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Optimal scheduling of generating resources plays a significant role as a decision-making tool for power
system operators in the liberalized and real-time electricity spot markets. The real-time scheduling of
generating units will become a very complex task with respect to the instantaneous fluctuation of the
load demand due to several demand response scenarios in the smart grid context. In this study, a hybrid
mathematical method for the online scheduling of units based on the least square support vector
machine (LSSVM) and the third version of cultural algorithm (CA3) has been presented, where the CA3
has been specifically employed to tune the adjusting parameters of LSSVM. For the training purpose of
the proposed method, the optimal scheduling of the daily load curve for four different test systems
and various physical and environmental constraints of generating units have been prepared by using a
modified mixed integer quadratic programming (MIQP) to deal with non-convex behaviors of the test
systems. A mean squared error (MSE) objective function has been used to reduce the prediction errors
during the training process to enhance the precision and reliability of the results. A radial basis function
(RBF) and the proposed LSSVM-CA3 were used to check the convergence process. A high accuracy of gen-
erator schedule predictions are demonstrated by comparing the results of the proposed method with
those of artificial neural networks. From the results, it can be inferred that the method is highly compat-
ible for real-time dispatching of generation resources in deregulated electricity markets.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Due to deregulation of power systems, it is vital to operate the
power grid with the highest possible degree of reliability and econ-
omy to enhance the competition of power plants in liberalized
electricity markets. This problem can be solved by the economic
load dispatch (ELD) problem through a set of sophisticated compu-
tational skills which tackle different power grid constraints [1]. The
aim of the ELD problem is to define the optimal scheduling of gen-
erating units which minimizes the total generation cost while all
the operational constraints and the load demand are satisfied. This
task can be very challenging when considering the environmental
aspects of conventional generators, such as coal, oil and natural gas
units. The reduction of fossil-fuel based generation resources and
the improvement of their energy efficiency is a foremost priority
of the energy roadmaps in many countries worldwide [2]. In
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Nomenclature

Indexes
ANN artificial neural network
CA3 third version of the cultural algorithm
CEED combined environmental economic dispatch
CF cost function
KKT Karush-Kuhn-Tucker
LSSVM least square support vector machine
MSE mean squared error
MAE mean absolute error
NRMSE normalized root mean squared error
RBF radial basis function
RMSE root mean squared error
PF penalization factor
PPF price penalty factor
POZ prohibited operating zone
SVM support vector machine

Variables
ai; bi; ci fuel cost coefficients of unit i
ai;bi; ci;gi; di emission cost coefficients of unit i
di; ei fuel cost coefficients of unit i regarding valve-point ef-

fects
BðtÞ belief space of cultural algorithm
FctðPt

i Þ total CEED generation cost at time t
f emcðPt

i Þ emission cost function at time t

f gcðPt
i Þ generation cost function at time t

hmax�max
i max-max price penalty factor

IjðtÞ closed interval of NðtÞ
l;u the lower and upper bound which are initialized by the

domain values
LjðtÞ score of the lower bound at NðtÞ
NG number of generating units
NðtÞ normative knowledge component of the cultural algo-

rithm

Nij a normalized number for individual i and component j
ns number of variables of the situational component
nx number of variables of the normative component
nzi number of prohibited zones for unit i
w sets of units with POZ
W sets of units with SR
Pt
i power output of unit i at time t

Pt
D load demand of the system at time t

P0
i previous output power (t � 1)

PL
i;1 lower bound of unit i at the first prohibited zone i

Pmin
i ; Pmax

i minimum and maximum generation limits of the ith
generating unit

PL
i;m; P

U
i;m�1 lower and upper bound of themth prohibited zones of

unit i
PU
i;NPZ

i
the last upper bound of the nzth prohibited zones of unit i

SðtÞ situational knowledge component of the cultural algo-
rithm

Sti spinning reserve from unit i at time t
SR total system spinning reserve requirement
Smax
i maximum spinning reserve contribution of unit i
dj step size of the belief interval

d2j ðtÞ the variance of normalized number Nij

UjðtÞ score of the upper bound of NðtÞ
URi;DRi up and down ramp rate limits of unit i
XjðtÞ dimension of belief space at component j
XlðtÞ an accepted response
xijðtÞ the mean of normalized number Nij

xljðtÞ an accepted response of the component j
�xijðtÞ influence function
xmin
j ðtÞ; xmax

j ðtÞ minimum and maximum boundary of the closed
interval at generation t

ŷðtÞ best individual of the solution vector
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addition, conventional generators may have physical constraints,
such as prohibited operating zones (POZs) which is associated with
their steam valve operation or any vibration in their shaft bearings.
The operating area of generating units that have POZs can be
divided into a number of feasible sub-regions. This issue converts
the classical ELD problem into a non-convex and nonlinear prob-
lem with discontinuous operating zones, where the problem
simultaneously requires the minimization of the total generation
cost and the emission level while maintaining the equality and
inequality constraints of the system [3]. The new resulting problem
is called combined environmental economic dispatch (CEED). Clas-
sical approaches, such as the gradient method, linear program-
ming, the lambda iteration method, quadratic programming, the
base point and participation factors method, and the Lagrange
relaxation algorithm, have substantial difficulty in dealing with
the CEED problem [4]. New types of deterministic optimization
algorithms with the inclusion of modification techniques such as
mixed integer programming, nonlinear programming algorithm
and dynamic programming for solving the CEED problem have
been presented [5]. As the CEED problem is the main subroutine
of a bigger problem, the so-called unit commitment (UC), and lots
of valuable contributions with respect to deterministic optimiza-
tion algorithms have been made in this area. Therefore, it would
be appreciated to tackle some of the recent innovative solutions
for the UC and its applications. Koltsaklis et al. [6] presented a
generic mixed-integer linear programming (MILP) which incorpo-
rates a unit commitment solution for daily energy planning with
a long-term generation expansion framework with several system
considerations including ramping limits, system reserve require-
ments, renewable penetration limits as well as the CO2 emission
effects of conventional generation resources. The same authors
developed a mid-term energy planning (MEP) model through a
unit commitment model for generation and transmission system
planning with an ability to perform a day-ahead electricity market
calculation for yearly basis. Their proposed method is capable of
quantifying the effects of different costs on the day-ahead electric-
ity market and the energy mixture of the system [7].

Niknam et al. [8] proposed a new mathematical solution for the
UC problem based on benders decomposition where the solution
divides the UC into a master problem and a sub-problem. They
have tried to solve the master problemwith help of the mixed inte-
ger optimization where a non-linear optimization has been
assigned to take care of the sub-problem. Simoglou et al. [9] pre-
sented a new 0/1 MILP formulation for the self-scheduling of ther-
mal generation resources in the co-optimized energy and reserve
day-ahead markets where the generating units start-up cost has
been divided into three subcategories as hot, warm and cold
through to each predefined power output trajectories. Delarue
et al. [10] investigated the effect of uncertainty of the load and
wind generation on the multi-day ahead UC where they have
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assumed the perfect prediction of the load demand for initial hours
as the starting point. Thereafter, the consecutive UCs have been
performed to find the optimal scheduling of the generating units
where the new load forecasts have been achieved through different
percentages of the load deviation and a number of test system sce-
narios. A novel UC-MILP based on branch and bound method is
modeled in [11], where they have proposed three sets of symmetry
breaking constraints for UC according to different considered time
horizons.

Some of the recent studies in the area of the UC have attempted
to model the intermittent behavior of wind energy in order to
investigate the influence of wind power output on the scheduling
of the other thermal units. Wang et al. [12] analyzed the impacts
of the high level of wind penetration on thermal generation with
a stochastic UC model while they have used a point forecast
method to capture the uncertainty of the wind power output. In
[13] a newmodel of UC based on a modified bender decomposition
has been presented, where the developed model has the ability to
capture the sub-hourly variability of the wind power. Most of the
deterministic optimization algorithms have difficulty in finding
the optimal solution for large-scale power systems with mixed
generation resources, where these methods fall into local minima
due to the oscillation of their decision parameters resulting in an
increase in the computation time.

In the past few decades, many evolutionary computational
algorithms such as genetic algorithm (GA) [14], particle swarm
optimization (PSO) [15], artificial bee colony (ABC) [16], harmony
search (HS) [17] and tabu search algorithm (TSA) [18] have been
used to solve power system problems. Most of the probabilistic
or metaheuristic algorithms are inspired by nature through global
search space properties. Secui aimed at solving dynamic economic
dispatch through a modified ant colony optimization algorithm by
considering the valve-point effect on the generation cost [19]. A
combination of a chaotic self-adaptive and a differential harmony
search algorithm has been proposed to find the optimal scheduling
of generating units in [20]. Xiong et al. [21] proposed a multi-
strategy ensemble biography-based optimization (MsEBBO) for
solving the ELD problem, where they have added three extensions
to the main components of the BBO (migration model, migration
operator and mutation operator). Their proposed method simulta-
neously makes a balance between exploration and exploitation in
the search space in order to enhance the efficiency of the optimiza-
tion process. Alsumait et al. [22] presented a new hybrid intelligent
approach based on GA, pattern search (PS) and sequential quadra-
tic programming (SQP) to solve the ELD problem while considering
the valve-point effect, where each one of the optimizers has been
assigned a separate task. In the same study, GA has been assigned
as the main optimizer, whereas PS and SQP are utilized to adjust
different tuning parameters of GA to increase the accuracy of the
solution. Tsai et al. [23] developed a new PSO algorithmwith a con-
striction factor (PSO-CF) for the trading of CO2 emission cost
embedded into traditional ELD. They have introduced two opera-
tors, called random particles, and fine-tuning to improve the draw-
backs of the classical PSO in searching for the global optimum. In
[24], the authors proposed an environmental-economic dispatch
model which simultaneously considers carbon capture plant
scheme and uncertainty of wind generation in the framework of
a two-stage robust optimization. Since both objectives are convex
functions, they have utilized the Pareto front in combination with
the e-constraint method to find the optimal scheduling of generat-
ing units. The Nash bargaining criterion has been used to deter-
mine the fair trade-off between the generation cost and the
carbon emission. In [25], a hybrid evolutionary algorithm for solv-
ing the ELD problem with the consideration of the valve-point
effect has been formulated. The presented method combines a
fuzzy adaptive PSO with the Nelder-Mean (NM) search method
called (FAPSO-NM). In order to enhance the effectiveness of their
algorithm, the NM algorithm has been assigned as a local search
algorithm in surrounding of the global solution found by FAPSO.
In [26], a hybrid method for solving dynamic economic emission
dispatch based on chemical reduction optimization (CRO) has been
presented, while for the reduction of the computational time a dif-
ferential evolution algorithm has been incorporated with CRO. In
[27], the CEED problem has been solved through the PSO method,
while two important factors of the power market such as transmis-
sion congestion distribution (TCD) and reactive TCD have been
taken into account. The usage of metaheuristic optimization algo-
rithms to solve real world problems has gained the interest of
numerous researchers around the globe due to their efficiency.
However, most of these methods require to be executed several
times to find the best solution, therefore they are not time efficient
for real-time electricity market operation with the large-scale of
generating units connected to the power grid.

