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A B S T R A C T

The private sector plays a major role in the expansion and operation of power systems in most countries,
especially those running liberalized electricity markets. Policymakers have the task of inducing private agents,
through their regulatory designs, to make decisions that point toward social welfare maximization. Conversely,
it is a task of private agents to protect themselves against the risks of the sector, including regulatory risks,
international fuel price uncertainty, climate change policies, natural resource availability, electricity demand
uncertainty, CO2 clearance prices, etc. Instead of hiding all of these risks within the total project costs and losing
competitiveness, private agents can use diversification as a strategy to deal with them. This paper presents a
review of the main applications, voids and challenges of portfolio optimization for two key agents of the private
sector: investors and managers. The problem of the investor is to design a technology portfolio to invest in that
maximizes its expected returns and limits risks, while the manager has to design a portfolio of financial/physical
instruments (long-term contracts, futures, etc.) to sell/buy electricity and hedge against price risks. We have
found two fundamental issues in the literature; the first and most important is excessive confidence in historical
data and statistical analysis for predicting future price behavior for a changing future in detriment of more
structural analysis. Structural analysis can include particularities of modern power systems such as future
transmission changes, congestion, operational constraints (ramps), new entrants, new technologies, and new
demand grow patterns that cannot be taken into account by simply analyzing price historical values. The second
is the omission of renewable complementarities, which is a proven characteristic of dispersed renewable plants
that may have important risk-mitigation effects, although it has largely been ignored in portfolio analysis due to
insufficient data, modeling limitations, and computational complexity.

1. Introduction: portfolio optimization opportunities in the
private sector

New problems arising in the modern era such as global warming
produced by anthropogenic greenhouse gas emissions on one side, and
our dependence on electricity on the other, point toward the integra-
tion of new and clean technologies into the grid [1]. The concerns about
the environment have not only pushed technological development, but
also new regulations seeking to limit local and global emissions. New
technologies dependent on natural resources such as solar and wind
farms, new, more stringent local and global environmental regulations,
and the new market arrangements that are necessary to accommodate
such changes are added to a global context where uncertainty is the
common denominator [2,3]. The feasibility of big investments, such as
new large power plants and new, high-capacity transmission corridors,
hinges on the risk perceptions of market agents on a series of

uncertainties at the operational, commercial, planning, and regulatory
levels. The electricity system is now flooded with these uncertainties in
multiple time scales, increasing the difficulty of decision making and
pushing for the development of new risk management tools, which are
fundamental for developing energy projects with limited levels of risks
[4,5].

There are three key agents in the electricity sector who are
constantly in need of risk management tools: private investors,
managers commercializing energy (for large energy holdings, industrial
consumers, or load serving entities) and planners, which are often
specialized units of the regulator seeking social welfare over both the
long and short run. The three interact with each other under the same
platform, the energy markets. However, they face entirely different
problems with respect to risk management.

The risk management problem for planners, for instance, often
consists of long-term planning for the generation mix and transmission
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updates that maximize social welfare along with the policy design to
achieve that plan. There are multiple sources of uncertainty including
fossil fuel prices, renewable resource availability, technology develop-
ment, social opposition, and global and local emissions limits, among
many other factors that matter in these long time scales. The multiple
sources of uncertainty notwithstanding, the vast majority of the
literature over the last two decades has focused solely on fossil fuel
price uncertainty [6–18]. Thus, the literature is paying limited or no
attention to the other sources of uncertainties.

While market participants are key players in today's electricity
sector, their risk management problems are less developed compared
to the planner problem. However, after a decade of portfolio applica-
tion for private agents, a systematic literature review is well justified by
a number of important articles addressing diversification opportunities
and efficient risk taking by trading in multiple markets in different time
frames, investing in multiple technologies, and exploiting distant
resources with non-coincident production connected to the transmis-
sion grid (temporal and geographical complementarity), etc. In addi-
tion, there are a number of new concepts, tools, and methodologies
available in the literature that have not been fully integrated into
private portfolio analysis such as complementarity assessment for
multiple renewable sources, structural modeling of the power system
physics, and the integration of real option analysis and portfolio
optimization. This literature is reviewed in the following sections,
highlighting research trends, opportunities, and challenges. Most of the
key concepts found in the literature reviewed in this paper are
summarized in Fig. 1. The key concepts appearing around the figure
of the investor are option value, return and risk measures. Around the
figure of the portfolio manager we found trading mechanisms, dynamic
and multi-stage, static models, etc. We also found some key concepts
around the literature dealing with both market agents, referred to here
as cross-cutting issues, among these we are highlighting statistical price
modeling, structural modeling, and renewable modeling. All of these
concepts are briefly explained and referenced in this review.

Exiting articles are mostly focused on portfolio applications from
the planner perspective. This is the traditional planning problem,
where systems costs are minimized. Here, portfolio theory allows
including the risks over such social solution, without specific attention
to market details or market agents.

Given the current trends in power systems is every day more
relevant considering the private agents´ perspective. The private sector
has a growing role in power systems, especially in renewable energy

development. This paper is focused on the perspective of private agents
and its contributions can be summarized as follows:

• To the best of our knowledge this is the first review on portfolio
applications focused on private agents (both investors and man-
agers). This perspective is of growing interest due to the current
trend of implementation of electricity markets across the world and
increasing the deployment of renewable energy technologies.

• The paper presents an overview of different portfolio tools for the
decision making process of private agents in power systems with
high penetration of renewable energies.

• In addition to the review of the existing literature, this paper
discusses cross-cutting issues emerging from the growing interac-
tion of a new technological paradigm: markets and uncertainties
sources driven by renewable energy development and technology
evolution.

This paper is organized as follows: Section 2 provides an overview
of the applications, problems, and challenges of portfolio optimization
for private investors. Specifically, Section 2.1 presents the different
measures of return/cost and risk typically covered in the literature,
Section 2.2 highlights the lack of appropriate modeling of uncertainty
factors that are usually ignored even when they play an important role
for investors, and finally, Section 2.3 addresses the importance of
considering the value of waiting in the investment decision problem
and how to address it in a portfolio analysis. Section 3 discusses the
main applications of portfolio optimization from the manager's
perspective and presents two families of approaches: static and
dynamic models. Section 3.1 presents static models that assume that
all decisions must be made “here and now,” and Section 3.2 presents
dynamic models that are much more computationally demanding but
they are able to separate “here and now” decisions and “wait and see”
decisions, and finally, Section 3.3 presents alternative markets, such as
capacity markets, demand response markets and others, to diversify
services and mitigate risks. Section 4 presents cross-cutting issues,
voids and challenges from both perspectives (investors and managers),
Section 4.1 provides an overview of the most used modeling ap-
proaches to simulate price evolution, and Section 4.2 focuses on
renewable profile complementarities and how they have been ignored
by portfolio literature, even when there is literature available that
provides estimations and measurements of high complementarity
between geographically dispersed renewable resources. Finally,

Fig. 1. Most important concepts reviewed in this paper.
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Section 5 concludes with the main voids in the literature and challenges
to be addressed in the future research.

