtain objective variables in order to reduce power 

losses, voltage fluctuations, charging and demand supplying costs, and EV battery cost. In 

this optimization problem, the location and capacity of RES and EV charging stations are the 

objective variables. Coefficients which are dependent on wind speed, solar radiation, and 

hourly peak demand ratio for the management of the EV charging pattern in low load hours 

are introduced. Genetic Algorithm-Particle Swarm Optimization (GA-PSO) hybrid improved 

optimization algorithm is used to solve the optimization problem in five different scenarios. 

The performance of the proposed method on IEEE 33-bus system has been investigated to 

validate the effectiveness of the novel GA-PSO method to optimal sitting and sizing of RES 

and EV charging stations simultaneously. 

Keywords: Optimization, electric vehicle charging station, renewable energy sources, hybrid 

GA-PSO algorithm 
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1. Introduction 

Nowadays, the world’s demand for fossil fuels in both transport sector and electric 

power generation plants is growing fast. Using these resources not only leads to the high 

costs but also causes greenhouse gas emissions and environmental pollution [1]. According to 

studies presented in [2], the demand in the transport sector will increase by 54% until 2035, 

this considerable demand increases the cost and air pollution. Hence, many countries are 

looking to replace the green vehicles rather than internal combustion cars [3]. Compared with 

gasoline vehicles, electric vehicles (EVs) are environmentally friendly and are more cost-

effective from an economic point of view. In the structure of these cars, advanced battery, 

and power electronics equipment are used that enables EVs to be deployed into the network 

as controllable loads which can play the role of energy storage systems (ESS) to support 

network [4,6]. This can take place through the vehicle-to-grid (V2G) technology, which was 

first introduced in 1977 [5]. This promising concept was first utilized by providing a model of 

income and expenses to participate in the regulation market and ancillary services [7]. 

Penetration of EVs into the power grid brings challenges, such as thermal constraint 

violation of transmission lines due to overload and voltage drop in some sensitive network 

busses, and the uncertainty in the demand [8,9]. According to the previous studies, most of 

the vehicles are in the parking mode almost 95% of the day. As a result, this capacity can be 

used for frequency and voltage regulation through V2G [10]. Participation of vehicles in V2G 

makes revenue for vehicle owners. It also can be used to minimize network challenges by 

taking advantage of the capabilities of EVs and PHEV
1
 charging stations [11,12]. In these 

stations, vehicles can recharge their batteries, as well as selling the surplus of stored energy to 

the grid and earn benefit. In this case, managing the charging and discharging of vehicles in 

various methods is achievable, such as changing energy tariffs at different time slots. 

Renewable energy sources in recent years as an alternative to fossil fuel power plants 

are highly regarded. Because these resources can be installed near the load they can reduce 

losses, voltage fluctuations [13], and investment costs [14]. The widespread penetration of 

these resources to the grid can create challenges due to the random nature of their production. 

Consequently, the energy storage systems with high capacity should be used to support the 

network. In this context, charging stations can be introduced as ESS through V2G in the 

network. Charging stations store surplus power produced from RES and inject it into the 

power grid at the appropriate time, thereby cause these resources be distributed and reduce 

the stress imposed to the distribution network. In a smart grid with the optimal combination 

of RES and PHEV charging stations, emission rates are reduced and many technical and 

economic challenges can be addressed effectively [15].  

Several studies are reported in the literature regarding the application of V2G in power 

systems and charging stations and RES. Ref. [16] shows that by replacing gasoline cars with 

EVs and using V2G capabilities in the network with high penetration of renewable energy, 

the total network capacity can be increased by 30-75% until 2020. In [17] a multi-objective 

optimization-based approach is proposed to allocate the optimal amount of electrical energy 

                                                           
1
 Plug in Hybrid Electric Vehicle 
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to the EV parking with regard to peak demand, the cost of charging and subscriber behavior 

is presented. According to [18], a new model is developed to achieve a maximum average 

charge of vehicles through energy management. In this model, vehicles have the V2G 

capability, and the network efficiency and reliability is improved using EV integration. In 

[19] a method for optimality of EVs and to achieve the maximum benefit of the aggregator is 

provided. In [20] EVs are used for frequency regulation. Ref. [21] allocated EV parking 

through multi-objective optimization problem with the study of distribution system indices, 

including the distribution system reliability, system losses and the cost indices and regardless 

of load forecasting error in the optimization model and load flow equations. A novel two-

stage method to find optimal location of EV parking lots and RES considering both the 

economical and technical constraints using GA and PSO algorithms is proposed in [22]. The 

results show that using this method and the simultaneous presence of EVs and RESs in the 

network, make a reduction in costs and improve network operation. In [23], a comprehensive 

optimization objective function is defined to optimal sitting of PHEVs in smart distribution 

network with regard to reliability indices. In this paper a PHEV owner behaviour is modelled 

to calculate the hourly charge demand of PHEVs per day. The impact of EVs on the 

environment and economy is investigated in [24]. In [25][26], a model to calculate bills in 

smart energy systems based on demand response is provided. By exploring the recent papers, 

simultaneously optimal determination of the site and size for RES and charging station and 

EVs charging scheduling have not done. Moreover, the objective function is defined simply 

as single or double objective and most of them have worked in the field of reducing losses 

and costs. Meanwhile, in more articles a single model of EVs is used for transport section 

modelling and the EV owner’s behaviour, EV specifications and costs related to the vehicles 

battery are neglected. 

 

In contrast to recent studies, in this work, simultaneous determination of the site and 

capacity of RES and EV charging stations is obtained. Furthermore, optimal planning of the 

EV’s charging process is considered to utilize the vehicles for power network improvement. 