In the last few years, another type of metaheuristic algorithm
and artificial intelligence which is based on the concept of the
human brain process has been employed to solve the CEED prob-
lem. The artificial neural networks (ANNs) have the ability to learn
the behavior of the power grid through the online observation of
the system or through historical data. The ANNs are then able to
predict the possible solutions for the objective function. An
enhanced augmented Lagrange Hopfield neural network (ALHN)
is presented in [28] and used to solve the economic dispatch while
the cost function has been considered as a piecewise quadratic
cost. Their proposed method investigated the problem in two
phases; in the first phase, a heuristic optimization method was
used to select the type of fuel for each generating unit of the sys-
tem and in the second phase the ALHN was used to find the opti-
mal solution of the economic dispatch with respect to the chosen
fuel type. Canizes and his colleagues proposed a method to deter-
mine the required reserve level for the electricity market dispatch-
ing system [29]. Their proposed method was based on submitting
bids from the generators to the spot market where the market
clearing prices were calculated by a mixed integer non-linear pro-
gramming algorithm. After the collection of the market prices and
generator schedules, an ANN was used to predict the required level
of spinning and non-spinning reserve for a day-ahead market. In
[30], a robust radial basis kernel function (RBFK) based on an
ANN was developed to solve the CEED problem, where the max-
max price penalty factor was used to convert the emission volume
into its respective price. In [31], a methodology using a combina-
tion of orthogonal least-squares (OLS) and enhanced particle
swarm optimization (EPSO) algorithms to build a three layers
RBF network for real-time CEED has been proposed. Kar et al. used
a hybrid ANN based on the back-propagation algorithm (BP-ANN)
to find the optimum solution of the CEED problem where the vol-
ume of NOx was optimally regulated [32]. The adjusting parame-
ters of the BP algorithm were optimally tuned during the
convergence process, while the influence of other types of normal-
ization rules and adjusting parameters, such as the number of hid-
den layers, the number of nodes in the hidden layers have been
considered in [32].

Almost all the different types of neural networks based methods
have some deficiencies in defining the network structure, and this
problem would specifically increase the running time for real-time
applications of ANN methods in a dynamic environment [33]. In
addition, ANNs have a large number of adjusting parameters
including the number of hidden layers, the number of neurons,
input weight matrices, layer weight matrices and bias vectors,
etc., and it requires the human interferences during the optimiza-
tion process. In contrast to ANNs, support vector machines (SVMs)
have an uncomplicated structure with only two adjusting parame-
ters (which significantly reduces the running time of prediction



Fig. 1. Time frame of the electricity market operation.
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process) as well as having the capability to be applied to any func-
tion within a dynamic environment. The basic concept of SVMs is
based on the machine learning pattern, which was initially devel-
oped to solve classification problems [34]. SVMs present a promis-
ing performance in linear and non-linear identification
applications through the use of linear constrained quadratic pro-
gramming (QP) and Vapnik’s e-insensitive loss function, respec-
tively. In [35], a hybrid method based on GA and SVM was
proposed for the identification of electricity fraud through the daily
load profile, where the SVM detected abnormalities due to a fraud
incident. In order to enhance the capability of SVM, Mustaffa et al.,
coupled the classic SVM with the least-square method as well as a
variant model of artificial bee colony to forecast the crude oil prices
based on the time series data [36]. In [37], a method based on
LSSVM and independent component analysis (ICA) optimizer has
been presented for short term load forecasting. In order to enhance
the prediction accuracy of LSSVM, the ICA transformed the dimen-
sions of the input data from a higher level into a lower level, which
also decreased the complexity of the model structure for the
LSSVM.

The main idea of this study is to propose a methodology to cal-
culate the optimal dispatch of generating units in the real-time
electricity market, where the generator schedules must be evalu-
ated in less than 15 min. The proposed method has the capability
to predict the optimal dispatches of generating units with the high
level of accuracy in less than 10 s for a large-scale power system,
where it is approximately 100 times faster than the other widely
industrial used methods such as MIQP considering the physical
and environmental constraints of generators. In order to under-
stand the behavior of any system in a suitable manner, the pro-
posed method (LSSVM-CA3) requires historical data based on the
hourly load curve of the system for at least one day. Thereafter,
it has the ability to predict any unknown load point within the
daily load curve with a high level of precision. In this regard, the
following sophisticated mathematical formulation has been
proposed.

The third version of cultural algorithm (CA3) has recently been
proposed by Goudarzi et al. [38]. CA3 has demonstrated a high
capability of solving non-convex problems with a high degree of
non-linearity. In this study, CA3 was used to optimally tune the
two adjusting parameters of the LSSVM (c and r2) in order to
decrease the estimated error of the objective function. In order to
prepare the training data set, a modified mixed integer quadratic
programming (MIQP) has been used to obtain the optimum
scheduling of the generating units according to the daily load curve
of the selected test systems. To investigate the practicality of the
proposed method (LSSVM-CA3), it has been compared with other
hybrid methods of ANNs. The main innovative contributions of
the proposed method are as follows:

i. A hybrid mathematical method for the prediction of the
behavior of any dynamic system based on the least square
support vector machine and the third version of the cultural
algorithm (LSSVM-CA3) has been proposed.

ii. The proposed method has the ability to understand and pre-
dict the non-linear behavior of the power gird considering
several realistic physical constraints of generating units for
solving the CEED problem.

iii. The proposed method has the capability to comprehend and
predict the environmental aspects of generating units in the
real-time analysis of a large-scale power system.

iv. The proposed method is capable of finding the optimum
schedule of generating units for a large-scale power system
in a real-time electricity market within an extremely fast
calculation time.
v. The proposed method is capable of maximization of social
welfare while minimization of total cost of generation in
the real-time electricity market.

The organization of the paper is as follows. Section 1 describes
the background of the study through a comprehensive introduc-
tion. Section 2 demonstrates the problem formulation and mathe-
matical concepts of the proposed method. Section 3 provides the
discussion of the obtained results. The conclusion is given in
Section 4.

2. Problem formulation

2.1. Time window for the wholesale electricity market operation

As the main focus of study is the real-time scheduling of gener-
ating units in the electricity market, the time frame for the market
operation is depicted in Fig. 1. All the given terminologies in Fig. 1
are defined as follows:

� Capacity Market: This is designed to guarantee an adequate and
reliable generating capacity and is always available by provid-
ing payments to encourage investment in new capacity or for
existing capacity to remain open. In other words, it is the pri-
mary policy of any market operation to ensure the security of
electricity supply, while it has a time span from 1 to 5 years
[39].

� Multi Day-ahead Unit Commitment: the unit commitment sched-
ule of the dispatchable generating units should be prepared by
the system operator in less than 24 h while the physical con-
straints of the generating units should be considered. In this
context, hydro and nuclear units would be treated as must-
run units (to be responsible for the base-load) in the day-
ahead market.

� Day-ahead Market: market participants are required to submit
their bids or offer within a pre-specified submission time. The
contracts will be settled between seller and buyer for the deliv-
ery of power in the following day, where the price is set and the
trade is agreed. It is vital to indicate that the offers or bids are
the financial key performances of any business process [40].
The detailed operations for day-ahead market can be listed as
follows [41]:
� 24 h ahead scheduling considering the load forecast of the next

day
� Determining the commitment of the slow thermal units

� Intraday Scheduling: the intraday scheduling supplements the
day-ahead market and provides any necessary changes to bal-
ance between supply and demand. The detailed operations for
intraday scheduling can be listed as follows [41]:
� 4 h ahead scheduling of generators (until cover the entire day)
� Determining the commitment of the fast operating units
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� Real-time Market: the system operator is required to provide the
generating unit dispatches, reserve margins, real-time loca-
tional marginal prices (LMPs) and market clearing prices (MCPs)
every 5–15 min.

2.2. Combined environmental economic dispatch (CEED)

Themain elements of the electrical power grid which have a sig-
nificant influence to deliver the power generation at the least cost
are optimum scheduling of generating units, fuel cost, and trans-
mission line losses. The most effective generating unit in the power
grid is not able to guarantee to decrease or minimize the total gen-
eration cost as it may be located far away from the load demand
which would effectively lead to greater transmission losses or a
variation in the fuel cost according to the geographical location of
generating units. The main aim of the combined environmental
economic dispatch (CEED) method is to minimize the total genera-
tion cost by satisfying the power grid operation constraints and
considering the environmental aspects of generation [42].

The generation cost function of the CEEDmethod can be defined
as follows:

f gcðPt
i Þ ¼

XNG

i¼1

ðai þ biP
t
i þ ciðPt

i Þ
2Þ ð1Þ

In the conventional approach, economic load dispatch (ELD)
makes a simplification by assuming that the efficiency of the elec-
trical power generators increases cubically, quadratically, piece-
wise linearly or sometimes can be formulated linearly with respect
to the power output. In real life practice, the volume of the steam
entering the turbines would be controlled by sets of separate noz-
zles. Each one of the nozzle sets accomplishes the best efficiency
when the generating unit is operating at full capacity. By increas-
ing the power output of the generating units, their respective
valves will be opened in series to obtain the highest possible effi-
ciency for the considered power output. The valve-point effect
introduces a ripple in the heat rate function which leads to non-
linearity and discontinuity of the fuel cost function [43]. A rectified
sinusoidal term can be added to the previous equation for precise
modeling of the generator cost function with the consideration of
the valve-point effect.

f gcðPt
i Þ ¼

XNG

i¼1

½ðai þ biP
t
i þ ciðPt

i Þ
2Þ þ jdi � sinfei � ðPmin

i � Pt
i Þgj� ð2Þ

As most of the fossil fuel based generating units are the main
sources of SOx and NOx, they have been firmly instructed by the
environmental protection agency (EPA) to decrease their produc-
tion emission levels. This study considered NOx to be optimally
regulated for the environmental aspects. The emission objective
function with the inclusion of the valve-point effect can be repre-
sented as [26]:

f emcðPt
i Þ ¼

XNG

i¼1

½ðai þ biP
t
i þ ciðPt

i Þ
2Þ þ gi expðdiPt

i Þ� ð3Þ

In order to evaluate the total cost of generation for the CEED
problem the two independent cost functions can be combined by
means of a price penalty factor which converts the multi-
objective function into a single-objective term as follows [44]:

FctðPt
i Þ ¼ f gcðPt

i Þ þ hmax�max
i � f emcðPt

i Þ ð4Þ
FctðPt
i Þ ¼

XNG

i¼1

ðai þ biP
t
i þ ciðPt

i Þ
2Þ þ jdi � sinfei � ðPmin

i � Pt
i Þgj

þ hmax�max
i �

XNG

i¼1

ðai þ biP
t
i þ ciðPt

i Þ
2Þ þ gi expðdiPt

i Þ ð5Þ
where hmax�max
i denotes the price penalty factor (PPF) in dollar per

hour. The PPF is the ratio between the maximum generation cost
function and the maximum emission objective function, where it
can be written as [45]:

hmax�max
i ¼ ðai þ biP

max
i þ ciðPmax

i Þ2Þ þ jdi � sinfei � ðPmin
i � Pmax

i Þgj
ðai þ biP

max
i þ ciðPmax

i Þ2Þ þ gi expðdiPmax
i Þ

ð6Þ
In a general form the proposed CEED objective function can be

rewritten as follows:

FctðPt
i Þ ¼ x1 � f gcðPt

i Þ þx2 � hmax�max
i � f emcðPt

i Þ ð7Þ

where the x1 and x2 are the weighting factors of the proposed for-
mulation, in such a way that:

(1) x2 ¼ 0 for the pure economic dispatch without the consider-
ation of emission cost.

(2) x1 ¼ 0 for the pure emission dispatch without the consider-
ation of generation cost.

(3) x1 and x2 ¼ 1 for the combined environmental economic
dispatch (we have considered this combination).

Subject to the following constraints:
The first set of constraints is related to the systematic con-

straints which are required to be maintained.

Power balance equality constraint:

XNG

i¼1

Pt
i ¼ Pt

D ð8Þ

The total generation should be able to satisfy the given load
demand at any interval, where Pt

D represents the total system load
demand at interval t.