2. Portfolio optimization as tool for investors to allocate
capital in different generation projects

The problem that investors face is quite different from the problem
planners face. Investors aim to define an efficient technological-
locational mix by maximizing their return on the investment.
Planners, on the other hand, aim to minimize costs. Investors may
focus solely on some places and some technologies according to their
preferences and possibilities, while planners may focus on the whole
arrangement of places and technologies. Additionally, investors have
the flexibility of waiting to invest in a project. However, when the
investment is done, they have a high degree of inflexibility due to the
high sunk costs involved. Planners, on the other hand, have to plan to
meet the expected demand, but they also have the possibility of
changing the long-term plans. Finally, investors are usually witnesses
of policy changes, transmission expansions, new entrants, and envir-
onmental standards, while planners have a key decision-making role in
these areas. Thus, the investor's portfolio problem of involves a very
large amount of capital and high levels of uncertainty in the returns on
the investment, so diversification among technologies, resources, and
places is a common strategy for hedging risk. Portfolio optimization is a
tool used to deal with these risks through diversification.

The generation sector has historically faced high and volatile
electricity spot prices caused by the variability of demand and the
impact of physical constraints such as generation and transmission
limitations. Such volatility has increased in recent years due to the
integration of volatile renewable resources including wind and solar.
The fast progress and aggressive entry to the market of these
technologies (see the examples of penetrations of these technologies
in Chile in Fig. 2) has produced a decrease in the levels of spot prices as
well as an increase in their variance [19–21]. In addition, the
intermittency of renewables requires that high transmission capacities
be available at all times to move its energy in the system. However, the
time required to develop new transmission is much longer than the
time to develop renewable projects, so it is not infrequent to see
congestion on transmission lines near a set of renewable projects. This
also dramatically impacts spot prices, either by marginal losses or
simple by a decoupling of markets caused by congestion. For example,
this is exactly the situation produced in the north of Chile where solar
PV plants and coal-fired plants are subjected to long hours of zero
marginal costs due to transmission congestion [22]. Unlike planners,
who usually plan in the long term and therefore they assume that
transmission systems will adapt and therefore congestion can be
avoided in the portfolio analysis, investors do not have that possibility.
If the analysis is done in the long term, investors have to include the
transmission system and its future possible congestions in the financial
modeling of their portfolio of projects, since electricity prices and
energy production may change dramatically by a change in the

transmission structure. Transmission equalizes spot prices over the
space through the marginal loss and marginal congestion component of
prices and is a key locational signal for generation siting.

Investors' capital allocation in the electricity sector is a particular
case of the project portfolio selection problem (PPSP) that studies how
to distribute capital among different projects such that the expected
return is maximized for a given level of risk [23]. Despite that there are
different investment situations,1 all investors seek the same goal: to
maximize their return and limits their risks, so in all of these situations
a measure of profitability has to be estimated using the projects’
projected cash flows (see Fig. 3). This means that for every year of a
generation project's service life, the estimation of its income and its
costs is required. At the same time, income and costs essentially
depend on uncertain factors like electricity spot prices, project expected
generation, fuel prices, and capital costs, among others. Cash flow
calculations are then random variables that depend on the realization
of different sources of uncertainty as illustrated in Fig. 3. Return and
risk measures arising from these cash flows feed into portfolio
optimization models to guide investors in the design of efficient
return-risk portfolios.

According to the investors’ level of risk aversion and their currently
set of generation facilities, different portfolios of projects can be
selected by buying or developing new projects, or alternatively, the
investment could be delayed if the uncertainty is too great. Note that
the option of deferral is an important difference compared with the
problem of planners, who often have to plan to satisfy the expected
demand without the ability to defer generation over time. This
additional flexibility afforded to investors and the corresponding
modeling approaches are explored in Section 2.3.

2.1. Return and risk measures of investments in energy projects

A measure of profitability must be estimated in order to account for
the risk of different projects. The main tool to estimate a project's
return is cash flow analysis. Different estimations of profitability can be
obtained from a discount cash flow analysis such as the Internal Rate of
Return (IRR), the Net Present Value (NPV), or the Present Value Index,
among others [24]. In fact, investors will choose the projects with
highest NPV. This is the Marshallian approach [25,26] where utility is
maximized subject to budget constraints. As an example, Roques et al.
[27] used NPV in their portfolio model to design efficient investment
combinations among baseload technologies (coal, nuclear, and CCGT
plants). They studied how the impact of fuel, electricity, and CO2 price
uncertainties affect optimal portfolios. On the other hand, Muñoz et al.
[28] used the internal rate of return (IRR) as a measure of profitability
when analyzing renewable project portfolios for investment in the
Spanish market. Both publications used the standard deviation of their
return variables as a measure of risk. Table 1 presents the return
measures and uncertainty factors modeled in some related publications
by optimizing a portfolio from the investor perspective.

Although IRR and NPV are both derived from discounted cash flows,
they differ from one another. Indeed, when investments are ranked using
these two methods, the result is not necessarily the same [29,30]. Tang
and Tang [29] go deeply into the difference between these two measures.
They argue that IRR gives the private investor's point of view, while NPV
gives the society's point of view. The authors explain this view because
IRR varies with a change of financial arrangements (e.g., a change of
taxation rate or equity-loan ratio), while NPV does not, so they proposed
IRR as a financial indicator and NPV as an economic indicator.

Fig. 2. Accumulated installed capacity of solar PV and wind power plants in Chile.

1 For example: individual investors who have the opportunity to invest in any
generation technology and their decision variables are continuous (i.e., they can invest
part of their budget, from 0% to 100%, in one project or in a group of projects) or big
energy companies that normally focus on investing in projects in areas of their
technological expertise and their decision variables are more discrete—to invest or not
to invest in a certain project, etc.

R. Pérez Odeh et al. Renewable and Sustainable Energy Reviews 81 (2018) 192–204

194



Organizations may have additional requirements beyond profit-
ability for investing in projects. In the case of power generation
investment, for example, renewable generators have benefits that
conventional technologies do not, including fewer environmental
externalities, flexibility in production, modularity, and reversibility,
among others, which rarely are included in the investment decision-
making process [31,32]. However, there is research on investment
decision-making that considers measures beyond profitability that
depend on the strategy of the organization. Davoudpour et al. [33]
used an approach based on Analytic Hierarchy Process (AHP) to select
renewable projects for an R&D organization by using expert opinion to

find a hierarchy model of a renewable technology portfolio considering
market, competitiveness, technical, capability, and learning.

