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A crucial issue in the smart grid is how to manage the controllable load resources of end-users, in order to
reduce the economic costs of system operation and facilitate to utilize renewable energies. This paper
investigates a fast randomized first-order optimization method to explore the solution of dynamic energy
management (DEM) for the smart grid integrated large-scale distributed energy resources. A complicated
time-coupling and multi-variable optimal problem is presented to determine the load scheduling for the
electricity customers. The main challenge of the proposed problem is to enable the efficient processing of
the large data volumes and optimization of aggregated data involved in DEM. The first-order method as
one of big data optimization algorithms is able to exhibit significant performance for computing globally
optimal solutions based on randomization techniques. Using such solution approach, we can reformulate
the original problem into an unconstrained augmented Lagrangian function. The optimal results can be
obtained from computing the gradient based on the information of the first-order derivative. To speed
up the calculations of obtaining the feasible solutions, the optimization variable matrix used to update
the Lagrangian multiplier can be replaced with the corresponding low-rank representation in the itera-
tion process. Both theoretical analysis and simulation results suggest that the proposed approach may
effectively solve the optimal scheduling problem of DEM considering users’ participation.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamic energy management (DEM) enables electricity
customers to change their energy consumptions by means of
price-driven demand response mechanisms, to facilitate the users
to actively take participation into the process of power system
operation. In the conventional power grids, DEM is a well-
investigated topic but not the case for the smart grid [1]. A smart
grid is the modern power grid integrated with a large amount of
distributed renewable energy, controllable electricity appliances,
energy storage devices from the energy supply and consumption
sides. This will make the DEM become much more complicated,
which brings the challenge to achieve the real-time decision-
making process for the control center of the power system opera-
tion. The infrastructure shows the advanced technical characteris-
tics of the smart grid can be beneficial to enhance the economic,
reliability and sustainability of the power system, but it also will
pose a significant problem that how to manage the electricity load
and controllable distributed energy resources in the context of
massive data information. In more detail, DEM in the power grid
can be described as an optimal problem for the scheduling of all
of the controllable appliances of the users [2]. However, the large
volumes of aggregated data generated by millions of end-users in
the optimization process become a simple optimal control problem
into a time-coupling, multi-variable, high-dimensional optimiza-
tion issue in the smart grid environment. Thus, in order to achieve
more efficient analyzing performance of DEM in the load schedul-
ing, the solution algorithm to tackle such complicated optimization
problem, which is associated with massive load data, needs to be
investigated and studied.

Some researchers have focused on the DEM problem in the con-
text of the smart grid. In [3], an optimal DEM scheme based on Lya-
punov optimization theory was presented to perform the load
scheduling with consideration of unpredictable load demands
and distributed energy resources. An approach based on the
mixed-integer linear programming paradigm was developed to
determine power consumption and management of renewable
resources in [4]. The work in [5] showed a rule-based energy man-
agement strategy was able to improve the fuel economy of plug-in
hybrid electric vehicles using dynamic programming. Different
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Nomenclature

Symbols
gDG,i(t) output of distributed generation resource of user i in

time period t
dIDR,i(t) energy provided for satisfying interruptible load de-

mand of user i in time period t
dDR,i(t) energy provided for satisfying load demand of demand

response resources of user i in time period t
dG,i(t) energy sold to power grids in time period t
cDG,i(t) energy saved in time period t
gmax
DG;i maximum output of the distributed generation resource

of user i
LIDR,i(t) interruptible load demand of user i in time period t
Lmax
IDR;i maximum interruptible load demand of user i
gIDR,i(t) energy drawn from the power grid to meet user i’s inter-

ruptible load demand in time period t
rIDR,i(t) energy provided from energy storage device of user i to

satisfy interruptible load demand in time period t
LDR,i(t) load demand of user i’s demand response programs in

time period t
Lmax
DR;i maximum load demand of user i’s demand response

programs
UDR aggregate demand of user i’s all elastic load resources
TD set of times that the demand response appliances can

work
gDR,i(t) energy drawn from the power grid to meet user i’s elas-

tic demand in time period t
rDR,i(t) energy provided from energy storage device of user i to

satisfy elastic load demand in time period t
Ei(t) energy level of user i’s energy storage device in time