Inequality constraints of the generators: For the safety pur-
poses of the generating units as well as the stable operation of
the system, all the generating units are firmly limited to operate
within their minimum and maximum generation capacity; accord-
ingly, the inequality constraint can be stated as follows:

Pmin
i 6 Pt

i 6 Pmax
i for i ¼ 1;2;3 . . .NG ð9Þ

The second set of constraints is associated with the physical
constraints of the generating units which are required to be strictly
upheld.

Ramp rate limits: In CEED formulation, the power output is
commonly presumed to be regulated efficiently and instantly. In
the real practices, ramp rate limit confines the operating range of
all the generating units within two independent intervals [46];
(1) as generation increases and (2) as generation decreases.

maxðPmin
i ; P0

i � DRiÞ 6 Pt
i 6 minðPmax

i ; P0
i þ URiÞ ð10Þ

subject to

ð1Þ Pt
i � P0

i 6 URi ð11Þ

ð2Þ P0
i � Pt

i 6 DRi ð12Þ

Prohibited operating zone (POZ): Modern generating units
with the inclusion of the valve-point effect have several prohibited
operating zones (POZs) which impose a number of discontinuities
in their power generation output [46]. Consequently, in practical
operation, POZs splits the operating range among minimum and
maximum generation limits into fragmented convex sub-
sections. The practical operating zones can be expressed as:



Fig. 2. Conceptual framework of cultural algorithm based on the two spaces.
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Pmin
i 6 Pt

i 6 PL
i;1

PU
i;m�1 6 Pt

i 6 PL
i;m

PU
i;NPZ

i
6 Pt

i 6 Pmax
i

m ¼ 2; . . . ;NPZ
i ;8i 2 w

8>><
>>: ð13Þ

Spinning reserve: A minimum system spinning reserve is
required to be considered to satisfy the system load demand and
be responsible for any frequency changes due to load fluctuations
in real-time systems [47].X
i2W

Sti P SR ð14Þ

where

Sti ¼ minfðPmax
i � Pt

i Þ; Smax
i g 8i 2 ðW� wÞ ð15Þ

Sti ¼ 0 8i 2 w ð16Þ
The spinning reserve requirement should be carried out by the

units without POZs, where they have no restriction to regulate
their power generation smoothly within the boundaries.

Power balance handling
In order to guarantee that the power balance generation and

equality constraint are continuously sustained, the study consid-
ered a power balance violation (PBV) method. The PBV can be
described as [38]:

XNG

i¼1

Pt
i P Pt

D ð17Þ

subject to

PBV ¼ max 1�
PNG

i¼1P
t
i

PD
;0

 !
ð18Þ

As long as PBV is set to zero, the equality constraint has been
maintained where the algorithm should only accept the solutions
which are capable of holding the following relationship:

Pt
D �

XNG

i¼1

Pt
i ¼ 0 ð19Þ

The study has utilized an evaluation function to speed up the
convergence process and obtain the optimum solutions. This
approach uses a penalization factor (PF) method to push the
answers towards the best possible solution. The proposed method
can be expressed as follows:

Feval ¼ FctðPt
i Þ � ð1þ PF � PBVÞ ð20Þ

In this study, the initial value of PF has been considered equal to
1000. Nevertheless, this value could vary up to 1,000,000 based on
many factors such as the topology and nature of the problem.

2.3. The third version of cultural algorithm (CA3)

Many decades ago, a number of scientists who were working on
the social behavior of people suggested an idea that culture has the
ability to be transferred to a population through an inheritance
mechanism. In 1994 Reynolds proposed an algorithm based on
the cultural model [48]. The cultural algorithm (CA) was estab-
lished according to the behavior of elite individuals in a certain
population, where their behavior is transmitted inherently from
generation to generation through motivated operators. The elite
group of the population characterizes and regulates the norms
[49]. The selection basis of this elite group is based on many factors
such as physical appearance, wealth, and knowledge. The knowl-
edge and ideas of those individuals become the most effective
leading factor of the society. Culture or tradition improves from a
generation to the next generation in order to make themmore con-
scious and capable of survival. The evolution of a population is a
process where the knowledge that has been obtained by elite indi-
viduals through generations in the search space (belief space)
would be kept to direct the behavior of the other individuals. CA
has been implemented based on the two basic components namely
the population space and the belief space. The population space is
responsible for the storage of an individual’s information, and the
responsibility of the belief space is to shape and maintain the cul-
tural knowledge during the evolution process. The general frame-
work of CA is depicted in Fig. 2.

CA can be categorized into different versions based on their
influence functions. The responsibility of the influence function is
to affect the population according to the regulation of beliefs to
determine the mutational step size and the direction of changes.
Goudarzi et al. [38] proposed four versions for CA, where the third
version (CA3) was found as the most efficient version for the CEED
optimization. CA3 is based on two knowledge components; the sit-
uational knowledge component and the normative knowledge
component. The situational knowledge component is in charge of
finding the best possible solution in a generation, and is formulated
as [38]:

Sðt þ 1Þ ¼ fŷðt þ 1Þg ð21Þ
where

ŷðt þ 1Þ ¼ minl¼1;...;nBðtÞfXlðtÞg if f ðminl¼1;...;nBðtÞfXlðtÞgÞ < f ðŷðtÞÞ
ŷðtÞ otherwise

�
ð22Þ

subject to

XlðtÞ; l ¼ 1;2;3 . . . ;nBðtÞ ð23Þ

nBðtÞ ¼ npopc
t

h i
; c 2 ½0;1� ð24Þ

where
nBðtÞ is the number of selected individuals for forming the
beliefs in a population
t is the number of iterations (generation)
npop is the size of population



A. Goudarzi et al. / Applied Energy 189 (2017) 667–696 673
The normative knowledge is the component which prepares dif-
ferent scales for each individual behavior in order to direct them
towards their mutational adjustments. The normative knowledge
can be mathematically expressed as:

xmin
j ðt þ 1Þ ¼

xljðtÞ if xljðtÞ 6 xmin
j ðtÞ or f ðXlðtÞÞ < LjðtÞ

xmin
j ðtÞ otherwise

(
ð25Þ

For updating the LjðtÞ

Ljðt þ 1Þ ¼ f ðXlðtÞÞ if xljðtÞ 6 xmin
j ðtÞ or f ðXlðtÞÞ < LjðtÞ

LjðtÞ otherwise

(
ð26Þ

xmax
j ðt þ 1Þ ¼

xljðtÞ if xljðtÞ P xmax
j ðtÞ or f ðXlðtÞÞ < UjðtÞ

xmax
j ðtÞ otherwise

(

ð27Þ
For updating the UjðtÞ

Ujðt þ 1Þ ¼ f ðXlðtÞÞ if xljðtÞ P xmax
j ðtÞ or f ðXlðtÞÞ < UjðtÞ

UjðtÞ otherwise

(
ð28Þ

As proposed in this version, the step size would be defined by
means of situational knowledge where the changes in direction
would be carried out by normative knowledge. CA3 can be
described as:

�xijðtÞ ¼
xijðtÞ þ jrijðtÞNijð0;1Þj if xijðtÞ < ŷjðtÞ
xijðtÞ � jrijðtÞNijð0;1Þj if xijðtÞ > ŷjðtÞ
xijðtÞ þ rijðtÞNijð0;1Þ otherwise

8><
>: ð29Þ

subject to

xijðtÞ � NijðxijðtÞ; d2j ðtÞÞ ð30Þ

djðtÞ ¼ ½xmax
j ðtÞ � xmin

j ðtÞ� ð31Þ

rijðtÞ ¼ a� djðtÞ; 0 < a < 1 ð32Þ
It is important to mention that, the CA3 is characteristically so

fast because it uses two knowledge components (situational
knowledge and normative knowledge) as two powerful search
engines in the search space to find the optimal solution and it sig-
nificantly speeds up the convergence process and reduces the run-
ning time. Any further details and illustration of the CA3 method
can be found in [38].

2.4. Least square support vector machine (LSSVM)

The least square support vector machine (LSSVM) was intro-
duced by Suykens and colleagues and is based on the principal of
support vector machine (SVM) [50]. In LSSVM, equality constraints
are used as a replacement for inequality constraints through a least
square cost function to tackle the difficulty of calculations towards
optimal solutions. The proposed cost function can be solved by
means of linear Karush-Kuhn-Tucker (KKT) optimality conditions
instead of a quadratic programming problem. Consequently, the
classical SVM can be reformulated as the following LSSVM cost
function [51]:

cost function ¼ 1
2
wTwþ 1

2
c
XN
k¼1

e2k ð33Þ

subject to

yk ¼ wTuðxkÞ þ bþ ek; k ¼ 1;2;3 . . . ;N ð34Þ
where
b is the bias
wT is transposed vector of the output layer
uðxÞ is the feature map
c is the adjustable parameter
ek is the error variable
xk kth number of input data
yk kth number of output data

As the vector w can increase to infinite dimensions, making the
optimization process cumbersome as in Eq. (33). To overcome this
problem, LSSVM has tried to calculate the model in the dual space
instead of in the primal space. The Lagrangian solution can be
applied as follows [52]:

Lðw; b; e; aÞ ¼ 1
2
wTwþ 1

2
c
XN
k¼1

e2k �
XN
k¼1

akðwTuðxkÞ þ bþ ek � ykÞ

ð35Þ
where ak denotes the Lagrangian multiplier. The KKT optimality
conditions can be expressed by [53]:

@L
@w ¼ 0 ! w ¼

XN
k¼1

akuðxkÞ

@L
@b ¼ 0 !

XN
k¼1

ak ¼ 0

@L
@ek

¼ 0 ! ak ¼ cek; k ¼ 1;2;3 . . . ;N
@L
@ak

¼ 0 ! wTuðxkÞ þ bþ ek � yk ¼ 0; k ¼ 1;2;3 . . . ;N

8>>>>>>>>>><
>>>>>>>>>>:

ð36Þ

N is the number of data points in the training set fxk; ykgNk¼1, where
xk 2 Rn and yk 2 R. Based on the KKT optimality condition the
parameters ak; ek;w and b can be computed. These conditions are
almost identical to the standard form of SVM as a classifier, apart
from the condition ak ¼ cek [52].

To come up with the sparseness property of LSSVM, it is possi-
ble to go through the elimination process of w and e where the
resultant solution can be expressed as follows:

0 1T
v

1v Xþ 1
c I

" #
b
a

� �
¼ 0

y

� �
ð37Þ

where
y = [y1; . . . ;yN]
1v = [11; . . . ;1N]
a = [a1; . . . ;aN]
Xkl ¼ uðxkÞTuðxlÞ for k; l ¼ 1;2;3; . . . ;N

By means of Mercer’s condition and the mapping feature the
Kernel function can be written as follows [52]:

Kðx; yÞ ¼
XN
i¼1

uiðxÞuiðyÞ; x; y 2 Rn ð38Þ

The aforementioned condition is held if and only if, for any

function g(x) that
R
gðxÞ2dx is finite, there would be one solution.Z

Kðx; yÞgðxÞgðyÞdxdy P 0 ð39Þ

As consequence of the above condition the solution of the ker-
nel can be represented as a bullet operator (Kð�; �ÞÞ such that:

Kðxk; xlÞ ¼ uðxkÞTuðxlÞ; k and l ¼ 1;2;3 . . . ;N ð40Þ
The LSSVM for the function estimation can be simplified as:

yðxÞ ¼
XN
k¼1

aKðx; xkÞ þ b ð41Þ
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where a and b are the key parameters to determine. c is the first
adjustable parameter of the LSSVM and as it is a Kernel-based tech-
nique, it is required to consider the parameters of kernel functions
as another (or second) adjustable parameter of the algorithm.
Accordingly, the RBF Kernel function that has been used in this
study can be given by [52,53]:

Kðx; xkÞ ¼ exp � xk � x2

r2

� �
ð42Þ

The developed LSSVM model has two adjustable parameters (c
and r2). The accuracy of the algorithm is highly dependent on its
own adjustable parameters. The study utilized CA3 to tune and find
the most optimum values of the adjustable parameters to mini-
mize the deviation of the predicted data points. Figs. 3 and 4 rep-
resent the network structure and flow chart process of the LSSVM-
CA3, respectively.
2.5. Evaluation of prediction performance

The precision of the proposed method (LSSVM-CA3) was exam-
ined by means of mean squared error (MSE), root mean squared
error (RMSE), normalized root mean squared error (NRMSE) and
mean absolute error (MAE). These four performance measurement
techniques are extensively used to examine how well a method
performs in prediction or fitting of the actual values.