A project may add value in addition to its own return if it helps
decrease risks. A new project could be used to enter the market or
consolidate a company's position, or it could be develop or acquire to
learn about a specific technology or process [34]. Most literature on
optimization portfolio does not take these factors into account,
although they are already an important part of the literature on project
valuation. Therefore, this is a line of research that needs to be exploited
in order to better align the literature on portfolio optimization with
reality and thus make it useful to investors.

Fig. 3. Portfolio problem of the investor: defining an efficient investment plan to maximize return.

Table 1
Return measure and uncertainty factors modeled in different papers.

References Return measure Uncertainty factor

Roques et al. [27] NPV Fuel, electricity, and CO2 prices are represented by normally distributed random variables whose cross-correlation and standard
deviation are derived from historical time series.

Madlener and Wenk [29] NPV Time series of electricity spot price of both base and peak load are used to best fit a distribution (log-normal distribution)
Capacity factor: based on historical time series. Hydro capacity factor follows a log-normal.
Annual variability for solar PV and wind power is approximated with the data from hydro technologies.
Fuel costs: time series. Natural gas follows a Gumbel distribution, while a Gamma distribution is used for uranium.

Muñoz et al. [28] IRR Electricity price for the wind, mini-hydro, and solar thermo-electrical modeled with Pearson distribution adjusted from historical
values.
Electricity price for solar PV is regulated, and the value is pre-established.
Other values (investment ratio, service operation life, capacity factor, etc.) of the cash flow are assumed normal with standard
deviation depending on different scenarios proposed by the author.

Glensk and Madlener [30] NPV Historical series of electricity, fuel, and CO2 prices used to fit different distributions. Electricity prices were fitted using a beta
distribution.

Rohlfs and Madlener [31] NPV Future electricity price and future coal, gas, and CO2 prices modeled assuming Geometric Brownian Motions. Monte Carlo
method used to simulated paths of the price development.

Fleten et al. [25] NPV Future electricity price modeled assuming Geometric Brownian Motions.

Fig. 4. Risks affecting a firm's cash flow calculation (adapted from [36]).
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2.2. Others risk sources in addition to electricity prices: technical,
financial, systemic

Uncertainty is present in different dimensions and stages of a
project development, from technical to systemic risks, including
regulatory risks which are commonly accepted as one important risk
in the sector [35], causing cost variations on one side and revenues
variations on the other, as presented in Fig. 4.

Most technical, financial, and systemic risks are difficult to ex-
plicitly include in optimization models, so most works either explicitly
or implicitly assume that these factors remain constants and therefore
do not affect income or costs or use scenario approaches to quantify
them. On the other hand, uncertainty of prices is most treatable in
optimization models, both on the income (electricity price) and the cost
(fuel prices and CO2 prices) sides. There are numerous methodologies
for electricity spot price forecasting, as reviewed by Weron [37].
However, despite that, most portfolio papers only focus on statistical
methods based on past information. This backward-looking strategy
has limited value on a system that is evolving to a new carbon-free
technological paradigm.

2.3. A dynamic problem and the value of waiting/project deferral

One important feature of project development in a competitive
energy industry is that investors can “wait to invest,” for example, to
acquire more information about a regulatory reform. Considering the
option of waiting before committing resources is very important
because it recognizes that the firm has an opportunity cost and the
possibility of improving its outcome. This is especially important in the
renewable energy field, taking into account the possibility of waiting is
very important because renewable projects show a high technological
progress rate and require short construction times [1].

Static NPV cannot capture the value of waiting, so Real Option
theory is the tool to include this flexibility in the evaluation [38]. Real
Option Analysis (ROA) has been applied to the electricity sector for
decades to account for the irreversibility of investments. A good
comprehensive review of ROA is presented by Dixit and Pindyck
[26]. In the electricity generation sector, there are several examples of
applications of ROA. Indeed, Fernandes et al. [1] present a complete
review of applications of ROA applied in the electricity sector. They
found that ROA applications applied to the renewable sector
are still limited. Moreover, the technique is mostly applied to wind
and hydropower to the detriment of other newer renewable technolo-
gies like photovoltaic. However, recent publications are filling this gap.
For example, Zhang et al.[39] present a good review of studies on
renewable energy investment using real options method. The authors
also propose a real option model for evaluating renewable energy
investments by considering uncertain factor such as: CO2 prices, non-
renewable energy costs, investment costs and market prices of elec-
tricity. They use their model to evaluate the investment decision of a
solar PV power plant in China and its optimal timing.

There are countless works using ROA to analyze investments in
conventional technologies and also to evaluate the implementation of
policies. For example, Ming Yang et al. [40] use a real option approach
for analyzing the effects of government climate change policy in power
investments. The authors investigated the flexibility that companies
have to optimally time their investments given regulatory uncertainty.
Climate change policy uncertainty is represented by means of an
uncertain carbon price. Similarly, Sekar [41] uses a real options
valuation methodology to evaluate investments in three coal-fired
power generation technologies (pulverized coal (PC)), integrated coal
gasification combined cycle (IGCC), and IGCC with pre-investments
that make future retrofit for CO2 capture less expensive in an
environment of uncertain CO2 prices. Boomsma et al. [42] analyze
investment timing and capacity choices for renewable energy projects
under different support schemes, namely, feed-in tariffs and renewable

energy certificates trading. The authors found, through an applied case
of study in the Nordic electricity market that feed-in tariffs encourage
earning investment in wind power, while certificates trading creates
incentives for larger projects. Fleten et al. [25] use ROA to show that
investment in a decentralized wind power generator facing uncertainty
in electricity prices should be made at a price considerably above the
NPV break-even price (electricity price that makes NPV negative)
because of price uncertainty.

While optimization methodologies using ROA are usually performed
from a power producer perspective to evaluate a single power plant, a
large investor would typically prefer to invest in a portfolio of technologies
[43]. There are only a few publications that combine ROA and portfolio
optimization analysis to find efficient combinations of investments along
with its timing. The first research to explicitly combine these methodol-
ogies from the perspective of an investor in the electricity sector is, to our
knowledge, the research by Fortin et al. [43]. They use ROA to find the
optimal timing of investing in carbon capture and storage modules for
coal- and biomass-fired power plants and optimal installation time for
wind power plants. Using different electricity price evolution paths, the
authors derive return distribution for the investment of these technolo-
gies. These return distributions (which already include the value of
flexibility given by project deferral) are then employed as the input of a
CVaR portfolio optimization as presented in Fig. 5.