A multi-objective function to minimize active power losses, voltage fluctuations, the power 

supply, EV charging costs, and expenses related to the vehicle’s battery is defined. Load flow 

calculations are performed on IEEE 33-bus network in five different scenarios using 

backward-forward algorithm for a 24-hour period. To solve the optimization problem and 

calculate the appropriate values for the objective variables, weighting coefficients method 

and modified GA-PSO optimization algorithm in MATLAB software are used. In order to 

validate the effectiveness of improved GA-PSO, the objective function of the paper is solved 

with DE
2
 algorithm and results which are obtained for two algorithms are compared together. 

The results show the effectiveness of this approach to achieve the goals set and less 

computation requirement and thus less time spending to find the optimal solution compared 

to previous methods. 

This paper is organized as follows. Section 2 explains the detailed system model. 

Section 3 is devoted to the formulation of the proposed approach. Section 4 explains the 

simulation results. Section 5 concludes the paper. 

                                                           
2
Differential Evolution 



7 
 

 

2. System Model 

2.1 Solar cell model (PV
3
) 

PV is the direct conversion of light into energy technology as well as the widely-used 

method to produce electricity from sunlight radiation. Using this technology since 2002 is 

increased by annual growth of 48% [28]. Due to the effect of temperature on the performance 

of solar cells, it is important to consider the temperature while studying the behavior of these 

cells. Therefore, the NOCT
4
 index is introduced, that represents the cell temperature in a 

condition which ambient temperature is 20°c, solar radiation is 0.8 
KW

m2  and wind speed is 1
m

s
. 

For determining the cell temperature; 

𝑇𝑐𝑒𝑙𝑙 = 𝑇𝑎𝑚𝑏 +
𝑁𝑂𝐶𝑇 − 20°

0/8
. 𝑆                                                                                                          (1) 

where 𝑇𝑐𝑒𝑙𝑙 is the temperature in centigrade degree, 𝑇𝑎𝑚𝑏 is the ambient temperature and 𝑆 is 

the solar radiation (sun=1 
𝑘𝑤

𝑚2). 

𝑐𝑒𝑙𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 𝑝𝑜𝑤𝑒𝑟 = 𝑃 × [𝜂 × (𝑇𝑐𝑒𝑙𝑙 − 25)]                                                                                (2) 

 

Eq. (2) gives the solar cell output power which 𝜂  is the solar cell efficiency in energy 

conversion. Solar radiation profile considered in this study has been shown in Fig. 1. 

 

Fig. 1. Solar radiation profile [36]. 

2.2 Wind turbine model 

The output power of a wind turbine depends on three parameters: wind speed and 

direction, the geography location of wind turbines and wind density [29]. The wind speed is 

more important compared to other parameters and shown in Fig. 2. In order to calculate the 

output power of wind turbine; 

𝐾𝐸 =
1

2
𝑚𝑉2                                                                                                                                            (3) 

𝑃𝑤𝑖𝑛𝑑 =
𝑑𝐾𝐸

𝑑𝑡
=
1

2

𝑑𝑚

𝑑𝑡
𝑉2                                                                                                                     (4) 
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𝑚 = 𝜌𝐴𝐿 → 𝑚° = 𝜌𝐴 
𝑑𝐿

𝑑𝑡
= 𝜌𝐴𝑉                                                                                                      (5) 

𝜌𝑤𝑖𝑛𝑑 =
1

2
𝜌𝐴𝑉3                                                                                                                                      (6) 

 

Eq. (3) represents the kinetic energy of air masses, where 𝑚 and 𝑉 denote the mass and speed 

of an air bulk respectively. Eq. (4) calculates the power passing through cross section. In Eq. 

(5) 𝑚 is rewritten in 𝜌, 𝐴, 𝐿 which 𝐿 is the length in meter. Finally Eq. (6) gives the amount of 

output power of a wind turbine. ρ Is the bulk density of the air (1.225 
𝑘𝑔

𝑚3
 in 15°c and 1at) and 

𝐴 is the cross-section of wind turbine. According to Eq. (6), the role of wind speed in the 

output power is evident, with small changes in wind speed the output power varies too. 

 

Fig. 2. Wind speed profile [36]. 

2.3 EV model 

Table 1 shows four EV types considered in this paper; 

Table 1. EV classes specifications [37-40]. 

Brand Chevrolet Honda Ford Toyota 

Model Volt Accord Fusion Prius 

Battery cap (kWh) 16 6.6 7.6 4.4 

Distance with 
battery cap (mile) 

37 13 21 11 

Maximum charge 
rate (kW) 

3.5 6.6 3.5 3.5 

Electrical 
consumption 
(kWh/mile) 

36 29 34 29 

 

Note that three elements related to EVs should be accurately modelled. Expected daily 

mileage (distance which EVs travelled during the day), energy consumption per mile, and the 

waiting time in the charging station. Expected daily mileage can be modeled using the Log-

Normal distribution [30]. Log-normal distribution is a type of statistical distribution of 

random variables which have a normally distributed logarithm [31-32]. By taking the natural 
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log of each of the random variables, the resulting set of numbers will be log-normally 

distributed. The following equation gives the probability density function (pdf) of the Log-

Normal distribution with parameters 𝜇 and 𝜎: 

𝑓(𝑥) =
1

√2𝜋𝜎𝑋
exp (−

[𝐿𝑛(𝑋) − 𝜇]
2

2𝜎2
    ,    𝑋 > 0                                                                         (7) 

where on a logarithm scale, 𝜇  and 𝜎  can be called the location parameter and the scale 

parameter, respectively. The 𝜇 and 𝜎 parameters can be calculated as below: 

𝜇 = 𝐿𝑛

(

 
𝑚

√1 +
𝑣

𝑚2)

     ,    𝜎 = √𝐿𝑛(1 +
𝑣

𝑚2
)                                                                                   (8) 

where 𝑣 and m represent the mean and standard deviation based on the historical data. Hence, 

to model the EVs expected daily mileage, the random variable X is produced by Bach-Muller 

method [33]. 