MSE is extensively used to measure the difference between pre-
dicted values by a method and actual values. This method com-
pares the mean of squared residuals against the predicted values.
RMSE can be assessed by taking a root of the calculated MSE. The
evaluated RMSE has a wide range of units with respect to the dif-
ferent test cases. In order to have a uniform comparison capability
of RMSE for different methods with diverse units, the non-
dimensional form of RMSE known as NRMSE is used. NRMSE is
achieved by normalizing the RMSE value to the range of the
observed data [54]. Thus the NRMSE values that are closer zero
are more desirable, and they represent the better performance of
the applied method. The respective formulation for MSE, RMSE
and NRMSE can be described as:
Fig. 3. General network str
MSE ¼ 1
NG

XNG

i¼1

ðPActual
i � PPredict

i Þ2 ð43Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
NG

XNG

i¼1
ðPActual

i � PPredict
i Þ2

s
ð44Þ

NRMSE ¼ RMSE

Pmax
i � Pmin

i

ð45Þ

PActual
i is the actual generation schedule of the units

PPredict
i is the predicted generation schedule of the units

MAE has also been used to assess the performance of LSSVM-
CA3. The evaluation range of MAE is the same as RMSE, however
in MAE the values in this study are not expressed in percentage.
The mathematical formulation of MAE is as follows [55]:

MAE ¼ 1
NG

XNG

i¼1

jPActual
i � PPredict

i j ð46Þ
3. Results and discussion

In this study, the proposed LSSVM-CA3 method was used to
predict and determine the most optimum scheduling of generating
units in the real-time system for solving the CEED problem and has
been tested on different scenarios. To examine the effectiveness of
the proposed method for practical purposes, it has been tested on
three different test systems through several considerations test
system characteristics. All comparison cases were performed to
demonstrate the applicability of the methodology of the study.
All the algorithms have been implemented on MATLAB 2015a.
They have been executed on a personal computer with the follow-
ing specifications, Intel� CoreTM i5-3210M (3.1 GHz), 6.00 GB RAM
(DDR3) and win 8.1 operating system (OS). All the intelligent
methods are very sensitive to their adjusting parameters; therefore
the study has considered the following values for the compared
methods:
ucture of LSSVM-CA3.



Fig. 4. Flow chart process of LSSVM-CA3.
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GA:

� Population size: 50
� Maximum number of iterations: 50
� Crossover probability: 0.8
� Mutation probability: 0.1

PSO:

� Population size: 50
� Maximum number of iterations: 50
� C1 and C2: 2
� Inertia weight: Min = 0.4 and Max = 0.9

ICA:

� Population size: 50
� Maximum number of iterations: 50
� Number of empires: 10
� Selection pressure: 1
� Assimilation coefficient: 1.5
� Revolution probability: 0.05
� Revolution rate: 0.1
� Colonies mean cost coefficient: 0.2

CA3:

� Population size: 50
� Maximum number of iterations: 50
� Acceptance ratio: 0.15
� Strategy parameter: 0.25
� Scaling coefficient: 0.5

The study has considered a daily load curve (24 h load points)
according to the capability of each test system for handling of
the load demand, while the daily load curves have been specified
in each studied case. Daily load curves have been used for training
purposes of all predictors. In real practice, by having the historical
data of any system over a sufficient period of time and using the
maximum likelihood method (MLE) the most probable load points
of the system during a day can be determined. Due to the unavail-
ability of data for the loss coefficients in different hours of the day
in each test system, the calculation of power loss has not been
taken into account. All the required data regarding the test system
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specifications are given in the appendix section. As the renewable
energy resources (RESs) like wind and solar have an uncertain and
intermittent behavior, therefore, they require another mathemati-
cal approach to model and forecast their generation behavior
before any prediction process regarding the optimal scheduling
of the available units, where in this study we assumed all the gen-
erating units are running and they are available to be scheduled at
any time. Therefore, in the current study, we have not considered
any RESs in the studied test cases.

The main focus of the study is to find a fast, intelligent and prac-
tical solution for the real-time scheduling of generating units
through to CEED problem, not the unit commitment (UC) problem.
Therefore, the proposed solution for the real-time CEED problem
only deals with the optimal allocation of the load demand among
the running units while satisfying the power balance equations
and considering the physical operating limits and environmental
constraints of generating units.
Fig. 5. Daily load curve

Fig. 6a. Convergence process of LSSVM-CA3 adjusting
Almost all of the deterministic mathematical methods are inca-
pable of solving the non-convex problem with discontinuous
domains. This study used one of the most recent methods which
is widely used in industries and wholesale electricity spot markets
to solve the CEED problem with discontinuous operating zones.
This method is based on mixed integer quadratic programming
(MIQP) while the Branch-and-Bound method through a binary tree
with the interior-point algorithm is coupled with MIQP to deal
with discontinuous zones [56]. To simulate the same approach of
solving the CEED as it is practiced in real-time electricity markets,
the study applied MIQP to compute the optimal scheduling of gen-
erating units for each hour of the day which was used for a realistic
comparison between the proposed method and the current indus-
trial approach in solving CEED as well as the preparation of a data-
base for training purposes.

The calculated database has been divided into two subsets
namely, training and testing. To enhance the applicability of the
for 15 units system.

parameters (first predicted load point, 1600 MW).



Fig. 6b. Convergence process of LSSVM-CA3 adjusting parameters (second predicted load point, 2475 MW).

Table 2
Comparison of the obtained results for MSE (15 units system).

Min Avg Max Avg elapsed time (s)

1600 MW
LSSVM-CA3 12.72 49.74 128.38 0.13
ANN-GAPSO 31.38 278.08 737.69 15.24
ANN-PSO 67.97 274.86 803.64 2.46
ANN-GA 76.76 280.31 911.17 2.15
ANN-ICA 131.20 402.16 1554.21 6.22
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model, the entire database has been randomly divided into the fol-
lowing percentages; 80% used for the training set and 20% used for
the testing set. The training set was applied to generate the model
structure and the testing set was employed to examine the final
performance and validity of the proposed model. AS all the com-
pared predictors were coupled with an optimization algorithm
for tuning their adjusting parameters, therefore the validation set
was not considered. The adjusting parameters of LSSVM (c and
r2) are optimized by CA3, while the adjusting parameters of ANN
such as input weight matrix (IW), layer weight matrix (LW) and
bias vectors (b) have been optimally tuned by GAPSO, PSO, GA
and ICA respectively. To investigate the practicality and the robust-
ness of the proposed method it has been compared to four most
prominent prediction methods developed namely; ANN-GAPSO,
ANN-PSO, ANN-GA and ANN-ICA. The objective function of all pre-
diction methods is to minimize the errors in prediction according
to mean squared error (MSE) technique.

In this study, a specific design has been used for the RBF-kernel
function to approximate a very precise initial guess based on the
input data. The basic kernels have been used as a predefined set
of initial guess of the kernel matrices. The utilized kernel learning
algorithm operates by inserting the data into a Euclidean space.
Thereafter, it searches for a linear relationship between the
inserted data points. The inserting is achieved implicitly, by iden-
tifying the internal products between each pair of data points in
the embedding space. This information is stored in the kernel
matrix, which is a symmetric and positive semidefinite matrix that
encodes the relative positions of all data points. The determined
Kernel matrix helps the SVM to predict a very accurate initial guess
which effectively causes a reduction in the initial MSE in the pre-
diction process.

To demonstrate the practicality of the proposed method in the
prediction of the generating unit’s schedules, two unknown load
points were selected within the generation capacity range. Both
of the load points for each test system were selected in a way that
Table 1
Final optimized values for LSSVM-CA3 adjusting parameters (15 units system).

Load point (MW) c r2

1600 114.21 3.24
2475 743710.44 68.84
they can distinctly demonstrate the capability of LSSVM-CA3,
where the first load point was located in the lower generation
range and the second one was picked from a challenging operating
area of the generating units, where they have the highest probabil-
ity of occurrence during a day. For both load points, a number of
the scheduling scenarios could be taken into account with regard
to the flexibility of the generating units in the least cost operation.

In order to have a unified comparison for all studied cases, the
spinning reserve requirement was set as 5% of total load demand
as in [57]. The study executed 20 trials for each scenario to produce
fair results and consideration of any associated error in calcula-
tions, while the maximum number of iterations for all the trials
was fixed at 50. Due to the large dimension of the test systems,
it is not feasible to present the generators’ dispatches, however,
the final evaluations for each scenario have been tabulated as a
means of comparison.
3.1. Test case 1

This case attempted to demonstrate the efficiency of the pro-
posedmethod of study to find the optimal scheduling of generating
units without using the CEED method. For this purpose, the pro-
posed method was applied to find the optimal scheduling of a 15
units test system, where the system specifications are available
in Appendix A. The effect on the total generation cost of ramp rate
MIQP . . . . . . . . . 35.36

2475 MW
LSSVM-CA3 0.78 40.27 102.43 0.14
ANN-GAPSO 109.07 731.67 3338.70 17.57
ANN-PSO 144.07 290.35 774.21 2.85
ANN-GA 186.12 520.05 976.64 3.39
ANN-ICA 299.15 579.99 1255.03 5.86
MIQP . . . . . . . . . 35.75
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limits, spinning reserve requirement and prohibited operating
zones were considered. Fig. 5 depicts the daily load curve for this
test system, while the highest and lowest load of the day were
equal to 1511 and 2815 MW, respectively. The hourly load, total
Fig. 7a. Residual representation for the fi

Fig. 7b. Residual representation for the sec
generation cost of each hour and their respective generator sched-
ules have been used as inputs for training and constructing the ini-
tial model. MIQP has been used to find the most optimum
schedules for every given load point of the day. Two random load
rst predicted load point (1600 MW).

ond predicted load point (2475 MW).



A. Goudarzi et al. / Applied Energy 189 (2017) 667–696 679
points (1600 and 2475 MW) among the given load points have
been selected to be found by LSSVM-CA3 and the other methods,
where for comparison purposes the schedules of these two load
points have been found by MIQP. The process of convergence of
the adjusting parameters of all predictor methods in order to min-
imize the MSE for both the selected load points are shown in
Figs. 6a and 6b.