Other papers expand the work of Fortin et al. [43] by taking into
account diversification over time by considering the option of having a
different portfolio at a future point. Indeed, Szolgayová et al. [44] find
that the possibility of adapting the portfolio actually have a relevant
effect on today's portfolio investment decisions. On the other hand, the
paper by Fuss et al. [45] further contributes by applying the methodol-
ogy to different socio-economic scenarios and different targets in
greenhouse gasses emissions. Their extension takes into account that
investors are completely uncertain about future carbon prices, and
therefore it is impossible to assign probabilities to different targets.
Thus, investors would seek robust portfolios that perform well even in
the worst scenarios. They find that uncertainty associated with CO2

prices has a profound effect on the optimal composition of technologies
portfolios. Moreover, the authors find that uncertainty about stabiliza-
tion is more important in the energy mix composition than the socio-
economic scenario, especially for risk-averse investors.

Fig. 5. General methodology used in [43]: use of real option analysis and portfolio
optimization.
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Exploring the combination of these tools—real option analysis and
portfolio optimization—in the investment decision-making process is a
great research opportunity. All the publications mentioned above
ignore sources of uncertainty such as fuel costs and their possible
complementarities, e.g. biomass cost declining as carbon price in-
creases [45] or renewable resource uncertainty (wind speed, solar
radiation, hydrologies, etc.), among other sources of uncertainty that
investors face in the real investment decision process.

3. Portfolio optimization as a management tool for electricity
sellers and buyers

Energy managers, both managers of electricity production firms
and of big energy consumers, seek to limit their price risks by using
instruments to hedge against spot price fluctuations. As investors,
managers seek to maximize the firm's expected return while limiting its
risks. However, instead of allocating capital among different invest-
ment opportunities, managers allocate electricity among different
instruments (day-ahead markets, real-time markets, bilateral con-
tracts, forward, etc.) as is shown in Fig. 6. Financial instruments have
different delivery periods and maturity dates. While the spot market is
nearly instantaneous, bilateral contracts can last for years. These facts
introduce difficulties to the optimization because decisions for some
trading instruments can be deferred in time according to new
information on prices (e.g. how much energy to buy/sell on the spot
market), while other decisions must be made in a specific period (e.g.
how much energy buy/sell through a long-term forward contract).

A big energy consumer can take advantage of portfolio optimization
not only by choosing among the instruments, but also by choosing
among generation technologies. For a big energy consumer, there is a
difference between signing a bilateral contract with a conventional
generation plant or signing it with a solar PV plant, a wind power plant,
or a combination of any of these alternatives. A consumer's preference
for one supplier over another depends upon factors such as the demand
profile, carbon footprint, and willingness to pay, etc. For example, the
subway in Santiago de Chile recently signed two bilateral contracts, one
with a solar PV plant and one with a wind power plant, and the two
suppliers will cover approximately 60% of its energy needs. Because the
subway system has greater energy needs during the day, the solar PV
plant option is a good opportunity, although its daily load curve has
two peaks, one in the morning and one in the late evening, just when
the electricity produced by a solar PV plant is low, so the subway's
energy managers chose a complementary wind power plant to avoid
having to buy energy on the spot market. Portfolio optimization is a
formal and well-tested tool for tackling this kind of problem, both for
determining the type of instruments to use and for dealing with
different technologies and locations.

Due to non-storability, inelastic demand, and a steep supply curve,
electricity spot prices suffer from high variability. That is why most
agents usually use contracts and other financial/physical instruments

to hedge against these fluctuations. These instruments play a very
important role in some electricity markets for future price discovery
and price certainty. In fact, there are some electricity markets that rely
entirely on bilateral contracts, such as the Chilean electricity markets.
The most basic instruments that offer future price discovery and price
certainty to electricity sellers and purchasers are forwards, futures, and
swaps. All of these instruments may have different delivery periods and
maturity dates. In fact, the maturity periods of forwards contracts
range from hours to years [46].

The task of energy managers is to choose from among these
instruments to maximize return and at the same time limit its risks.
A correct strategy allows firms to avoid losses due to price fluctuations,
reduce the volatility of earning, and meet regulatory requirements [47].
Portfolio optimization has been used in the literature as a tool to
efficiently choose from among these instruments as well as from among
real-time markets (real-time and day-ahead markets). It should be
noted that managers have two types of decisions, “here and now” or
“wait and see.” While “here and now” decisions are those that the
manager has to make in the present, such as about how much energy to
sell/buy using a long-term contract, “wait and see” decisions can be
delayed to expect future developments, such as how much energy
should be bought or sold using the real-time market, which is a
decision that can be postponed until the need becomes urgent.

3.1. Static approaches: traditional portfolio optimization applied to
the manager problem

A traditional static portfolio optimization approach is formulated by
Liu and Wu [48], who consider the problem of energy allocation for a
power producer allowing three types of trading approaches: risk-free
(local) contracts, riskier contracts (non-local), and the spot market. In
this formulation, the planning period may be one day, one week, one
year, or several years, etc. Non-local bilateral contracts are subject to
risk because generation companies may face congestion transmission
charges that depend on the difference between nodal prices. The
uncertainty is then only present in electricity locational spot prices
because fuel prices are assumed to be fixed in their work. Liu and Wu
[48] present a static approach in which spot prices are characterized
only by mean, variance, and spatial correlations, and they assume that
nodal prices follow a multivariate normal distribution.

Treating the spot market as an individual asset has the disadvan-
tage of some loss of information, because hourly spot prices reflect
seasonal behavior, which is usually given by the behavior of the
demand. When spot prices are treated as an asset and represented by
a price distribution, the known seasonality is wrongly translated as an
additional variability. By contrast, treating each period as a different
asset gives more degrees of freedom to include this seasonality as new
information (see Fig. 7). For example, Gokgoz and Atmaca [49] use
mean-variance portfolio optimization by taking spot market hourly
prices as separate assets in addition to bilateral contracts in the Turkish

Fig. 6. Manager's Portfolio problem: defining efficient trading choices to maximize profit.
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electricity market. Turkey has no local, zonal, or nodal pricing system,
so spot pricing is used as a signal for the entire system, and therefore
there are no congestion charges. The assumption of 24 selling alter-
natives is new in this kind of study and allows sellers to choose
according to their risk-return preferences to sell different hours, either
on the spot market or via bilateral contracts.