 

𝑋 = √−2 𝑙𝑛 𝑐1 × cos( 2π𝑐2)                                                                                                            (9) 

 

where 𝑐1 and 𝑐2 are independent random variables with uniform distribution in the range of 

[0,1) and X is a random variable with zero mean and one variance. Eq. (10) calculates the 

daily mileage on the basis of statistical data. 

 

𝑀𝑑 = 𝑒
(𝜇𝑚+𝜎𝑚.𝑋)                                                                                                                                (10) 

 

where 𝜇𝑚 and 𝜎𝑚 are lognormal probability distribution parameters and 𝑀𝑑 is expected daily 

mileage by EV. 𝜇𝑚 and 𝜎𝑚are parameters calculated from the mean and standard deviation of 

statistical data extracted from the EV mileage [34]. 

 

{
 
 

 
 𝜇𝑚 = 𝐿𝑛(

𝜇𝑚𝑑
2

√𝜇𝑚𝑑
2 − 𝜎𝑚𝑑

2
)

𝜎𝑚 = √𝑙𝑛(1 +
𝜎𝑚𝑑
2

𝜇𝑚𝑑
2 )

                                                                                                                    (11) 

 

The two parameters, 𝜇𝑚𝑑 and  𝜎𝑚𝑑, respectively are mean and standard deviation of EV daily 

mileage based on statistical data. The 𝜇𝑚𝑑  and 𝜎𝑚𝑑  are respectively 35 and 15 miles. The 

second parameter affecting the performance of electric vehicles and charging demand is 

energy consumption on mileage that calculated in term of kilowatt-hours per miles. 

 

𝐸𝑚 = 𝑎.𝐾𝐸𝑉
𝑏                                                                                                                                           (12) 
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where 𝐸𝑚 is the energy consumption on mileage (
𝑘𝑤ℎ

𝑚𝑖𝑙𝑒
), a and b are the constant coefficients 

related to EV model and 𝐾𝐸𝑉 shows the deduction of the total energy supplied by the battery. 

In this paper, 𝐾𝐸𝑉 is considered to be one due to concentration on the charging demand of 

EV. The maximum mileage of an EV with fully charged battery is defined as 𝑀𝑑𝑚𝑎𝑥 and 

calculated by Eq. (13): 

 

𝑀𝑑𝑀𝑎𝑥 =
𝐵𝐶𝐴𝑃

𝐸𝑀
                                                                                                                                   (13) 

 

where 𝐵𝐶𝐴𝑃 is EV battery capacity in term of kWh. To calculate the charging demand: 

 

𝐸𝐷𝑒𝑚𝑎𝑛𝑑 = {
𝐵𝐶𝐴𝑃          𝑀𝑑 ≥ 𝑀𝑑𝑀𝑎𝑥

𝑀𝑑 . 𝐸𝑚         𝑀𝑑 < 𝑀𝑑𝑀𝑎𝑥
                                                                                           (14) 

 

To calculate the third parameter the Gaussian distribution is used. This distribution provides 

the best estimation of the behavior of private car drivers [35]. Eq. (15) calculates the 

departure and arrival times of vehicles based on statistical data: 

 

{
𝑡𝑎𝑟𝑟𝑖𝑣 = 𝜇𝑎𝑟𝑟𝑖𝑣 + 𝜎𝑎𝑟𝑟𝑖𝑣 . 𝑋1

𝑡𝑑𝑒𝑃𝑎𝑟𝑡 = 𝜇𝑑𝑒𝑃𝑎𝑟𝑡 + 𝜎𝑑𝑒𝑃𝑎𝑟𝑡. 𝑋2
                                                                                                    (15) 

 

where 𝜇5, 𝜎6 and 𝑡 are the mean, standard deviation, and the expected time for both arrival 

and departure of EV to/from the charging stations respectively.  𝑋1 and  𝑋2  are random 

variables with zero mean and one variance. Eq. (16) gives the probabilistic duration of EV 

charging: 

 

𝑡𝑑𝑢𝑟 = 𝑡𝑑𝑒𝑃𝑎𝑟𝑡 − 𝑡𝑎𝑟𝑟𝑖𝑣                                                                                                                       (16) 
 

So, Eq. (17) calculates the desired state-of-charge (SOC) by the aforesaid parameters. 

 

𝑠𝑜𝑐𝑑𝑒𝑠𝑖𝑟𝑒𝑑 = 𝑚𝑖𝑛 {[𝑠𝑜𝑐𝑖𝑛𝑖𝑡 +
𝐸𝐷𝑒𝑚𝑎𝑛𝑑
𝐵𝐶𝐴𝑃

] , [𝑠𝑜𝑐𝑖𝑛𝑖𝑡 +
𝑡𝑑𝑢𝑟
𝐵𝐶𝐴𝑃

. 𝑐ℎ𝑟]}                                          (17) 

 

where 𝑠𝑜𝑐𝑑𝑒𝑠𝑖𝑟𝑒𝑑 is the probabilistic expected charge level based on expected time duration in 

charging station and expected daily mileage of EVs. chr and 𝑆𝑂𝐶𝑖𝑛𝑖𝑡 are charging rate and 

initial charge level respectively. In our model, we use minimization of two terms, the first 

term, [𝑠𝑜𝑐𝑖𝑛𝑖𝑡 +
𝐸𝐷𝑒𝑚𝑎𝑛𝑑

𝐵𝐶𝐴𝑃
]  provides us with the expected charging demand of the 

                                                           
5
𝜇 = 1 𝑁⁄ (𝑡1 +⋯+ 𝑡𝑁) 

6
𝜎 = √

1

𝑁
[(𝑡1 − 𝜇)

2 + (𝑡2 − 𝜇)
2 +⋯+ (𝑡𝑁 − 𝜇)

2] or using summation notation, 

𝜎 = √
1

𝑁
∑ (𝑡𝑖 − 𝜇)

2𝑁
𝑖=1  where 𝜇 =

1

𝑁
∑ 𝑡𝑖 .
𝑁
𝑖=1  
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corresponding EV based on its driven distance. On the other hand, the second term, 

[𝑠𝑜𝑐𝑖𝑛𝑖𝑡 +
𝑡𝑑𝑢𝑟

𝐵𝐶𝐴𝑃
. 𝑐ℎ𝑟] expresses the maximum energy that could be charged by the EV battery 

based on the duration of parking the EV in the charging station. In recapitulation, the desired 

state of charge of each EV driver cannot exceed the feasible amount of charging demand 

based on the duration of being available for charging as well as the charging rate, and also the 

driven distance of the EV. Fig. 3 shows flowchart of EV modelling. 