As it can be seen from Figs. 6a and 6b, the proposed algorithm
(LSSVM-CA3) has reached to its optimum level in less than 17 iter-
ations for the both load points, whereas the other methods have
reached in closer to 30th iterations. Table 1 tabulates the final val-
ues of the adjusting parameters for the LSSVM-CA3. Table 2 tabu-
lates the maximum cost, average cost, minimum cost, and average
elapsed time for all the compared methods. For simplicity of com-
parison, the elapsed time of each method was calculated for the
average time of all 20 trials. From Table 2, it is clear that the
LSSVM-CA3 has obtained the lowest average and minimum total
generation cost in comparison to the other methods with the low-
est processing time.
Fig. 8a. Evaluation of RMSE and MAE for th

Fig. 8b. Evaluation of RMSE and MAE for the
Figs. 7a and 7b show the residuals representation of the meth-
ods for both the load points compared to the calculated actual val-
ues using MIQP. For accurate evaluation of the predictions, the
residual set has been divided into two subsets; train and test. In
order to have a precise assessment of residual behaviors, the con-
fidence bound has been set as 25% of the highest deviation from
the actual generating units’ schedules. Placement of more residual
values within the confidence bound and closer to the actual data
line (actual generator schedules calculated by MIQP) demonstrates
the higher accuracy of the method. The LSSVM-CA3 represents the
highest accuracy for both load points in comparison to the other
methods. For the first load point, the placement of the residuals
for the different subsets are 91.67% for the training phase, 66.67%
for the testing phase with a total of 86.67%. In the case of the sec-
ond selected load point, the performance of the proposed method
is absolutely outstanding by having 100% accuracy of prediction
placement within the confidence bound, where the second best
method is ANN-GAPSO by having 66.67% placement inside the con-
fidence bound in total.
e first predicted load point (1600 MW).

second predicted load point (2475 MW).



680 A. Goudarzi et al. / Applied Energy 189 (2017) 667–696
The performance of all predictors are examined by two other
statistical methods namely; root mean squared error (RMSE) and
mean absolute error (MAE). From Figs. 8a and 8b, it is evident that
the LSSVM-CA3 has achieved considerably lower values for both
predicted load points.

3.2. Test case 2

In order to validate the efficiency of the proposed method of
study on a larger test system, LSSVM-CA3 is applied to 40 units
system. The system specification is available in Appendix B. In this
case, the effect of ramp rate limits, spinning reserve requirement,
valve-point loading and emission volume, as well as its associated
Fig. 9. Daily load curve

Fig. 10. Total generation cost of th
costs, were considered. The daily load curve for the 40 units system
is shown in Fig. 9. Fig. 10 shows the three-dimensional representa-
tion of total generation cost for the entire given load curve. The
peak load of the day is equal to 10,500 MW. The hourly load, total
generation cost, emission volume, emission cost, generation cost of
each unit and generator schedules have been used as the training
inputs for the test case. The two random load points for the predic-
tion purposes was 7550 and 8260 MW. The load point 8260 MW,
presented a challenging load point due the characteristics of this
test system because there are a number of generators which have
the same generation capacity to be scheduled while they have a
very different behavior from their emission volume production.
This situation created a considerable challenge for the convergence
for 40 units system.

e day for the 40 units system.



Fig. 11a. Convergence process of LSSVM-CA3 adjusting parameters (first predicted load point, 7550 MW).

Fig. 11b. Convergence process of LSSVM-CA3 adjusting parameters (second predicted load point, 8260 MW).

Table 3
Comparison of the obtained results for MSE (40 units system).

Min Avg Max Avg elapsed time (s)

7550 MW
LSSVM-CA3 753.99 1740.69 2252.17 1.55
ANN-GAPSO 3947.07 5742.35 9243.48 18.46
ANN-PSO 4638.41 5954.64 7907.23 4.66
ANN-GA 4236.25 6578.47 12339.93 4.88
ANN-ICA 3907.89 5244.00 7734.23 12.56
MIQP . . . . . . . . . 3.25

8260 MW
LSSVM-CA3 1090.65 1951.57 3088.06 1.29
ANN-GAPSO 4612.22 5971.63 8016.21 17.33
ANN-PSO 4009.55 5272.94 6155.87 5.15
ANN-GA 4683.69 5503.89 7366.83 5.23
ANN-ICA 4542.76 5792.29 7766.02 12.86
MIQP . . . . . . . . . 3.83

Table 4
Final optimized values for LSSVM-CA3 adjusting parameters (40 units system).

Load point (MW) c r2

7550 26.88 7.40
8260 74390.99 5.99
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of the optimization algorithm. The comparison between the pro-
posed method and the other predictors during the convergence
process of adjusting parameters is depicted in Figs. 11a and 11b.
It is evident that by the consideration of the effect of valve-
point loading on the generation and emission objective function
for all the generating units of this test system, all the prediction
methods faced a considerable challenge in finding the optimum
values of the adjusting parameters. As it can be seen, most of them
have reached their final values towards 50 iterations, whereas for
the second load point (8260 MW) most of them reached their final
point marginally before the 40th iteration. ANN-ICA showed a bet-
ter performance in comparison with the other methods of ANN,
where it achieved the second rank in the first load point after
LSSVM-CA3 and third rank after ANN-PSO in the second load point.
Nonetheless, the LSSVM-CA3 achieved the lowest values of MSE in
comparison to the other methods for both load points. It can be
inferred that the performance of all other predictors are highly
reliant on the nature of the problem, unlike LSSVM-CA3 which
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has shown superior performance in all studied cases. The detailed
MSE results of the 40 unit system are shown in Table 3. Table 4 tab-
ulates the final values of the adjusting parameters for the LSSVM-
CA3. From Table 3, it is apparent that the proposed method
Fig. 12a. Residual representation for the fi

Fig. 12b. Residual representation for the se
achieved the lowest MSE in comparison to other techniques, where
the minimum MSE for the first and the second load points are
753.9947 and 1090.6507, respectively. However, from the results
of Table 3, it can be inferred that, by increasing the level of
rst predicted load point (7500 MW).

cond predicted load point (8260 MW).
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nonlinearity which has been imposed by the system because of the
valve-point effect the MSE values for all the methods have been
considerably increased.

By increasing the dimension of the test system it was expected
that were would be a considerable increment in run-time of MIQP,
however this was not the case. The reason was that the generating
units did not have any POZs, therefore a simple MIQP has been
used to find the optimal solutions. That is why, the MIQP run-
time has been significantly reduced. The physical considerations
for this test system are less realistic in comparison to real world
practice due to the absence the POZs. The main aim of investigating
this test system was to analyze the behavior and the processing
time of the prediction methods in absence of the POZs. The
LSSVM-CA3 method maintained the very quick and efficient run-
time when compared to the previous case.
Fig. 13a. Evaluation of RMSE and MAE for th

Fig. 13b. Evaluation of RMSE and MAE for the
Figs. 12a and 12b exhibit the residuals representation of the
methods for both the load points. The LSSVM-CA3 obtained the
highest accuracy for both the load points. For the first load point
(7550 MW) the placement of the residuals within the confidence
bound is illustrated as follows; 93.75% for training phase, 87.5%
for the testing phase and with a total of 92.50%. In the case of
the second load point, the residual placement results are listed
as; 84.38% for training phase, 87.50% for the testing phase and in
total 85.00%.

Figs. 13a and 13b compare the performance of all predictors for
RMSE and MAE error estimation. After LSSVM-CA3 which obtained
the lowest errors for both load points, the ANN-ICA and ANN-PSO
reached to the lowest errors in the first and second load points,
respectively. This incident confirms that the performance of the
methods depends on the topology of the problem; however, again
e first predicted load point (7500 MW).

second predicted load point (8260 MW).



Fig. 14. Daily load curve for 140 units system.

Fig. 15a. Convergence process of LSSVM-CA3 adjusting parameters (first predicted load point, 36,500 MW).

Fig. 15b. Convergence process of LSSVM-CA3 adjusting parameters (second predicted load point, 41,800 MW).
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Table 5
Final optimized values for LSSVM-CA3 adjusting parameters (140 units system).

Load point (MW) c r2

36,500 63381.17 26822.02
41,800 23.56 4.71

Table 6
Comparison of the obtained results for MSE (140 units system).

Min Avg Max Avg elapsed time (s)

36,500 MW
LSSVM-CA3 353.14 370.99 398.54 1.87
ANN-GAPSO 865.48 1384.96 1697.52 46.85
ANN-PSO 1344.16 1604.88 2170.54 7.25
ANN-GA 1483.91 1723.95 1941.63 8.13
ANN-ICA 1646.36 1876.39 2850.12 39.24
MIQP . . . . . . . . . 289.33

41,800 MW
LSSVM-CA3 512.04 870.79 1191.83 1.95
ANN-GAPSO 1349.40 1644.57 2043.18 47.82
ANN-PSO 1532.17 1866.91 2435.48 7.84
ANN-GA 1603.25 1933.66 3020.83 8.77
ANN-ICA 1711.14 2063.72 2701.94 41.36
MIQP . . . . . . . . . 312.41
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the LSSVM-CA3 regardless of the system characteristics exhibited
precise prediction of the generator’s schedules.

3.3. Test case 3

This test case was performed to verify the robustness and prac-
ticality of the proposed method on a large-scale power system
with the higher dimension of complexity. The LSSVM-CA3 was
employed on a 140 unit system to predict the optimum scheduling
of the generating units, where the system specification is available
Fig. 16a. Residual representation for the fi
in Appendix C. This test system was based on a realistic Korean
power system, which consists of 140 thermal units such as coal,
LNG, LNG-CC, nuclear and oil. The effect of ramp rate limits, pro-
hibited operating zones, spinning reserve requirement, and
valve-point loading were taken into account as the physical con-
straints of the generating units. Fig. 14 depicts the daily load curve
of this test system. For this system, the maximum generation
capacity to satisfy the load demand was equal to 50,000 MW and
the minimum is set to 35,000 MW. The hourly load, total genera-
tion cost, generation cost of each unit with the consideration of
the valve-point effect cost and the generator schedules have been
utilized as the training inputs. In this case, 36,500 and 41,800 MW
are selected as the random load points to be predicted by the
methods. This test system had a substantial non-linearity and
non-convexity in its operating zones due to its characteristics
which made the optimization process cumbersome for any meth-
ods to evaluate the most optimum solution for any given load
point.

Figs. 15a and 15b illustrate the convergence process of adjust-
ing parameters of the prediction methods to achieve the least pos-
sible errors. The methodology of the study successfully acquired
the lowest MSE for both load points in comparison to the other
methods. For both load points, the LSSVM-CA3 reached its final
optimum level in less than 17th iterations while the other methods
took approximately 30 iterations to reach their final stage of opti-
mization of their adjusting parameters. Table 5 shows the final val-
ues of adjusting parameters for the LSSVM-CA3 for both load
points.

The comprehensive investigation of the methods for evaluating
MSE are found in Table 6, where LSSVM-CA3 obtained the lowest
minimum of MSE in comparison to the other methods with
353.1383 and 512.0360 for the first and second load point, respec-
tively. It can be observed from Table 6, the proposed method has
accomplished the prediction in less than 2 s with a noticeable
accuracy for both selected load points while the other methods
rst predicted load point (36,500 MW).



Fig. 16b. Residual representation for the second predicted load point (41,800 MW).
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could not achieve even 50% of its precision within approximately
4–23 times higher processing time. Table 6 demonstrates the supe-
rior performance of the proposed method through to accurate pre-
diction of generator schedules with a large-scale of complexity.
ANN-GPSO, ANN-PSO, ANN-GA and ANN-ICA have a significant
poor performance when compared to LSSVM-CA3. It is significant
to mention that, even if considering a larger system, the proposed
algorithm is able to determine the optimal allocation of power
among the generating units in a very fast processing time, which
indicates the applicability of the proposed method for real-time
management and operation of the power grid where the system
Fig. 17a. Evaluation of RMSE and MAE for the
operator needs to run several scenarios with respect to the fluctu-
ations of load demand and demand response programs.