period t
Emax
i maximum capacity of user i’s energy storage device

Ci(t) energy charging the energy storage device in time peri-
od t

Ri(t) energy discharged from energy storage device in time
period t

Cmax
i maximum charging capacity of user i’s energy storage

device
Rmax
i maximum discharging capacity of user i’s energy stor-

age device
cG,i(t) energy drawn from the power grid for user i’s energy

storage device in time period t
rG,i(t) energy sold to the grid from user i’s energy storage de-

vice in time period t
ICiðtÞ>0 state of charging the energy storage device
IRiðtÞ>0 state of discharging the energy storage device
P(t) energy supplied from the load-serving entity in time

period t
ETi energy level of user i’s energy storage device in time

period T
k Lagrangian multiplier associated with equality con-

straints
l Lagrangian multiplier associated with inequality con-

straints
r scalar parameter
v iteration count
av iteration step-size
r rank of matrix
N number of end-users

Abbreviations
DEM dynamic energy management
RTP real-time pricing
SVD singular value decomposition
RAM random access memory
CPU central processing unit
GA genetic algorithm
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from centralized optimization approaches, [6] established a decen-
tralized model with minimal information exchange and communi-
cations between users to determine optimal energy trading
amounts. Another modeling technique was proposed in [7–10],
where the study of DEM with residential energy system was con-
ducted. The authors addressed the model with individual end-
user behavior constraints, whereby the optimal load scheduling
could be obtained. Additionally, DEM can be effectively imple-
mented in the manner of demand response programs or transac-
tive energy [11]. The setting of the power prices will have a
profound impact on encouraging consumers’ participation in
energy savings and cooperation. A load scheduling problem with
price uncertainty and temporally-coupled constraints in the smart
grid was presented in [12], where the real-time pricing (RTP)
model was proposed to incentivize energy resources scheduling.
The incentive mechanism is also used to perform household energy
management. Ref. [13] designed a policy scheme to regulate
household energy consumption behavior in a dynamic active
energy demand management system. According to [14], the pro-
posed real-time optimal demand response management for resi-
dential appliances was designed via stochastic optimization and
robust optimization approached considering deferrable/non-
deferrable and interruptible/non-interruptible load models. On
optimization in residential energy management, [15] presented a
mixed integer multi-time scale stochastic optimization to formu-
late the load scheduling considering different types of load classes.
It is highlighted that DEM can be described as an optimal con-
trol problem for the scheduling of all of the controllable appliances
in the smart grid. Considering the complexity of modeling and
solving such problem, some previous research associated with its
modeling techniques and solution algorithms has been somewhat
carried out. The study of [16] deals with load control in a multiple-
residence setup, from which the optimal amount of electricity pro-
duction and consumption schedule can be obtained using a dis-
tributed subgradient method. In addition, the authors of [17]
proposed a joint scheduling scheme for the electric supply and
demand of home energy management system in term of the
sequential procedure of prediction. Instead of using an optimiza-
tion formulation, [18] employed a simulation testing method for
conducting the pre-cooling strategies of thermal appliance
scheduling. Under the environment of the smart grid, mass energy
appliances in the electricity demand side will participate into DEM
and interact with the smart grid. The main challenge is how to ana-
lyze the emerging control problem for such DEM integrated with
aggregated big data from energy customers.

In this paper, we proposed an optimization method from the
area of big data analytics for the DEM considering different
demand response programs. Our method makes decisions on the
load scheduling of both elastic load and inelastic load, as well as
the operations of distributed renewable energy resources and
energy storage devices. We aim to obtain an optimal energy man-
agement scheduling associated with the usage of all the energy
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resources in the smart grid network based on the proposed ran-
domized first-order optimization method. Specifically, our contri-
butions in this paper include:

(1) An optimization model about comprehensive load schedul-
ing is developed in the framework of DEM. We formulate
the optimal scheduling problem by minimizing the genera-
tion cost of the associated power utility, as the large number
of users’ controllable devices is accommodated into the sys-
tem. The model demonstrates that the available energy
resources from the customers are capable of providing the
benefits for the power grid economic operation.

(2) The proposed problem consists of a large number of vari-
ables and constraints, which can be formulated into a
large-scale optimization problem. As such, we present a fast
randomized first-order optimization algorithm to efficiently
solve the problem.

(3) Using the proposed methodology, the case studies show the
solution to determine the optimal load scheduling can be
effectively obtained in the environment of diversified and
complex data. Moreover, it also illustrates that the central-
ized computational method in this paper has better perfor-
mance of solving the optimization problem than others.