 

 

 

 

 

 
 

 

 

3. The formulation and solution 

In this section, equations and models related to the optimal determination of the 

location and capacity of RES and charging stations simultaneously from two different 

perspectives are defined. First, from the viewpoint of system operator with the aim of system 

losses and voltage fluctuations reduction and in the second case from the perspective of 

customers and vehicle owners to reduce costs. 

 

Fig. 3. Flowchart of EV modelling 
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3.1 Objective function 

 

min 𝐹𝑡 = 𝜏𝑓1 + 𝛽𝑓2 + 𝛾𝑓3 + 𝛼𝑓4                                                                                             (18) 

 

Each of the coefficients of objective function according to the importance of functions is 

defined as 𝜏 = 0.4 ,𝛽 = 0.3, 𝛾 = 0.2 and 𝛼 = 0.1. Functions in Eq. (18) by dividing by their 

base value written in per unit (P.U.) to make objective function dimensionless and prevent 

any scaling problem duration the optimization process. 

 

3.1.1 Power losses 

𝑓1 = 𝑃𝐿𝑜𝑠𝑠                                                                                                                                              (19) 

𝑃𝐿𝑜𝑠𝑠 =∑∑∑𝑌𝑖𝑗[𝑉𝑖,𝑡
2 + 𝑉𝑗,𝑡

2 + 2𝑉𝑖,𝑡𝑉𝑗,𝑡 𝑐𝑜𝑠 (𝛿𝑖,𝑡 − 𝛿𝑗,𝑡)]

𝑁𝐵

𝑗>1

𝑁𝐵

𝑖=1

24

𝑡=1

                                                    (20) 

 

In terms of energy management, power losses can be minimized by right decisions. The 

minimization of feeder losses is the desired goal from the perspective of the distribution 

system operator. In Eq. (20) 𝑡 is the index for time, 𝑁𝐵 shows the total number of network 

busses and 𝑌𝑖𝑗 is the conductance of feeder i-j. 

 

3.1.2 Total voltage fluctuations index 

 

𝑓2 =∑∑|1 − 𝑉𝑖,𝑡|

𝑁𝐵

𝑖=1

24

𝑡=1

                                                                                                                          (21) 

 

Through penetration of RES and EVs to the grid, capacity to supply part of the demand is 

created which helps system to losses reduction and voltage fluctuations improvement. With 

the improvement of this index, the voltage at each bus can be kept within desired bounds. 

 

3.1.3 EVs charging and demand supplying costs 

 

𝑓3 =∑(𝑃𝑠𝑢𝑏,𝑡 × 𝜋
𝑇𝑂𝑈) + 𝑓𝑐ℎ − 𝑓𝑑𝑐

24

𝑡=1

                                                                                             (22) 

𝑃𝑠𝑢𝑏,𝑡 = ∑ 𝑃𝑑𝑖,𝑡 + 𝑃𝐿𝑜𝑠𝑠,𝑡 − ∑
𝑃𝐻𝐸𝑉
𝑃

𝑑𝑐𝑘, 𝑡
+ ∑

𝑃𝐻𝐸𝑉
𝑃

𝑑𝑐𝑘, 𝑡

𝑛𝑃𝐻𝐸𝑉

𝑘=1

− 𝑃𝑤𝑖𝑛𝑑,𝑡 − 𝑃𝑃𝑉,𝑡                       (23)

𝑛𝑃𝐻𝐸𝑉

𝑘=1

𝑁𝑏𝑢𝑠

𝑖=1

 

𝑓𝑐ℎ =∑∑ 𝑃𝑆𝑡𝑎𝑡𝑖𝑜𝑛 𝑚,𝑡  × 𝜋
𝑇𝑂𝑈  × 𝑇𝑚,𝑡  × (

𝐷𝑡
𝑀𝑀𝑎𝑥

) × (
𝑃𝑀𝑤𝑖𝑛𝑑

𝑃𝑤𝑖𝑛𝑑,𝑡
) × (

𝑃𝑀𝑃𝑉
𝑃𝑃𝑉,𝑇

) 

𝑁𝑆𝑇

𝑚=1

                    (24)

24

𝑡=1

 

𝑓𝑑𝑐 =∑∑ 𝑃𝑆𝑡𝑎𝑡𝑖𝑜𝑛 𝑚,𝑡  × 𝜋
𝑇𝑂𝑈

𝑁𝑆𝑡

𝑚=1

× 𝑡𝑑𝑖𝑠𝑃𝑚,𝑡                                                                               (25)

24

𝑡=1

 

𝑃𝑆𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑃𝑅𝑎𝑡𝑒  × 𝑛𝑃𝐻𝐸𝑉                                                                                                                  (26) 
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Eq. (22) shows the amount of power purchased from the grid. Eq. (24) shows the EVs 

charging costs considering the variable energy price at different times, in this regard, the 

variable tariff is used to improve charging profile. In Eq. (24) in order to improve the network 

load factor, tariffs multiplied by hourly demand on maximum demand ratio. In order to 

increase the share of RES in the charging demand supplying, the objective function 

multiplied by maximum power of each of these sources and divided by the hourly output of 

the resources. In Eq. (24) the time required to fully charge the vehicle by the station m is 

shown with 𝑡𝑚,𝑡, this time duration by taking the initial state of charge, battery capacity and 

power rate for each charging level is calculated [27]. In Eq. (25) profit from participation of 

vehicles in V2G is calculated. To encourage vehicle owners to participate in the V2G 

process, electricity price is calculated 10% more expensive at the time of discharging. Eq. 