Unlike dynamic models, which require large computational capa-
cities because uncertainties (prices, costs, resources, etc.,) are modeled
in time, static models are simpler and therefore other sources, in
addition to electricity prices, can be considered. For example, fossil fuel
prices (oil, gas, and coal) present high variability, are highly correlated
[50], and introduce uncertainty into generation costs. Mathuria et al.
[51] consider spot market and bilateral contracts as trading options for
a generation company in Sweden that faces risks from electricity prices,
fuel prices, and from emission prices. The authors find a strong
correlation between electricity spot prices and emission prices (see
Fig. 8). This enables risks to be hedged by changing the allocation on
the spot market, since a price change in the emission market (cost side)
is compensated by a corresponding price change on the spot market
(income side).

Fig. 8 shows estimated correlations by Mathuria et al. [51] between
electricity prices, coal prices, gas prices, and the European Union
Allowance (EUA), which are climate credits that represent the right to
emit one ton of CO2 into the atmosphere.

On the electricity purchaser side, Huisman et al. [52] propose the
use of a static mean-variance framework to optimally allocate positions
in the day-ahead energy market as well as peak and off-peak forward
contracts. Peak-forward contracts involve the delivery of power capa-
city during certain hours of high demand; off-peak contracts involve
the delivery of a base capacity at all hours. Uncertainty is introduced
through prices of the day-ahead energy market and consumption

volumes. Day-ahead prices and hourly demand are assumed to be
entirely characterized by their historical mean and variance. The
problem is then to minimize the total electricity cost subject to a
maximum level of risk, where the total cost is given by the sum of the
cost of off-peak forward contracts, peak forward contracts and day-
ahead energy market purchases. The authors assume a price-taker
purchaser, i.e., the trading of electricity does not affect prices, and they
show that the optimal allocation to peak contracts relative to off-peak
contracts is the same for all purchasers. The differences in the exact
allocation, including positions in the day-ahead market, are deter-
mined by their risk attitude.

Several studies have argued that electricity prices and fossil fuel
prices show a positive level of skewness and leptokurtosis [53–55], so it
does not seem enough to characterize them solely by mean and
variance. Skewness is the extent to which a statistical distribution is
not symmetrical, and leptokurtosis occurs when the distribution is
more peaked than normal. See, for example, the asymmetry and fat
tails of the histogram of monthly average spot prices from January
2008 to January 2016 for the Alto Jahuel 220 kV, a key transmission
node in central Chile, presented in Fig. 9.

Pindoriya et al. [56] include skewness in their portfolio optimiza-
tion analysis. They propose a mean-variance-skewness (MVS) model to
set the energy allocation of generation companies among the spot
energy market and bilateral contracts with clients located in different
zones. A positive skewness means that the density function has a right-
handed tail and therefore maximizing skewness in a context in which
the distribution reflects profitability, implies the minimization of
possibilities of low profits. Accordingly, an MVS model maximizes
the return and the skewness (first and third moments of the distribu-
tion) and minimizes the variance (second moment), transforming the
problem into a multi-objective optimization problem.

Suksonghong et al. [57] proposed a similar problem, but also added
maximizing diversification as another objective to the optimization.
This was implemented by minimizing the difference between the
highest and lowest allocations. According to the authors, including
the fourth objective of diversification effectively caused a more uniform
allocation among all the instruments. The inclusion of skewness and
other conflicting objectives makes the optimization problem very
difficult to solve, so different optimization tools are used for these
types of problems. A multi-objective optimization problem can be
tackled by different methods [58], such as scalarization techniques, e-
constraints methods, goal programming, among others [59].

3.2. Dynamic and multi-stage approaches

New information might require the consideration of the alloca-
tion problem at multiple stages, requiring a transition from static to

Fig. 7. Example of normal distributions capturing daily and hourly spot prices. Spot
prices of long periods lose seasonal information that is translated into a greater variance.

Fig. 8. Correlations of electricity spot prices with coal, EUA, and gas prices and
correlations of coal and gas prices with EUA prices.
Source: Mathuria et al. [51].

Fig. 9. Histogram of the spot prices in the Alto Jahuel 220 kV node in Chile from 2008
to 2015.
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dynamic analysis. Only a few dynamic portfolio optimization
approaches have been developed. Indeed, the application of multi-
stage optimization models is relatively new in the literature on
portfolio optimization in electricity markets for electricity sellers
and purchasers. Multistage portfolios enable the modeling to opti-
mize the rebalancing of the portfolio at multiple points in the future
based on the information available at that time. The most common
problem formulation in multi-stage stochastic optimization formu-
lations is the equivalent deterministic form, which can be very large
and require excessive computational capacities [60]. Thus, the most
common multistage optimization application focuses on just two
stages.

In stochastic problems with two stages, the first stage is when the
decision maker takes action before random variables are revealed
(“here-and now-decisions”), and the second stage decisions are
made after the random effect occurs (“wait-and-see decisions”).
García-González et al. [61] present an example of a two-stage
stochastic optimization problem in an electricity market in which a
generation company that owns a wind farm and pumped-storage
facility optimizes its bidding policy in the first stage and the decision
on the operation of the pumped-storage for each possible realization
of the random variables in the second stage. In that case, random
variables are wind production and market prices as presented in
Fig. 10.

Lorca and Prina [62] tackle the problem for a power producer
holding thermal generation units and considering locational electricity
prices. They use a stochastic optimization model to optimize the
trading of electricity from a power producer in two locations through
forwards contracts, a contract for differences, and the spot market.
Their model obtains a set of contractual decisions at the beginning of
the time horizon ("here-and-now decisions”) and a set of own-genera-
tion and spot market trading decisions in future time ("wait-and-see
decisions”). They use a time series model to capture temporal and
spatial correlations of locational electricity prices. The authors use
CVaR as risk measurement, including it into the objective function
multiplied by a risk aversion parameter. The main drawback to this
formulation is the dimensionality problem. Modeling more than two
buses make the problem too large to solve in reasonable time.
Accordingly, the methodology is very useful to theoretically assess

how changes in price parameters cause changes in contractual and
trading decisions, but it cannot be used in real-case scenarios in which
the producer faces multiple locational electricity prices. Indeed, Lorca
and Prina [62] found that changing the correlation parameter ρij for
locational electricity prices significantly affected the relationship be-
tween expected profit and risk. For fixed values of expected profit, as
the correlation parameter between locational electricity prices de-
crease, the risk is also decreased.