Most of the previous studies in this area discussed the outlier
predictions through the leverage method to show the notable per-
formance of their methods. In this study, a strong focus on the
placement of the predictions within the confidence bound as well
as their concentration around the horizontal actual data line have
been considered, as it can indicate a good agreement between the
predictions and the actual values. Figs. 16a and 16b describe
the residual placement of the predictions. LSSVM-CA3 acquired
the best results for both load points, where the placement of the
first predicted load point (36,500 MW).



Fig. 17b. Evaluation of RMSE and MAE for the second predicted load point (41,800 MW).
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residuals within the confidence bound for the first load point
(36,500 MW) is as the following order; 90.18% for the training,
100% for the testing with a total of 92.14%. In the case of the second
load point (41,800 MW), the detailed assessment of the residual
placement was as follows; 83.93% for the training, 100% for the
testing and in total 87.14%. It is evident that even by enlarging
Fig. 18. Evaluation of NRMSE

Table 7
Hourly load data for 420 units system.

1 2 3 4 5 6

105,000 112,500 118,500 123,000 127,500 130,500

13 14 15 16 17 18

144,900 136,500 130,500 127,800 126,000 129,000
the test system and considering a number of constraints, the resid-
uals have been located considerably close to the actual data line.

The RMSE and MAE comparison for all prediction methods is
shown in Figs. 17a and 17b. The LSSVM-CA3 demonstrated excel-
lent performance for load points, where the minimum values of
MAE are respectively; 10.37 and 12.53 for the first and second load
for all the studied cases.

7 8 9 10 11 12

133,500 141,000 144,000 147,000 148,500 150,000

19 20 21 22 23 24

135,000 138,000 144,600 128,400 120,000 108,000
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points. In case of RMSE, the values are as follows for the first and
second load point; 18.79 and 22.63.

Fig. 18 represents an overall comparison of NRMSE for all three
studied test cases with respect to different load points. For simplic-
ity of understanding the values are shown in descending order. As
is seen, the LSSVM-CA3 has an outstanding performance in com-
parison to the other methods for all the different load points. The
color-bar on the right-hand side of Fig. 18 represents the details
of measured values.

3.4. Test case 4

To demonstrate the practicality of the proposed method for a
real-time analysis on a large-scale of a realistic power system,
the proposed method is investigated on the largest ever reported
test system with a non-convex objective function. This test system
consists of 420 generating units, which is comprised of 120 coal
units, 153 LNG units, 60 nuclear units, and 87 oil units. This test
Fig. 19a. Residual representation for the first predicted

Fig. 19b. Residual representation for the first predicted
system has been made by three times replication of the 140-unit
system of case 3. The considerable increase in the number of gen-
erating units, considering the physical constraints of the genera-
tors, imposes a substantial complexity into the real-time analysis
of the CEED problem due to the high number of discontinuities
caused by POZs, as this leads to the increased number of possible
local minima.

Table 7 lists the hourly load demand of the system (all the val-
ues are expressed in MW), where the lowest load of the day and
peak demand are equal to 105,000 MW and 150,000 MW, respec-
tively. Two random load points which have been used for the pre-
diction purposes are equal to 125,000 MW and 139,000 MW.
Figs. 19 and 20 show the residuals representation of all the com-
pared the methods for both the load points. Among all the com-
pared methods, the proposed method represents the highest
accuracy for both load points. The placement of the residuals
within the confidence bound for the different subsets of the two
selected load points are, 89.82% for the training phase, 96.40% for
load point (125,000 MW) of case 4, training phase.

load point (125,000 MW) of case 4, testing phase.



Fig. 20a. Residual representation for the second predicted load point (139,000 MW) of case 4, training phase.

Fig. 20b. Residual representation for the second predicted load point (139,000 MW) of case 4, testing phase.

Table 8
Final optimized values for LSSVM-CA3 adjusting parameters (420 units system).

Load point (MW) c r2

125,000 14.37 7.29
139,000 16.75 13.58

Table 9
Comparison of the obtained results for MSE (420 units system).

Min Avg Max Avg elapsed time (s)

125,000 MW
LSSVM-CA3 1127.21 1228.66 1271.39 12.24
ANN-GAPSO 1999.19 2145.31 2489.54 269.73
ANN-PSO 2036.18 2245.84 2781.65 37.21
ANN-GA 2058.44 2325.28 2844.63 38.33
ANN-ICA 2146.91 2574.25 3122.88 254.78
MIQP . . . . . . . . . 945.28

139,000 MW
LSSVM-CA3 860.52 918.28 960.56 12.35
ANN-GAPSO 1765.95 2001.85 2102.25 273.25
ANN-PSO 1998.77 2135.14 2345.57 38.01
ANN-GA 2075.43 2185.47 2441.43 38.55
ANN-ICA 2284.82 2236.49 2564.78 261.05
MIQP . . . . . . . . . 967.48
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the testing phase for the first load point. In the case of the second
load point, the performance of the proposed method is consider-
ably noticeable by having 96.10% precision of prediction for the
training phase and 96.40% for the testing phase.

Table 8 arranges the best-achieved values of the adjusting
parameters for the LSSVM-CA3. Table 9 presents the detailed anal-
ysis of all the compared methods. From Table 9, it is obvious that
the LSSVM-CA3 has acquired the lowest average and minimum
total generation cost if compared to other methods in a very fast



Table 10
Comparison of the obtained results for the error analysis (420 units system).

MAE RMSE NRMSE

125,000 MW
LSSVM-CA3 18.69 33.57 0.1306
ANN-GAPSO 33.48 44.71 0.1739
ANN-PSO 34.25 45.12 0.1755
ANN-GA 35.22 45.37 0.1765
ANN-ICA 35.51 46.33 0.1802

139,000 MW
LSSVM-CA3 17.34 29.33 0.1106
ANN-GAPSO 30.31 42.02 0.1584
ANN-PSO 33.63 44.71 0.1685
ANN-GA 33.54 45.56 0.1718
ANN-ICA 35.44 47.79 0.1831
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running time considering the higher complication of the analysis
for this large system. The fast convergence and evaluation of the
proposed method in solving the large-scale of CEED problem indi-
cates its capability to be used by the system operators in any real-
time electricity market.
Table 11
Results of random execution of the proposed algorithm (15 units system).

15 units, LSSVM-CA3

1600 MW

1 2 3 4

c 134.62 89.66 109.49 97.58
r2 2.59 2.47 2.80 2.61

MSE 43.47 9.13 8.05 11.86
Time (s) 0.15 0.28 0.35 0.41

Table 12
Results of random execution of the proposed algorithm (40 units system).

40 units, LSSVM-CA3

7550 MW

1 2 3 4

c 24.20 23.38 27.29 29.56
r2 4.22 4.89 5.51 6.57

MSE 1072.31 948.55 642.44 725.00
Time (s) 1.35 2.35 1.30 1.27

Table 13
Results of random execution of the proposed algorithm (140 units system).

140 units, LSSVM-CA3

36,500 MW

1 2 3 4

c 81268.28 53283.26 48517.25 63
r2 45257.32 29061.55 18572.36 27

MSE 402.81 386.16 354.74 36
Time (s) 3.21 1.77 2.10 1.9

Table 14
Comparison of the proposed algorithm with the higher number of the population size of

15 units

1600 MW

LSSVM-CA3 80 100

MSE 12.72 30.80 30.27
Avg elapsed time (s) 0.13 18.45 25.38
Lastly, the performance of all methods are studied by three
other statistical methods; RMSE, NRMSE, and MAE, where their
results have been tabulated in Table 10. From Table 10, it is very
clear that the LSSVM-CA3 has obtained the lowest error among
the others by a significant amount, which emphasizes the superior-
ity of the proposed method in a real-time analysis.
3.5. Test case 5

To further clarify on the performance of the proposed method,
several scenarios from the different technical point of view have
been considered. For the first scenario, to demonstrate the replica-
bility of the proposed method of the study, for each studied test
case, the proposed algorithm has been randomly executed four
times for each load point of the test system, where the results
are tabulated in Tables 11–13.

From the acquired results in Tables 11–13, it can be seen that,
all of the solutions are within the range of the presented results
in the previous sections.
2475 MW

1 2 3 4

651618.64 593539.57 564871.98 581544.05
49.85 48.29 53.17 46.37

8.20 16.89 5.53 6.98
0.54 0.19 0.11 0.21

8260 MW

1 2 3 4

76952.81 65268.83 54821.75 74512.04
3.61 7.04 5.29 4.63

1137.85 2868.31 1831.42 1629.26
2.33 2.84 1.37 1.04

41,800 MW

1 2 3 4

152.58 27.28 43.50 37.91 109.82
345.85 5.76 6.49 4.74 7.35

9.22 520.67 494.13 509.15 491.17
5 2.45 1.44 1.87 1.23

ANN-GAPSO (15 units system).

2475 MW

150 LSSVM-CA3 80 100 150

21.23 0.78 89.52 63.11 13.31
45.12 0.14 19.25 26.54 44.75



Table 15
Comparison of the proposed algorithm with the higher number of the population size of ANN-GAPSO (40 units system).

40 units

7550 MW 8260 MW

LSSVM-CA3 80 100 150 LSSVM-CA3 80 100 150

MSE 753.99 1569.92 1491.57 1100.91 1090.65 3088.06 2814.72 1249.17
Avg elapsed time (s) 1.55 25.32 36.45 85.37 1.29 23.61 41.25 91.54

Table 16
Comparison of the proposed algorithm with the higher number of the population size of ANN-GAPSO (140 units system).

140 units

36,500 MW 41,800 MW

LSSVM-CA3 80 100 150 LSSVM-CA3 80 100 150

MSE 353.14 383.27 374.53 373.05 512.04 1077.49 983.83 949.66
Avg elapsed time (s) 1.87 57.02 94.83 178.77 1.95 53.11 110.46 195.26

Table 17
Comparison of the proposed algorithm with LSSVM-GAPSO (15 units system).

15 units

1600 MW 2475 MW

LSSVM-CA3 LSSVM-GAPSO LSSVM-CA3 LSSVM-GAPSO

c 114.21 118.06 743710.44 610051.29
r2 3.24 3.21 68.84 108.84

MSE 12.72 12.79 0.78 12.23
Avg elapsed

time (s)
0.13 0.99 0.14 1.23

Table 18
Comparison of the proposed algorithm with LSSVM-GAPSO (40 units system).

40 units

7550 MW 8260 MW

LSSVM-CA3 LSSVM-GAPSO LSSVM-CA3 LSSVM-GAPSO

c 26.88 29.19 74390.99 65450.24
r2 7.4 8.01 5.99 11.79

MSE 753.99 1077.79 1090.65 1174.67
Avg elapsed

time (s)
1.55 2.73 1.29 7.84

Table 19
Comparison of the proposed algorithm with LSSVM-GAPSO (140 units system).

140 units

36,500 MW 41,800 MW

LSSVM-CA3 LSSVM-GAPSO LSSVM-CA3 LSSVM-GAPSO

c 63381.17 59346.85 23.56 307.87
r2 26822.02 24136.10 4.71 18.95

MSE 353.14 365.57 512.04 721.53
Avg elapsed

time (s)
1.87 2.47 1.95 3.41
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For the second scenario, due to different characteristics of the
optimization algorithms, the best population size, and parameters
of various optimization methods could be different. As ANN-
GAPSO has shown the best performance among all the other
ANN based methods according to the results in the previous test
cases, the population size of GAPSO has been adjusted to obtain
its best performance. Therefore, to investigate the ability of ANN-
GAPSO with a higher number of swarms or agents in the search
space, its population size has been increased to 80,100 and 150,
while its results have been compared to LSSVM-CA3 (for compara-
ble results, ANN-GAPSO has been performed 20 times). The results
of this scenario are presented in Tables 14–16.