(26) calculated the demand for vehicle charging station. 

 

 

 

3.1.4 Depreciation costs of battery 

 

𝑓4 =
𝐶𝑏 . 𝐵𝐶𝐴𝑃 + 𝐶𝑟
𝐿𝑐. 𝐵𝐶𝐴𝑃. 𝐷𝑂𝐷

𝑃𝑑𝑐
𝑃𝐻𝐸𝑉                                                                                                                (27) 

 
In Eq. (27), 𝐶𝑏 is the battery cost per kWh, 𝐶𝑟 is the cost of battery replacement, 𝐿𝑐 is the 

battery life cycle, 𝐷𝑂𝐷 is the depth of discharge and 𝑃𝑑𝑐
𝑃𝐻𝐸𝑉  is energy discharged by EVs. 

The important point is the direct relationship between the amount of power provided in V2G 

and the battery depreciation cost where can increase the cost of the battery and thus prevent 

vehicle owners from participating in V2G. 

 

3.2 Constraints 

In the optimization problem, five operational constraints are investigated; 

 

3.2.1 Demand-supply balance 

Demand-supply balance for both active and reactive power is given by the standard 

load flow equations as follows. 

 

𝑃𝑔𝑖,𝑡 = 𝑃𝑑𝑖,𝑡 + 𝑉𝑖,𝑡∑𝑉𝑗,𝑡𝑌𝑖,𝑗 cos(𝛿𝑖,𝑡 − 𝛿𝑗,𝑡 − 𝜃𝑖,𝑡)                                                                    (28)

𝑁𝐵

𝑗=1

 

𝑄𝑔𝑖,𝑡 = 𝑄𝑑𝑖,𝑡 + 𝑉𝑖,𝑡∑𝑉𝑗,𝑡𝑌𝑖,𝑗 sin(𝛿𝑖,𝑡 − 𝛿𝑗,𝑡 − 𝜃𝑖,𝑗)

𝑁𝐵

𝑗=1

                                                                  (29) 

Demand-supply balance constraint for each bus is updated by adding the EV charging load to 

the active power demand-supply balance as given by Eq. (30). 
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𝑃𝑔𝑖,𝑡 = 𝑃𝑑𝑖,𝑡 + 𝑃𝑐ℎ𝑖,𝑡 + 𝑉𝑖,𝑡∑𝑉𝑗,𝑡𝑌𝑖,𝑗 cos(𝛿𝑖,𝑡 − 𝛿𝑗,𝑡 − 𝜃𝑖,𝑗)

𝑁𝐵

𝑗=1

                                                    (30) 

3.2.2 Bus voltage limits 

The magnitude and phase angle of voltage must be kept within the Min and Max value. 

 

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑖,𝑡 ≤ 𝑉𝑚𝑎𝑥                                                                                                                              (31) 

𝛿𝑚𝑖𝑛 ≤ 𝛿𝑖,𝑡 ≤ 𝛿𝑚𝑎𝑥                                                                                                                             (32) 

 

These voltage limits are applied to all load buses. On the other hand, the slack bus voltage 

magnitude and phase angle, which is the substation bus, are fixed as follows. 

𝑉𝑠,𝑡 = 1𝑝. 𝑢.,                             𝛿𝑠,𝑡 = 0,                       𝑠 = 𝑆𝑙𝑎𝑐𝑘 𝑏𝑢𝑠 

 

3.2.3 Generation constraint 

The output power of a RES in period 𝑡 must be kept within the allowable range. 

 

𝑃𝑚𝑖𝑛
𝑅𝐸𝑆 ≤ 𝑃𝑖,𝑡

𝑅𝐸𝑆 ≤ 𝑃𝑚𝑎𝑥
𝑅𝐸𝑆                                                                                                                         (33) 

 

3.2.4 Thermal constraint 

EV charging demand acts as an additional demand and increases the power flow in 

transmission lines. This will raise the temperature of the lines. In order to prevent potential 

damage caused by the increased heat of lines, power flow must be kept within the allowable 

range. 

 

|𝑆𝑖,𝑡| ≤ |𝑆𝑖
𝑚𝑎𝑥|   𝑖 = 1,… ,𝑁𝑟                                                                                                           (34) 

 

3.2.5 Limitations of EVs 

 

𝑃𝑚𝑖𝑛
𝑃𝐻𝐸𝑉 ≤ 𝑃𝑘,𝑡

𝑃𝐻𝐸𝑉 ≤ 𝑃𝑚𝑎𝑥
𝑃𝐻𝐸𝑉                                                                                                                  (35) 

 

𝑄𝑚𝑖𝑛
𝑃𝐻𝐸𝑉 ≤ 𝑄𝑘,𝑡

𝑃𝐻𝐸𝑉 ≤ 𝑄𝑚𝑎𝑥
𝑃𝐻𝐸𝑉                                                                                                                  (36) 

 

𝑃𝑑𝑐,𝑚𝑖𝑛
𝑃𝐻𝐸𝑉 ≤ 𝑃𝑑𝑐 𝑘,𝑡

𝑃𝐻𝐸𝑉 ≤ 𝑃𝑑𝑐,𝑚𝑎𝑥
𝑃𝐻𝐸𝑉                                                                                                               (37) 

 

𝑄𝑑𝑐,𝑚𝑖𝑛
𝑃𝐻𝐸𝑉 ≤ 𝑄𝑑𝑐 𝑘,𝑡

𝑃𝐻𝐸𝑉 ≤ 𝑄𝑑𝑐,𝑚𝑎𝑥
𝑃𝐻𝐸𝑉                                                                                                              (38) 

 

𝐶𝑆𝑡𝑎𝑡𝑖𝑜𝑛 ≤ 𝐶𝑆𝑀                                                                                                                                      (39) 

 

3.3 Methodology 

From the optimization perspective, system performance is affected by the location and 

installed capacity of RESs and charging stations as target variables. Choosing the appropriate 

values for the target variables could improve voltage fluctuations and transmission lines 
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current. This can reduce the power loss value which depends on busses voltage and lines 

current, as demonstrated in Eq. (20). Hence, the determination of the location and capacity 

can influence the power losses, which is part of the objective function, as shown in Eq. (18). 