On the electricity purchaser side, Rocha and Kuhn [63] present a
multistage mean-variance model for the management of electricity
derivatives from the point of view of an electricity purchaser who is a
price-taker and the need to satisfy its clients’ demand. Electricity
purchasers have three alternatives for acquiring electricity in time—
spot market, forwards contracts, and call options—and stochasticity
appears in the form of uncertain electricity demand, spot
prices, and derivative prices, which are revealed sequentially over
time. They present a stochastic optimization problem with aggregation
of decision stages and Linear Decision Rules (LDR) approximation,
avoiding the use of a large decision trees and limiting the computa-
tional burden. Spot prices are modeled by an Ornstein-Uhlenbeck
process with seasonality, which is a mean-reversion stochastic
process traditionally used to simulate electricity prices [64,65].
Electricity demand is also modeled as a stochastic mean-reversion
process with seasonality. Rocha and Kuhn [63] found that incorporat-
ing adaptivity in portfolio optimization models is beneficial, especially
in the presence of high spot-price volatility. The authors show that
adapting to different market conditions provides a flexibility that
makes it possible to obtain to obtain a better mean-risk profile,
particularly when the decision maker is risk averse.

3.3. Diversification beyond energy markets: ancillary services,
capacity market, and demand response

In addition to energy markets, in some countries power producers
have other markets that could allow them to diversify risks. For
example, capacity markets, ancillary services markets, and regulation
services markets are options in which some generators can participate
to mitigate risks of electricity markets. Similarly, load-serving entities
have other resources beyond bilateral contracts to manage risks, such
as demand response programs. Few publications have included these
markets as part of portfolio optimization models, although one
exception is a paper by Yu [66], which presents a model that can be
used for multiple commodity electricity products that may include
electricity, spinning reserve, or regulation, etc. The objective function is
the minimization of risk, defined as the portfolio cost variance subject
to the exceedance of the desired net profit. The author presents a case
study involving two power pools, NYPP and PJM, each with two
available markets, day-ahead energy and spinning reserve. The model
includes constraints such as transaction costs and wheeling contract-
ing, leading to a mixed integer formulation.

On the other side, an electricity buyer such as a retailer may be able
to hedge risk using demand response programs. High demand usually
implies high electricity prices (because of electricity's steep supply
function), and therefore there is a positive correlation between
electricity spot price and customer demand [67]. Demand response
(DR) programs help mitigate this correlation, lending an additional
extent of flexibility to decrease exposure to risk. Deng and Xu [67]
show that including DR programs, specifically in the form of inter-
ruptible contracts, significantly improve the profit-risk profile of
portfolios for an electricity buyer considering the following instru-
ments: spot market buyer, forwards contracts and DR programs. The
authors used both variance and VaR as risk measures and found that
the role played by DR program is dependent upon the choice of risk
measure. Given a fixed expected profit, a 95%-VAR minimization
problem holds all available interruptible programs, suggesting that
DR programs may be especially useful in the worst-case scenarios.

Fig. 10. Uncertainty representation in a two-stage model.
Adapted from [61].
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4. Cross-cutting issues in portfolio optimization for investors
and managers: price process modeling and renewable
complementarity

There are cross-cutting issues to be found in the literature on
portfolio optimization from the investor and the manager perspectives.
First, most literature ignores the fundamentals of power system
structures in price modeling, while in turn there is an excessive support
on technical approaches that attempt to model stochastic behavior by
using statistical analysis and historical data. Second, renewable com-
plementarity is ignored, although there is strong evidence that the
geographic diversification of solar and wind power plants in different
locations may present complementarity generation profiles [68–72],
and this complementarity has not yet been included in portfolio
models.

4.1. Modeling price process in portfolio optimization models

Modeling electricity prices is critical for evaluating risks for both
investors and managers. Electricity prices directly affect incomes, so it
is crucial to model them in properly to account for the corresponding
risk. There are mainly two families of approaches to model electricity
price processes [46,73], structural or fundamental approaches that rely
on simulation of the operation of the electricity system, and technical
approaches which rely on historical data and statistical analysis to
model the future behavior of prices. Fundamental approaches are more
realistic since they allow for simulating new scenarios that cannot be
considered with technical approaches, although they do require
extensive computational effort. Most publications on portfolio optimi-
zation rely on technical approaches. Moreover, most publications on
portfolio analysis simply use price processes such as those presented in
Table 2, without using more complex price forecasting models like
those reviewed by Weron [37].

Among the most common techniques used by publications on
portfolio optimization to model long-run electricity and fuel prices
are the Geometric Brownian Motion (GBM) process [25,74] and
distribution fitting. GBM processes are governed by a stochastic
differential equation that describes a process in which the relative
change of price is a combination of deterministic proportional
growth plus a normally distributed random change.2 The
choice for GMB is often driven by the simplicity of its closed-form
solution. However, real price statistics and patterns often don’t match
such process, presenting cycles driven by demand patterns and price
spikes driven by supply and demand shocks. Examples using GBM to
generate different simulations of annual electricity prices are presented
in Fig. 11.3

Eydeland and Wolyniec [53] describe the main pros and cons of
using GBM model the spot prices of energy commodities. On one side,
GBM is an industry standard, its properties are well known and can be
easy implemented in efficient computer implementations, and it is very
useful for modeling cross-commodity correlations. But on the other
side, the downside of using GBM as described in reference [53]
includes the difficulty of calibrating because it offers few degrees of
freedom (just two parameters) to match historical data. Furthermore, if
it is used for pricing power products, the problem of non-storability of
power makes it impossible to use the standard no-arbitrage argument
to validate the common pricing formulas. Finally, the GBM price
process does not allow for modeling the fat tails of price distributions
or price spikes with the magnitude of real energy markets. In summary,
GBM processes may be appropriate for some applications based on the
criteria of normality and independence, but not for other applications,
depending on the characteristics of the process and time frame, etc. For
example, a process in which the drift is dependent upon time is not
appropriate for GBM because GBM has a constant drift and variance
over time. More examples of using GBM in different applications can be
found in reference [75].

Other publications on portfolio optimization often assume some
well-known probability distributions and estimate their parameters
from time-series data and performing Monte Carlo simulation later to
generate price trajectories. For example, some articles, such as Roques
et al. [27], assume a normal distribution for fuel, electricity, and CO2
prices, and the parameters of these distributions (mean and variance)
are estimated from historical time series. Similarly, Muñoz et al. [28]
fitted a Pearson distribution to historical electricity pool prices in
the Spanish market and assumed three scenarios with different degrees
of growth per year. Madlener and Wenk [76] fitted a log-normal
distribution to time-series price data derived from the European
Electricity Exchange (EEX), and Glensk and Madlener [77] fitted a
beta distribution to their electricity price data. After deciding how
uncertainty factors are to be modeled and estimating parameters, these

Table 2
Frequently used Price processes in portfolio optimization literature.

Price Processes Description References

Distribution fitting Fit a probability distribution to a series of historical data of prices. Examples of the distributions used are Normal
distribution, Lognormal, Beta, and Pearson, among others.