As it can be seen from the results, by increasing the population
size of the GAPSO, the total performance of ANN-GAPSO has been
considerably improved, however, due to the increment in popula-
tion size of GAPSO, the total running time of the ANN-GAPSO has
also been significantly increased, which does not make the
approach suitable for real-time analysis. Whereas, the proposed
method has achieved a better solution in a lower time.

For the third scenario, to demonstrate the advantage of LSSVM-
CA3 in comparison to the combination of the other algorithms with
LSSVM, the GAPSO has been combined with LSSVM (GAPSO has
been selected to be compared with LSSVM for the same reason
as the previous scenario). To have comparable results, the popula-
tion sizes of both optimizers were set to 50 and have been exe-
cuted 20 times. The results are charted in Tables 17–19.

From Tables 17–19, it is evident that the proposed method
(LSSVM-CA3) outperforms LSSVM-GAPSO with a considerable dif-
ference in all the studied cases.

4. Conclusions

An accurate, fast and reliable method of dispatching generating
resources is a critical tool in the real-time electricity market to
ensure the delivery of consistent and economic electricity services
to all the grid-connected customers. In this paper, a hybrid math-
ematical model based on LSSVM and CA3 for optimal scheduling
of generating units in the context of a real-time electricity market
has been proposed. Several physical constraints and environmental
impacts of the generating units through different test systems
were considered and analyzed to demonstrate the practicality
and efficiency of the proposed model. The optimal scheduling for
the hourly load curve of the test systems has been prepared by
the MIQP for training purposes. The comparison cases were per-
formed between LSSVM-CA3 and other ANN coupled prediction
methods. According to the obtained results of the proposed
method the following conclusions can be drawn:

� The proposed model demonstrated superior stable performance
in optimal scheduling of the generating units and achieved the
lowest values of MSE, RMSE, and MAE compared to other hybrid
well-established ANN methods which are widely used for
power market forecasting.



Table A.1
15 units system characteristics.

Unit no. Pmin
i (MW) Pmax

i (MW) ai ($/h) bi ($/MW h) ci ($/MW2 h) P0
i (MW) URi (MW) DRi (MW)

1 150 455 671 10.1 0.000299 400 80 120
2 150 455 574 10.2 0.000183 300 80 120
3 20 130 374 8.8 0.001126 105 130 130
4 20 130 374 8.8 0.001126 100 130 130
5 150 470 461 10.4 0.000205 90 80 120
6 135 460 630 10.1 0.000301 400 80 120
7 135 465 548 9.8 0.000364 350 80 120
8 60 300 227 11.2 0.000338 95 65 100
9 25 162 173 11.2 0.000807 105 60 100
10 25 160 175 10.7 0.001203 110 60 100
11 20 80 186 10.2 0.003586 60 80 80
12 20 80 230 9.9 0.005513 40 80 80
13 25 85 225 13.1 0.000371 30 80 80
14 15 55 309 12.1 0.001929 20 55 55
15 15 55 323 12.4 0.004447 20 55 55
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� The proposed method acquired the lowest residual values with
the highest placement of the predictions within the confidence
bound in a very fast processing time in comparison to all other
methods of ANN, and where the reduction percentage in pro-
cessing time compared to MIQP is almost equal to 99% for the
first and the third test case and 60% for the second test case.

� Analysis of the NRMSE shows the excellent performance of
LSSVM-CA3 compared to other methods for all the studied
cases.

� The proposed method is capable of understanding the equality
and inequality constraints of generating units as well as adher-
ing to their physical and environmental constraints.

� The proposed method has adopted a tuning optimizer for its
adjusting parameters (c and r2) to obtain the best possible
solution without the interference of the human experience dur-
ing the optimization process.
Table A.2
Prohibited operating zones of 15 units system.

Unit no. Prohibited operating zones (MW)

2 [185 225][305 335][420 450]
5 [180 200][305 335][390 420]
6 [230 255][365 395][430 455]
12 [30 40][55 65]

Table B.1
40 units system characteristics.

Unit
no.

Pmin
i

(MW)
Pmax
i

(MW)
ai ($/h) bi ($/

MW h)
ci ($/
MW2 h)

di ($/h)

1 36 114 94.705 6.73 0.0069 100
2 36 114 94.705 6.73 0.0069 100
3 60 120 309.54 7.07 0.02028 100
4 80 190 369.03 8.18 0.00942 150
5 47 97 148.89 5.35 0.0114 120
6 68 140 222.33 8.05 0.01142 100
7 110 300 287.71 8.03 0.00357 200
8 135 300 391.98 6.99 0.00492 200
9 135 300 455.76 6.6 0.00573 200
10 130 300 722.82 12.9 0.00605 200
11 94 375 635.2 12.9 0.00515 200
12 94 375 654.69 12.8 0.00569 200
13 125 500 913.4 12.5 0.00421 300
14 125 500 1760.4 8.84 0.00752 300
15 125 500 1760.4 8.84 0.00752 300
16 125 500 1760.4 8.84 0.00752 300
17 220 500 647.85 7.97 0.00313 300
18 220 500 649.69 7.95 0.00313 300
According to all above mentioned facts and the considerable
accuracy of the obtained results, it implies that the proposed
model of the study is applicable to the real-time power market.
Appendix A

For ease of reference all the system specifications which have
been used in the studied cases is given in this section. In this
appendix all the required data for the 15 units system is given
(all the units are thermal). This data is based in [58]. Unit data
can be found in Tables A.1 and A.2.
Appendix B

In this appendix all the required data for the 40 units system is
given (all the units are thermal). This data is based in [45]. Unit
data is given in Table B.1.
Appendix C

In this appendix all the required data for the 140 units system is
given. This data is based in [59]. Unit data can be found in Tables
C.1–C.3.
ei (rad/
MW)

ai (ton/h) bi (ton/
MW h)

ci (ton/
MW2 h)

gi (ton/h) di (1/MW)

0.084 60 �2.22 0.048 1.31 0.0569
0.084 60 �2.22 0.048 1.31 0.0569
0.084 100 �2.36 0.0762 1.31 0.0569
0.063 120 �3.14 0.054 0.9142 0.0454
0.077 50 �1.89 0.085 0.9936 0.0406
0.084 80 �3.08 0.0854 1.31 0.0569
0.042 100 �3.06 0.0242 0.655 0.02846
0.042 130 �2.32 0.031 0.655 0.02846
0.042 150 �2.11 0.0335 0.655 0.02846
0.042 280 �4.34 0.425 0.655 0.02846
0.042 220 �4.34 0.0322 0.655 0.02846
0.042 225 �4.28 0.0338 0.655 0.02846
0.035 300 �4.18 0.0296 0.5035 0.02075
0.035 520 �3.34 0.0512 0.5035 0.02075
0.035 510 �3.55 0.0496 0.5035 0.02075
0.035 510 �3.55 0.0496 0.5035 0.02075
0.035 220 �2.68 0.0151 0.5035 0.02075
0.035 222 �2.66 0.0151 0.5035 0.02075



Table B.1 (continued)

Unit
no.

Pmin
i

(MW)
Pmax
i

(MW)
ai ($/h) bi ($/

MW h)
ci ($/
MW2 h)

di ($/h) ei (rad/
MW)

ai (ton/h) bi (ton/
MW h)

ci (ton/
MW2 h)

gi (ton/h) di (1/MW)

19 242 550 647.83 7.97 0.00313 300 0.035 220 �2.68 0.0151 0.5035 0.02075
20 242 550 647.81 7.97 0.00313 300 0.035 220 �2.68 0.0151 0.5035 0.02075
21 254 550 785.96 6.63 0.00298 300 0.035 290 �2.22 0.0145 0.5035 0.02075
22 254 550 785.96 6.63 0.00298 300 0.035 285 �2.22 0.0145 0.5035 0.02075
23 254 550 794.53 6.66 0.00284 300 0.035 295 �2.26 0.0138 0.5035 0.02075
24 254 550 794.53 6.66 0.00284 300 0.035 295 �2.26 0.0138 0.5035 0.02075
25 254 550 801.32 7.1 0.00277 300 0.035 310 �2.42 0.0132 0.5035 0.02075
26 254 550 801.32 7.1 0.00277 300 0.035 310 �2.42 0.0132 0.5035 0.02075
27 10 150 1055.1 3.33 0.52124 120 0.077 360 �1.11 1.842 0.9936 0.0406
28 10 150 1055.1 3.33 0.52124 120 0.077 360 �1.11 1.842 0.9936 0.0406
29 10 150 1055.1 3.33 0.52124 120 0.077 360 �1.11 1.842 0.9936 0.0406
30 47 97 148.89 5.35 0.0114 120 0.077 50 �1.89 0.085 0.9936 0.0406
31 60 190 222.92 6.43 0.0016 150 0.063 80 �2.08 0.0121 0.9142 0.0454
32 60 190 222.92 6.43 0.0016 150 0.063 80 �2.08 0.0121 0.9142 0.0454
33 60 190 222.92 6.43 0.0016 150 0.063 80 �2.08 0.0121 0.9142 0.0454
34 90 200 107.87 8.95 0.0001 200 0.042 65 �3.48 0.0012 0.655 0.02846
35 90 200 116.58 8.62 0.0001 200 0.042 70 �3.24 0.0012 0.655 0.02846
36 90 200 116.58 8.62 0.0001 200 0.042 70 �3.24 0.0012 0.655 0.02846
37 25 110 307.45 5.88 0.0161 80 0.098 100 �1.98 0.095 1.42 0.0677
38 25 110 307.45 5.88 0.0161 80 0.098 100 �1.98 0.095 1.42 0.0677
39 25 110 307.45 5.88 0.0161 80 0.098 100 �1.98 0.095 1.42 0.0677
40 242 550 647.83 7.97 0.00313 300 0.035 220 �2.68 0.0151 0.5035 0.02075

Table C.1
140 units system characteristics.