In this paper, RESs and charging stations are modeled as PQ buses. The method used to solve 

load flow equations is the backward-forward algorithm based on the branch’s power. In this 

method, implementation of the leading and backward phase based on the power equations 

takes place and the lines current directly is not used. To solve the optimization problem and 

selecting target variables, the improved hybrid GA-PSO algorithm is used. The algorithm 

according to the equation of the objective function and the values derived from load flow 

chooses the best value for the target variables. 

 

3.3.1 Hybrid improved GA-PSO algorithm 

Each of the optimization algorithms (smart and non-smart) have specific capabilities 

and features. The idea of the hybrid algorithm while considering structural and functional 

differences between different optimization algorithms is captured in this study. Given that our 

decision variables in this study are two types of integer and floating-point numbers, according 

to the better performance of the PSO algorithm for continuous and infinite spaces, and the 

outperformance of the GA algorithm for discrete spaces, we utilized the GA-PSO to find the 

optimal solution. In terms of comparing different algorithms and choosing the best algorithm 

to deal with the formulated problem, NOFE (number of function evaluation) index has been 

introduced. In each iteration, NOFE is calculated as a global function in the MATLAB 

program until we reach the optimal solution. In first iteration, we set the NOFE=1, and it is 

updated by each evaluation of objective function to NOFE=NOFE+1 for next iterations. At 

the termination of the optimization process each of algorithms have their NOFE value which 

shows the speed of the algorithm in find optimal solutions. the algorithm runs faster as much 

as this index becomes lower. In this study the GA-PSO has the lowest NOFE value among 

other algorithms, which confirms that the GA-PSO is the fastest solution to deal with this 

optimization problem. 

Similar to the other evolutionary algorithms, GA-PSO is a population-based technique 

to find the optimal value. In this algorithm, five adjustable parameters W, 𝐶1, 𝐶2, 𝑃𝑐 , and 𝑃𝑚 

are defined to solve the optimization problem. W is the coefficient of inertia, and 𝐶1 and 𝐶2 

are learning coefficients, which are usually assigned the value of 2. Learning coefficients can 

be different, but they usually are the same value in the [0,4] interval. 𝑃𝑐 and 𝑃𝑚 are percentage 

of the cross over and mutation operators in the genetic part of the proposed method 

respectively. In this article 𝑃𝑐 and 𝑃𝑚 according to behaviour of produced answer population 

change and algorithm in each iteration step with automatic adjustment of these two 

parameters tries to remove the undesirable responses and obtain more optimal solutions, so 

that it improves the mean of obtained results in each iteration. In general, 200 iterations are 

required to reach convergence for the proposed algorithm, where in each iteration GA is 

repeated 5 times and PSO is repeated 2 times. In each internal iteration of GA or PSO, if the 

generated answer remains stable for 40% of the answer population, 𝑃𝑚 and 𝑃𝑐 amount varies 

by multiplying the random variable 𝜀𝑖. 𝜀 denotes the independent uniform random variable on 

the interval (0,1]. In the second outer iteration the above process is repeated for the updated 

populations and this time 𝑃𝑐 and 𝑃𝑚 are multiplied in 𝜀𝑖 − 𝜀𝑖−1 to generate a new improved 

answer. Finally, after 200 outer iterations the best value for target variables and the best value 

for a set of parameters of the algorithm is calculated. The improved algorithm has unique 

structure due to the population production process and elimination of the undesirable results 
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through smart regulation of algorithm parameters based on population behaviour. In this 

context, in addition to the creation of the best solution sets also the speed of the algorithm in 

solving the optimization problem is increased. Flowchart of the optimization algorithm and 

the flowchart of the proposed methodology are shown in Fig. 4 and Fig. 5 respectively. 
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Fig. 4.The GA-PSO method for finding optimal place and capacity of renewable energy sources and charging station. 
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 Fig. 5. Flowchart of determination of location and capacity of RES and charging station. 
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The GA-PSO algorithm can be explained as follows which shown in Fig. 4: 

Step1) set the iteration It=0 and produce random solutions population. 

Step2) fitness evaluation based on objective function for each population. 

Step3) update the NOFE counter NOFE=NOFE+1 & It=It+1. 

Step4) create a new generation of solutions by repeating the following steps: 

- Start internal iteration. 

- Applying GA operators (𝑃𝑐&𝑃𝑚) five times to certain percentage of population. 

- Applying PSO operators (𝑤, 𝐶1, 𝐶2) two times to the new generation of solutions. 

- End of internal iteration. 

- If the generated populations remains stable for 40% of the solutions population update 

𝑃𝑐  & 𝑃𝑚. 

- Applying selection process, updating the previous solutions with the new produced 

population to minimize the objective function. If the new solutions population are less 

than the previous ones, the flow will be continued. Else go to step 5. 

Step5) the algorithm will stop if the stopping criteria was satisfied, else go to step 2. 