[27–30]

Time series models Time series are widely used for multiple applications, and price modeling is no exception. Markets with locational prices
require a multivariate time series model. Examples of time series models are ARMA models, ARIMA model, GARCH
models, etc.

[64,66,76]

Continuous-time stochastic
process

Geometric Brownian Motion (GBM) and Ornstein-Uhlenbeck processes are examples of continuous-time stochastic
processes. These models are widely used in mathematical finance to model price evolution. While GBM has a constant
drift over time, the Ornstein-Uhlenbeck process tends to drift toward a long-term mean (mean-reverting).

[31,65,77,78]

Both processes satisfy a stochastic differential equation.

= 18

= 6%

= 30%

= ∙ ex −
2

∙ + ∙

Examples of simulated retail electricity path prices using GBM 

Fig. 11. Examples of simulated paths of retail electricity prices using GBM over 20
years.

2 Geometric Brownian Motion (GBM) process stochastic differential equation:
μ dt σ dW= ∙ + ∙dP t

P t t
( )
( )

, where Wt is a Wiener process and its solution (for any value of t) is
a log-normally distributed random variable.

3 The price function has an initial value of P0=18 US$/MWh, an annual trend of μ=
6%, and a standard deviation of σ=30%.
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papers run simulations to compute cash flows and their main measures
(NPV, IRR, etc.) and their distributions. These distributions and their
correlations are then used in portfolio models.

The main issue with technical approaches is that past price values
only do a good job representing the behavior of future prices while the
system (transmission system, demand, and supply) remains static. But,
if the system changes, prices can also change dramatically and there-
fore the risk analysis is no longer useful. In contrast, structural analyses
allow for the production of price series that are consistent with the
system and its possible changes in the future. This is a topic of active
research as the greater penetration of renewable generation and
operational and transmission constraints is becoming more important
to defining prices.

Additionally, on the demand side, most consumers today are
protected against price fluctuations by regulations and therefore do
not directly see major risks, although they pay for them in the form of
risk premiums embedded into their tariffs. This is rapidly changing,
however, as the smart grid and distributed generation is becoming
massive and makes consumers more proactive. These changes on the
distribution network will have an impact on the wholesale market too
affecting prices, expansion times, power flows, etc. The system is
changing on all fronts, which reinforces the need for a structural
analysis that considers different technological scenarios that cannot be
captured by statistical analyses.

The failure to considering transmission capacity constraints could
lead to an incorrect measure of income for some generation projects.
Transmission constraints isolate different areas of electricity markets
and sometimes create the possibility of exercising market power [78],
such that local transmission constraints may lead to price risks
(significant reduction of local marginal prices) as well as to volumetric
risks (less electricity production caused by a capacity constraint). As an
example, the mismatch in China between the wind installed capacity
and wind generation is mainly explained by the inadequacy of the
power transmission grid [79]. Transmission constraints affecting
specific generation projects should be included in the modeling. The
capacity of a transmission line determines the degree to which
generators in different locations can compete with each other [80],
and therefore ignoring transmission constraints may lead to significant
errors in estimating the revenue for a generator firm.

Theoretically, spot prices vary spatially according to their contribu-
tion to marginal losses and the marginal congestion component. These
prices show the instant value of the energy for the system, and it can
differ greatly from one zone to another, and therefore ignoring the
location of injections despite these components and assigning the same
value to an MWh injected anywhere in the system is sometimes quite
wrong. This inefficiency is ignored in a market of a global spot prices
(mainly in Europe), but it is an issue for investors in the market of
nodal prices (mainly in America). However, papers on portfolio
optimization from the investor's perspective tend to ignore this effect.

4.2. Renewable profiles and complementarities

Renewable profiles, especially wind power profiles, depend on local
meteorological features and atmospheric and geographic phenomena
that are very volatile and difficult to predict. Therefore, two wind power
plants with the same model and number of units will produce very
different power profiles when placed in locations with different
meteorological and relief conditions. Using two complementary profiles
helps reduce the need for storage and produce a smoother combined
output profile, which may be a much more appealing "product" for a
buyer.

Spatial diversification of solar PV production can be achieved by
distributing PV plants across different locations, taking advantage of
differences on sunrise/sunset times (and therefore solar PV peak
production times), cloud regimes, ground albedos, among other
geographical features which allow smoothing out changes in PV

production. The extent of the smoothing effect depends mainly on
the number of PV plants, the composition of the ensemble, longitudinal
differences between sites, area of dispersion and irradiation variability
[81]. The impressive curve of declining costs of PV technology, its fast
deployment in recent years across the globe and its expected growing
participation in the energy markets have pushed for new research to
address problems associated with short-term variability of PV produc-
tion. This issue was initially seen as a potential limiting factor for PV
integration into the grid [82]. Mills and Wiser [82] were one of the first
to account for geographic diversity to reduce volatility of PV produc-
tion. In fact, they concluded that the need for additional reserves to
manage variability of PV plants is considerably reduced by geographic
diversity in a wide area. More recently, David et al. [83] have shown
that solar PV geographical diversification can also be achieved in small
territories with different microclimates. Two different regimes of
cloudiness appears to be enough to greatly improve the diversification
effect in their study. Finally, several publications have pointed out that
the smoothing effect could lead to lower forecasting errors, since plant
spacing decreases the correlation value of their forecasting errors
[84,85].

For investors, the most relevant profile complementarity is in the
annual and monthly time scales, because they help to reduce financial
risks to the portfolio. Investing in two different renewable power plants
that have complementary generation profiles is less risky than investing
all the capital in a single project that is twice the size. For managers, the
complementarity of renewable profiles help to increase profits (energy
sellers), reduce costs (energy buyers) and mitigate risks overall.
Complementarity allows energy sellers to offer output that is much
less volatile, and that can result in a more valuable product for energy
buyers who may be willing to pay more. On the other side, those who
buy energy from different complementary renewable generators may
reduce their exposure to the real spot market and their footprint at the
same time. Moreover, technological and spatial diversification of
renewable energies can reduce vulnerability of the entire power system
[86].

Although there is active research underway on the quantification of
the geographic complementarity of solar and wind power plants [68–
72], there are currently no publications that integrate and analyze their
effect on the technological portfolio. How a smart choice of solar and/
or wind power plants across a determined territory improve the return/
cost - risk profile? This represents a significant opportunity for further
research because everything suggest that renewable energy will con-
tinue its aggressive entrance into the market in the future.