Unit no. Pmin
i (MW) Pmax

i (MW) ai ($/h) bi ($/MW h) ci ($/MW2 h) P0
i (MW) URi (MW) DRi (MW)

Coal#01 71 119 1220.645 61.242 0.032888 98.4 30 120
Coal#02 120 189 1315.118 41.095 0.00828 134 30 120
Coal#03 125 190 874.288 46.31 0.003849 141.5 60 60
Coal#04 125 190 874.288 46.31 0.003849 183.33 60 60
Coal#05 90 190 1976.469 54.242 0.042468 125 150 150
Coal#06 90 190 1338.087 61.215 0.014992 91.3 150 150
Coal#07 280 490 1818.299 11.791 0.007039 401.1 180 300
Coal#08 280 490 1133.978 15.055 0.003079 329.5 180 300
Coal#09 260 496 1320.636 13.226 0.005063 356.1 300 510
Coal#10 260 496 1320.636 13.226 0.005063 427.3 300 510
Coal#11 260 496 1320.636 13.226 0.005063 412.2 300 510
Coal#12 260 496 1106.539 14.498 0.003552 370.1 300 510
Coal#13 260 506 1176.504 14.651 0.003901 301.8 600 600
Coal#14 260 509 1176.504 14.651 0.003901 368 600 600
Coal#15 260 506 1176.504 14.651 0.003901 301.9 600 600
Coal#16 260 505 1176.504 14.651 0.003901 476.4 600 600
Coal#17 260 506 1017.406 15.669 0.002393 283.1 600 600
Coal#18 260 506 1017.406 15.669 0.002393 414.1 600 600
Coal#19 260 505 1229.131 14.656 0.003684 328 600 600
Coal#20 260 505 1229.131 14.656 0.003684 389.4 600 600
Coal#21 260 505 1229.131 14.656 0.003684 354.7 600 600
Coal#22 260 505 1229.131 14.656 0.003684 262 600 600
Coal#23 260 505 1267.894 14.378 0.004004 461.5 600 600
Coal#24 260 505 1229.131 14.656 0.003684 371.6 600 600
Coal#25 280 537 975.926 16.261 0.001619 462.6 300 300
Coal#26 280 537 1532.093 13.362 0.005093 379.2 300 300
Coal#27 280 549 641.989 17.203 0.000993 530.8 360 360
Coal#28 280 549 641.989 17.203 0.000993 391.9 360 360
Coal#29 260 501 911.533 15.274 0.002473 480.1 180 180
Coal#30 260 501 910533 15.212 0.002547 319 180 180
Coal#31 260 506 1074.81 15.033 0.003542 329.5 600 600
Coal#32 260 506 1074.81 15.033 0.003542 333.8 600 600
Coal#33 260 506 1074.81 15.033 0.003542 390 600 600
Coal#34 260 506 1074.81 15.033 0.003542 432 600 600
Coal#35 260 500 1278.46 13.992 0.003132 402 660 660
Coal#36 260 500 861.742 15.679 0.001323 428 900 900
Coal#37 120 241 408.834 16.542 0.00295 178.4 180 180
Coal#38 120 241 408.834 16.542 0.00295 194.1 180 180
Coal#39 423 774 1288.815 16.518 0.000991 474 600 600
Coal#40 423 769 1436.251 15.815 0.001581 609.8 600 600
LNG#1 3 19 669.988 75.464 0.90236 17.8 210 210
LNG#2 3 28 134.544 129.544 0.110295 6.9 366 366
LNG-CC#1 160 250 3427.912 56.613 0.024493 224.3 702 702
LNG-CC#2 160 250 3751.722 54.451 0.029156 210 702 702

(continued on next page)
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Table C.1 (continued)

Unit no. Pmin
i (MW) Pmax

i (MW) ai ($/h) bi ($/MW h) ci ($/MW2 h) P0
i (MW) URi (MW) DRi (MW)

LNG-CC#3 160 250 3918.78 54.736 0.024667 212 702 702
LNG-CC#4 160 250 3379.58 58.034 0.016517 200.8 702 702
LNG-CC#5 160 250 3345.296 55.981 0.026584 220 702 702
LNG-CC#6 160 250 3138.754 61.52 0.00754 232.9 702 702
LNG-CC#7 160 250 3453.05 58.635 0.01643 168 702 702
LNG-CC#8 160 250 5119.3 44.647 0.045934 208.4 702 702
LNG-CC#9 165 504 1898.415 71.584 0.000044 443.9 1350 1350
LNG-CC#10 165 504 1898.415 71.584 0.000044 426 1350 1350
LNG-CC#11 165 504 1898.415 71.584 0.000044 434.1 1350 1350
LNG-CC#12 165 504 1898.415 71.584 0.000044 402.5 1350 1350
LNG-CC#13 180 471 2473.39 85.12 0.002528 357.4 1350 1350
LNG-CC#14 180 561 2781.705 87.682 0.000131 423 720 720
LNG-CC#15 103 341 5515.508 69.532 0.010372 220 720 720
LNG-CC#16 100 312 6240.909 58.172 0.012464 273.5 1500 1500
LNG-CC#17 153 471 9960.11 46.636 0.039441 336 1656 1656
LNG-CC#18 163 500 3671.977 76.947 0.007278 432 2160 2160
LNG-CC#19 95 302 1837.383 80.761 0.000044 220 900 900
LNG-CC#20 160 511 3108.395 70.136 0.000044 410.6 1200 1200
LNG-CC#21 160 511 3108.395 70.136 0.000044 422.7 1200 1200
LNG-CC#22 196 490 7095.484 49.84 0.018827 351 1014 1014
LNG-CC#23 196 490 3392.732 65.404 0.010852 296 1014 1014
LNG-CC#24 196 490 7095.484 49.84 0.018827 411.1 1014 1014
LNG-CC#25 196 490 7095.484 49.84 0.018827 263.2 1014 1014
LNG-CC#26 130 432 4288.32 66.645 0.03456 370.3 1350 1350
LNG-CC#27 130 432 13813.001 22.941 0.08154 418.7 1350 1350
LNG-CC#28 137 455 4435.493 64.314 0.023534 409.6 1350 1350
LNG-CC#29 137 455 9750.75 45.017 0.035475 412 1350 1350
LNG-CC#30 195 541 1042.366 70.644 0.000915 423.2 780 780
LNG-CC#31 175 536 1159.895 70.959 0.000044 428 1650 1650
LNG-CC#32 175 540 1159.895 70.959 0.000044 436 1650 1650
LNG-CC#33 175 538 1303.99 70.302 0.001307 428 1650 1650
LNG-CC#34 175 540 1156.193 70.662 0.000392 425 1650 1650
LNG-CC#35 330 574 2118.968 71.101 0.000087 497.2 1620 1620
LNG-CC#36 160 531 779.519 37.854 0.000521 510 1482 1482
LNG-CC#37 160 531 829.888 37.768 0.000498 470 1482 1482
LNG-CC#38 200 542 2333.69 67.983 0.001046 464.1 1668 1668
LNG-CC#39 56 132 2028.954 77.838 0.13205 118.1 120 120
LNG-CC#40 115 245 4412.017 63.671 0.096968 141.3 180 180
LNG-CC#41 115 245 2982.219 79.458 0.054868 132 120 180
LNG-CC#42 115 245 2982.219 79.458 0.054868 135 120 180
LNG-CC#43 207 307 3174.939 93.966 0.014382 252 120 180
LNG-CC#44 207 307 3218.359 94.723 0.013161 221 120 180
LNG-CC#45 175 345 3723.822 66.919 0.016033 245.9 318 318
LNG-CC#46 160 531 779.519 37.854 0.000521 510 1482 1482
LNG-CC#47 175 345 3551.405 68.185 0.013653 247.9 318 318
LNG-CC#48 175 345 4322.165 60.821 0.028148 183.6 318 318
LNG-CC#49 175 345 3493.739 68.551 0.01347 288 318 318
NUCLEAR#01 360 580 226.799 2.842 0.000064 557.4 18 18
NUCLEAR#02 415 645 382.932 2.946 0.000252 529.5 18 18
NUCLEAR#03 795 984 156.987 3.096 0.000022 800.8 36 36
NUCLEAR#04 795 978 154.484 3.04 0.000022 801.5 36 36
NUCLEAR#05 578 682 332.834 1.709 0.000203 582.7 138 204
NUCLEAR#06 615 720 326.599 1.668 0.000198 680.7 144 216
NUCLEAR#07 612 718 345.306 1.789 0.000215 670.7 144 216
NUCLEAR#08 612 720 350.372 1.815 0.000218 651.7 144 216
NUCLEAR#09 758 964 370.377 2.726 0.000193 921 48 48
NUCLEAR#10 755 958 367.067 2.732 0.000197 916.8 48 48
NUCLEAR#11 750 1007 124.875 2.651 0.000324 911.9 36 54
NUCLEAR#12 750 1006 130.785 2.798 0.000344 898 36 54
NUCLEAR#13 713 1013 878.746 1.595 0.00069 905 30 30
NUCLEAR#14 718 1020 827.959 1.503 0.00065 846.5 30 30
NUCLEAR#15 791 954 432.007 2.425 0.000233 850.9 30 30
NUCLEAR#16 786 952 445.606 2.499 0.000239 843.7 30 30
NUCLEAR#17 795 1006 467.223 2.674 0.000261 841.4 36 36
NUCLEAR#18 795 1013 475.94 2.692 0.000259 835.7 36 36
NUCLEAR#19 795 1021 899.462 1.633 0.000707 828.8 36 36
NUCLEAR#20 795 1015 1000.367 1.816 0.000786 846 36 36
OIL#01 94 203 1269.132 98.83 0.014355 179 120 120
OIL#02 94 203 1269.132 89.83 0.014355 120.8 120 120
OIL#03 94 203 1269.132 89.83 0.014355 121 120 120
OIL#04 244 379 4965.124 64.125 0.030266 317.4 480 480
OIL#05 244 379 4965.124 64.125 0.030266 318.4 480 480
OIL#06 244 379 4965.124 64.125 0.030266 335.8 480 480
OIL#07 95 190 2243.185 76.129 0.024027 151 240 240
OIL#08 95 189 2290.381 81.805 0.00158 129.5 240 240
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Table C.2
Valve-point data of 140 units system with unit characteristics.

Unit no. ai ($/h) bi ($/MW h) ci ($/MW2 h) di ($/h) ei (rad/MW)

COAL#05 1976.469 54.242 0.042468 700 0.080
COAL#10 1320.636 13.226 0.005063 600 0.055
COAL#15 1176.504 14.651 0.003901 800 0.060
COAL#22 1229.131 14.656 0.003684 600 0.050
COAL#33 1074.810 15.033 0.003542 600 0.043
COAL#40 1436.251 15.815 0.001581 600 0.043
LNG_CC#10 1898.415 71.584 0.000044 1100 0.043
LNG_CC#28 13813.001 22.941 0.081540 1200 0.030
LNG_CC#30 9750.750 45.017 0.035475 1000 0.050
LNG_CC#42 2982.219 79.458 0.054868 1000 0.050
OIL#08 2290.381 81.805 0.001580 600 0.070
OIL#10 6743.302 46.665 0.076810 1200 0.043

Table C.3
Prohibited operating zones of 140 units system.

Unit no. Prohibited operating zones (MW)

COAL#08 [250 280][305 335][420 450]
COAL#32 [220 250][320 350][390 420]
LNG_CC#32 [230 255][365 395][430 455]
OIL#25 [50 75][85 95]

Table C.1 (continued)

Unit no. Pmin
i (MW) Pmax

i (MW) ai ($/h) bi ($/MW h) ci ($/MW2 h) P0
i (MW) URi (MW) DRi (MW)

OIL#09 116 194 1681.533 81.14 0.022095 130 120 120
OIL#10 175 321 6743.302 46.665 0.07681 218.9 180 180
OIL#11 2 19 394.398 78.412 0.953443 5.4 90 90
OIL#12 4 59 1243.165 112.088 0.000044 45 90 90
OIL#13 15 83 1454.74 90.871 0.072468 20 300 300
OIL#14 9 53 1011.051 97.116 0.000448 16.3 162 162
OIL#15 12 37 909.269 83.244 0.599112 20 114 114
OIL#16 10 34 689.378 95.665 0.244706 22.1 120 120
OIL#17 112 373 1443.792 91.202 0.000042 125 1080 1080
OIL#18 4 20 535.553 104.501 0.085145 10 60 60
OIL#19 5 38 617.734 83.015 0.524718 13 66 66
OIL#20 5 19 90.966 127.795 0.176515 7.5 12 6
OIL#21 50 98 974.447 77.929 0.063414 53.2 300 300
OIL#22 5 10 263.81 92.779 2.740485 6.4 6 6
OIL#23 42 74 1335.594 80.95 0.112438 69.1 60 60
OIL#24 42 74 1033.871 89.073 0.041529 49.9 60 60
OIL#25 41 105 1391.325 161.288 0.000911 91 528 528
OIL#26 17 51 4477.11 161.829 0.005245 41 300 300
OIL#27 7 19 57.794 84.972 0.234787 13.7 18 30
OIL#28 7 19 57.794 84.972 0.234787 7.4 18 30
OIL#29 26 40 1258.437 16.087 1.111878 28.6 72 120
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