 

4. Simulation and results 

 

4.1 IEEE-33bus system 

Because of the size and complexity of the actual distribution systems, modelling and 

simulation of these systems to determine operational parameters is very difficult andtime-

consuming. In this paper the IEEE-33 bus system is used and demonstrated in Fig. 6 and its 

demand profile is shown in Fig. 7. Information of the GA-PSO algorithm is presented in table 

2. The number of iterations for the optimization process is enforced as 200 times and is 

considered as termination criteria. In this study, the maximum capacity of each charging 

station and RES were assumed to be 1.5 MW and 1 MW respectively, and four candidate 

buses were considered for their location. The electricity price in 24-hour period is given in 

Fig. 8. 

 

 

Fig. 6. Single line diagram of theIEEE-33 bus network. 
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Fig. 7. System load profile [36]. 

 

Fig. 8. Network electricity price for a 24-h period [36]. 

Table 2. GA-PSO parameters. 

Population 
size 

𝐏𝐜 𝐏𝐦 W 𝐂𝟏 𝐂𝟐 iteration 

50 𝐏𝐜𝐢*(𝛆𝐢 − 𝛆𝐢−𝟏) 

i=1,2,3,…,200 

𝐏𝐦𝐢
*(𝛆𝐢 − 𝛆𝐢−𝟏) 

i=1,2,3,…,200 

1 2 2 200 

 

    In this section, the assumptions and the required information to solve the optimization 

problem are explained. Then the results are demonstrated. 

i. During the sitting process, all buses, except bus number one which is a slack bus, are 

introduced as a candidate buses for the placement of RES or charging station. 

ii. Capacity and location of RES and charging station are the target variables in the 

optimization problem. 

iii. System demand has been modeled in 24-hour period. The network load model is 

based on the Ontario network on November 27, 2015 [36]. 

iv. System simulation and planning are performed for a 24-hour period. 
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The different scenarios studied in this paper are provided in table 3; 

Table 3. State of the system in different scenarios. 

Explanation of the system under study Scenario 

Fossil fuel based microgrid Base case 

Microgrid with RES near the load place First scenario 

Microgrid with RES and EV (without V2G_randome charging) Second scenario 

Microgrid with RES and EV (with V2G_controlled charging) Third scenario 

The third scenario with a pricing system affected by changes in demand Fourth scenario 

 

The purpose of system study in the base case scenario is determination of the system 

behavior before reconfiguration. In the first scenario, optimal sitting and sizing of RES in the 

grid to determine the impact of these resources on the network operational parameters has 

been accomplished. In the second and third scenarios, EV penetration to the grid, considering 

the impact of vehicle charging management and V2G is simulated. The fourth scenario is 

merely examined a momentary pricing impact on consumption pattern, pricing based on 

usage in the moment is an indirect way to control network consumers. In the fourth scenario, 

the network structure of the third scenario is utilized and only the pricing method has 

changed. 

Table 4. Top five of solutions obtained for system consists of RES and EVs. 

Rank Placement 
of RES 

Sizing of 
RES 

Placement 
of charging 

station 

Sizing of 
charging 
station 

𝑭𝟏(MW) 𝑭𝟐(pu) 𝑭𝟑($) 𝑭𝟒($) 

1 13 
30 

0.6939 
0.7126 

23 
6 

1.0512 
0.9035 

2.108906 24.1073 8,221,640 147,189 

2 21 
11 

0.4173 
0.9328 

33 
7 

0.8815 
0.9672 

1.999984 24.0852 8,237,052 150,233 

3 6 
18 

0.7343 
0.5892 

24 
16 

1.2125 
0.6719 

2.316520 25.3184 9,125,389 168,512 

4 27 
22 

0.8127 
0.5698 

10 
4 

1.1573 
0.7261 

2.000084 24.1005 8,305,428 147,809 

5 4 
17 

0.3274 
0.8985 

3 
31 

0.7916 
0.9258 

1.998456 24.0614 9,157,328 154,529 

 

Table 4 shows top five of the best solutions obtained from the optimization process based on 

the objective functions value. Accordingly, the solution which is the first is the best to select 

as the optimal place and capacity for RES and charging station. 
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Table 5. The target variables obtained from solving the optimization problem. 

Sizing of charging 
station (MW) 

Placement of 
charging 
station 

Sizing of RES 
(MW) 

Placement of 
RES 

Scenario 

_______ _______ 0.6493 
0.6722 

2 
15 

First 

_______ _______ 0.6493 
0.6722 

2 
15 

Second 

1.0512 
0.9035 

23 
6 

0.6939 
0.7126 

13 
30 

Third 

1.0512 
0.9035 

23 
6 

0.6939 
0.7126 

13 
30 

Fourth 

 

 

Table 6. Objective function values for different scenarios. 

𝐅𝟒($) 𝐅𝟑($) 𝑭𝟐(Pu) 𝐅𝟏(MW) Scenario 

________ 18,543,952 39.1706 
 

4.346388 
 

Base case 

________ 10,262,861 
 

30.0646 
 

2.717356 
 

First 

________ 24,900,625 
 

39.351 
 

4.471162 
 

Second 

147,189 8,221,640 
 

24.1073 2.108906 
 

Third 

149,021 7,741,017 23.0005 1.985623 
 

Fourth 

 

The value of the objective variables obtained from the optimization process is given in Table 

5. Table 6 shows the objective function values for the five network operational modes. 

According to the objective function the fourth scenario is the best in order to exploit network 

so that the amounts 𝐹1 , 𝐹2  and 𝐹3  are less than the other scenarios and only 𝐹4  related to 

depreciation expense of battery resulting from the EV participation in V2G process is added 

compared to first and second scenarios. 
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Fig. 9. Voltage profile of 33-bus network (24-h average). 

 

Fig. 10. Voltage profile of bus 33 (24-h average). 

 

Fig. 11. Voltage profile of bus 18 (24-h average). 
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Fig. 12. Power loss changes due to voltage fluctuations in the network (third scenario). 