5. Conclusions

The electric power industry is very dynamic and in constant search
of efficiency, especially in a world full of uncertainties. Today more
than ever, the electric power industry faces a high degree of uncertainty
in every dimension, from operations to investments. Part of this
uncertainty is caused by renewable energy technologies that have been
experiencing a rapid progress and wide deployment, producing a sharp
drop in its investment and deployment costs and reducing the energy
price at which they can supply electricity competitively. Indeed, more
fundamental changes in the industry are expected over the next 10
years. A boost in electricity demand due to electric vehicles, as well as
an increase in distributed generation, massive storage, and the
deployment of smart grids are some of the sector's upcoming chal-
lenges. Large investments will be required to address these new
challenges, and that is why agents need protection and are constantly
looking for risk management tools. To contribute to this task, this
paper presents a selection of applications, issues, and opportunities for
further research on portfolio optimization from the perspectives of
both investors and portfolio managers.

Better use of infrastructure, avoiding unnecessary investment, and
optimal resource management are essential skills for today's energy
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companies. For investors, developing a generation project involves an
enormous amount of capital along with very large risk, so investors
usually adopt different diversification strategies to mitigate those risks,
such as investing in power plants of different sizes and places, with
different technologies and more importantly, with different types of
fuel or resources. These strategies reveal that the return on a portfolio
of projects is not simply the sum of the returns from all of the
individual projects. The “correct” return is the result of the return on
individual projects plus the “interaction” among them. This “interac-
tion” is key in portfolio optimization; interaction among projects allows
for diversification and the cancellation of risks. Most papers determine
the proxy of projects’ profit and their interaction to be the Net
Present Value or Internal Rate of Return of the projects and
their respective correlations. This correlation between cash flows
quantifies interaction gains or losses. In addition to diversification
strategies, investors can wait and defer the investment if there is
excessive uncertainty (due to a regulatory change for example).
However, the literature places little emphasis on the value of waiting
or deferring a project or a set of projects within the context of a
portfolio. Decision makers who are unwilling to take risks in the face of
insufficient information might be well advised to consider the option of
waiting.

On the other side, portfolio managers of large electricity sellers/
buyers must deal with electricity spot prices that are very volatile due to
the special properties of electricity, such as non-storability and a non-
linear, steeply rising supply curve. Unrestrained exposure to price
risks may produce overwhelming consequences for agents. Take for
example the price spikes presented in [46] in which high spot prices led
different agents to bankruptcy, with devastating consequences for the
economy. The California electricity crisis of 2000–2001 is one example
in which prices persistently reached US$500/MWh, and retailers had
not hedged against price risk through other financial instruments,
leading to a major crisis in the sector. In the case of volumetric risk,
retailers who are forced to serve their entire load must also be
concerned with uncertainty on the load, since there are no simple
financial instruments to deal with changes in the demanded volume,
especially because mass electricity storage is still not an economically
viable option. [46]. Exploiting the high correlation between demand
and prices using trading mechanisms such as bilateral contracts,
forwards, futures, call/put options, among others instruments are
alternatives to mitigate part of the volumetric risks. In the portfolio
literature, most applications rely on static models. Conversely,
dynamic and multi-stage applications are more limited, mainly
because of their need for great computational power, which restricts
the design of real-world applications. Active research is required,
therefore, in the development of new methodologies to deal with the
current computational limits. Rocha et al. [63] have made notable
advances in that direction by using linear decision rules to approximate
the solution of a stochastic optimization.

One cross-cutting issue in the literature on portfolio optimization
that affects both investors and portfolio managers is the frequent use of
statistical rather than structural models. In fact, most of the available
literature trusts statistical approaches to model future price behavior,
although history will not repeat itself and the past is now a poor
predictor of future behavior. Given the radical changes and uncertain-
ties we are facing, structural-based methods are required to model
future behavior of prices. The next challenges in portfolio analysis are
in modeling a much more realistic power system, where the future
equilibrium prices are not simply estimated from historical values, but
justified by structural models of supply and demand. The rapid
progress of generation technologies, distributed generation, and com-
munications that can radically alter the electricity system as we know it
today limit the usefulness of currently used models based on statistical
analyses. As the penetration of intermittent renewable energies be-

comes higher, it is no longer acceptable to refrain from modeling
operational constraints and using stylized temporal representations.
Urgent attention is required in the development of methodologies and
algorithms that can handle higher levels of temporal, spatial, and
technical details. This is not only important for the planner, but also for
investors and managers who are in constant need of future price
projections to make investment and commercial decisions respectively.
Electricity spot prices depend heavily upon the physical infrastructure
of the power system, and a new transmission line or generator could
completely change all of the price statistics, since its impacts power
plant dispatch, marginal losses, and congestion, the key components of
locational spot prices.

In addition to intermittency, renewable resources such as solar,
wind and perhaps future tidal power plants bring other special
features, and this is complementarity in different time scales. Unlike
conventional generators, which are fully controllable, these renewable
generators depend on the availability of natural resources that are
beyond our control. However, numerous publications have demon-
strated that geographical diversification can significantly decrease
variability in different time frames, especially of wind power produc-
tion [68,69,87–90]. Spatial diversification of solar PV plants is very
useful to smooth out the production in small time frames, ranging from
seconds and minutes to hours. A smoother PV production decreases
the cost of system integration allowing better forecasting and requiring
less primary/secondary reserves. Depending on the market rules, this
cost reduction could affect in more or less extent the income/cost of the
project participant (project investors and portfolio managers).
Nevertheless, renewable complementarity is currently entirely absent
in planning portfolio literature. The potential gains in efficiency
(return-risk) from geographical diversification are currently neglected,
which minimizes the relevance of transmission capacity constraints
and cross-border interconnections. Well distributed energy resources
may offer investors and managers a good alternative for diversifying
risks, but some of their diversification benefits are actually being
overlooked.

Finally, the primary gap in the portfolio literature is the lack of the
consideration for the general public or small electricity users.
Consumers are slowly taking a more active role in the electricity
market through residential generation, smart metering infrastructure,
demand response, smart grid deployments, and other areas associated
with the raising figure of the “prosumer.” Thus, an excellent opportu-
nity for research lies in analyzing the impact of the new small and
distributed energy systems with the active participation of the demand
side of the portfolio, changing its composition, or becoming a compo-
nent of the optimal portfolio as an energy resource.

Power systems are changing in several areas, including technolo-
gies, regulations, relationships with consumers, resources, and others
described in this paper. Private agents trading over the system can no
longer manage their decision making through the use of traditional
methodologies because they have limited capabilities to simultaneously
represent different sources of risks. Using tools to explicitly include
different risk measures and their interactions, such as portfolio
optimization, in making investment and management decisions is
crucial to surviving in a fast-changing world.
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