Fig. 9 shows the effect of the simultaneous deployment of G2V and V2G on average voltage 

profile in the network buses. The maximum and minimum levels of voltage value are shown 

for different scenarios. In the third and fourth scenarios, voltage level improvement,  

approaching the voltage magnitude to 1pu, and the voltage fluctuation reduction are obtained. 

This could reduce losses, improve system performance and increase customer and utility 

satisfaction. Fig. 10 and Fig. 11 show the network voltage fluctuations of end buses (which 

have the lowest voltage level among other busses in base case scenario) within 24-hours for 

different scenarios. According to the results, the lowest voltage fluctuation happened in the 

base case and first scenario. However, in terms of voltage magnitude, the highest voltage 

level of the end buses is obtained by the fourth scenario. Fig.12 illustrates the importance of 

voltage regulation for distribution systems. It shows that increasing voltage fluctuation causes 

an increase in power losses. Consequently, it results in high costs. Using EVs in voltage 

regulation service can reduce system losses as well as reducing the costs. 

Basically, consumers are aiming to reduce their costs. Since this pricing structure in fourth 

scenario offers high energy price in the high load (peak) times, makes consumers dissuade 

from electricity consumption to recharge their EVs at the time, and also prevents the network 

from overloading due to charging demand. Model of electricity price computing based on 

network demand in different hours is given in Eq. (40). 

𝑟(𝑡) = 𝛽1 + 𝛽2. ∝

𝑃𝑠𝑦𝑠
𝑡 −𝑃𝑎𝑣𝑔

𝑃𝑎𝑣𝑔                                                                                                                (40) 

where 𝛽1 and 𝛽2 are price parameters, 𝑃𝑠𝑦𝑠
𝑡  is network demand in specific time and 𝑃𝑎𝑣𝑔 is an 

average of system demand. In this paper, we assume that:  𝛽1 = 1
$

𝑘𝑊ℎ
, 𝛽2 = 2

$

𝑘𝑊ℎ
 and 

∝= 10. 
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Fig. 13. System demand changes in presence of the EV for 24-h. 

According to Fig. 13, in the second scenario, the system demand due to the presence of EVs 

and their random charging schedule faces with high volatility and actually overload have 

been imposed on the network at peak times. By controlling the EV’s charging schedule 

through variable energy tariffs for different times (third scenario) demand curve is modified 

and volatility is reduced. By using real-time pricing model in the fourth scenario, load 

shifting and peak shaving are accomplished so the demand curve compared to the third 

scenario is more favorable. 

To examine the effectiveness of improved GA-PSO algorithm in such optimization process, 

the operation of the algorithm is compared with DE algorithm which is given in [15]. Both of 

algorithms are applied to the IEEE-33bus network and the technical criteria and results are 

contrasted together. All simulations are done in MATLAB R2004a environment using ASUS 

x55 with 6GB memory specification. The obtained results are shown in Table 7: 

Table 7. Comparison between GA-PSO and DE algorithms 

Iteration Pop size NOFE Processing 

time (sec) 

RES placement RES capacity 

GA-PSO 200 50 69590 20.18 13 

30 

0.6939 

0.7126 

DE 200 50 103410 29.92 12 

26 

0.4748 

0.8416 

Charge 

station 

placement 

Charge station 

capacity 

𝐹1(𝑀𝑊) 𝐹2(𝑝𝑢) 𝐹3($) 𝐹4($) 

GA-PSO 23 

6 

1.0512 

0.9035 

2.108906 24.1073 8,221,640 147,189 

DE 19 

33 

0.7251 

0.6200 

2.471811 25.4512 8,936,725 139,612 
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According to Table 7, the GA-PSO has the lower NOFE than DE, consequently the GA-PSO 

is faster than DE for 9.74 sec in same operating condition. Both algorithms could solve the 

proposed optimization problem and find the optimal place and size of RES and charging 

stations. Accordingly, the objective functions value which is calculated by GA-PSO is lower 

than the DE results except 𝐹4. So, the proposed GA-PSO performs faster to deal with this 

kind of optimization problem compared with the  DE algorithm. 

5. Conclusion 

In this paper, a novel method to find the optimal location and capacity of RES and EV’s 

charging station is introduced. In order to use EVs for network supporting, charging and 

discharging management through applying variable energy tariffs in both day-ahead and real-

time pricing (affected by the changes in hourly demand) models have been considered. A 

multi-objective function is developed to minimize the power losses (𝑓1), voltage fluctuations 

(𝑓2), energy supplying costs (𝑓3) and car battery maintenance costs (𝑓4). In order to solve this 

multi-objective problem, the weighting coefficients method and improved GA-PSO 

optimization algorithm in MATLAB software are utilized. In order to evaluate the 

effectiveness of the proposed approach, standard IEEE 33-bus test network is deployed in the 

base case and four different scenarios. Finally, the performance of improved GA-PSO is 

compared with the DE algorithm for solving the formulated optimization problem. Results 

confirm the outperformance of proposed GA-PSO in such an optimization process. 

According to the results, the optimal sitting and sizing of the RES and EVs charging 

station improve the power systems voltage profile via reducing voltage deviation in highly-

loaded buses. Furthermore, applying variable tariff strategy to manage the charging and 

discharging of the EVs prevents the occurrence of overload caused by charging at the peak 

time and voltage drop in sensitive buses. The results also show that the appropriate selection 

of the coefficients in the multi-objective optimization problem and the instantaneous energy 

pricing method improves the load factor and helps to modify the demand curve. 

Consequently, the EV charging demand can shift to lower demand and higher RES 

production time intervals. This study indicates that using EVs as active power sources along 

with RES in the network can reduce losses, voltage deviations, and the cost of the both 

system operator and subscribers. In this paper, the uncertainty of input parameters is 

considered in the load flow which can help the distribution network planners to make the 

optimal decision. 
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