The remainder of this paper is organized as follows: The optimal
load scheduling problem with consideration of different end-use
energy resources is presented in Section 2. Section 3 provides a
computational framework using the proposed randomized first-
order algorithm. The simulation results in Section 4 shows the
application of the proposed methodology. Finally, Section 5 sum-
marizes the main conclusions and contributions of this study.

2. Problem formulation

In this section, we describe the model of DEM, and formulate
the optimal load scheduling problem of integrated end-use con-
trollable devices. The presented optimization model is to focus
on the operation characteristics of end-use appliances and power
utility from the component and system perspectives.

2.1. System model

2.1.1. Distributed generation resource
We assume that each end-user has a distributed generation

resource, whose output energy can be used to serve the load
demand, charge energy storage device, and sell to the grid. Hence,
we have

gDG;iðtÞ ¼ dIDR;iðtÞ þ dDR;iðtÞ þ dG;iðtÞ þ cDG;iðtÞ ð1Þ

0 6 gDG;iðtÞ 6 gmax
DG;i ð2Þ

where gDG,i(t) is the output of the distributed generation resource of
user i in time period t, dIDR,i(t) is the energy provided for satisfying
interruptible load demand of user i in time period t, dDR,i(t) is the
energy provided for satisfying load demand of demand response
resources of user i in time period t, dG,i(t) is the energy sold to power
grids in time period t, cDG,i(t) is the energy saved in time period t,
and gmax

DG;i is the maximum output of the distributed generation
resource of user i.

2.1.2. Inelastic load demand
Each user operates a set of inelastic load appliances which are

interruptible at their working time. The energy demand of the
inelastic load appliances can be satisfied from user’s distributed
generation resource, the power grid, or energy storage.
0 6 LIDR;iðtÞ 6 Lmax
IDR;i ð3Þ

LIDR;iðtÞ ¼ dIDR;iðtÞ þ gIDR;iðtÞ þ rIDR;iðtÞ ð4Þ
where LIDR,i(t) is the interruptible load demand of user i in time
period t, Lmax

IDR;i is the maximum interruptible load demand of user
i, gIDR,i(t) is the energy drawn from the power grid to meet user i’s
interruptible load demand in time period t, and rIDR,i(t) is the energy
provided from energy storage device of user i to satisfy interruptible
load demand in time period t.

2.1.3. Demand response
Still, user i can optimize the energy consumption of flexible load

appliances across the setting time TD.

0 6 LDR;iðtÞ 6 Lmax
DR;i ð5Þ

XTD
t

LDR;iðtÞ P UDR ð6Þ

LDR;iðtÞ ¼ dDR;iðtÞ þ gDR;iðtÞ þ rDR;iðtÞ ð7Þ
where LDR,i(t) is the load demand of user i’s demand response pro-
grams in time period t, Lmax

DR;i is the maximum load demand of user
i’s demand response programs, UDR is the aggregate demand of user
i’s all elastic load resources during the time TD, TD is the set of times
that the demand response appliances can work, gDR,i(t) is the energy
drawn from the power grid to meet user i’s elastic demand in time
period t, and rDR,i(t) is the energy provided from energy storage
device of user i to satisfy elastic load demand in time period t.

2.1.4. Energy storage
A customer i can store the energy to implement the flexible load

scheduling using the battery. We model the dynamics of the
energy storage device as follows.

Eiðt þ 1Þ ¼ EiðtÞ þ CiðtÞ � RiðtÞ ð8Þ

CiðtÞ ¼ cDG;iðtÞ þ cG;iðtÞ ð9Þ

RiðtÞ ¼ rIDR;iðtÞ þ rDR;iðtÞ þ rG;iðtÞ ð10Þ

ICiðtÞ>0 þ IRiðtÞ>0 6 1 ð11Þ

0 6 EiðtÞ 6 Emax
i ð12Þ

0 6 CiðtÞ 6 min Cmax
i ; Emax

i � EiðtÞ
� � ð13Þ

0 6 RiðtÞ 6 min Rmax
i ; EiðtÞ

� � ð14Þ
where Ei(t) is the energy level of user i’s energy storage device in
time period t, Emax

i is the maximum capacity of user i’s energy stor-
age device, Ci(t) is the energy charging the energy storage device in
time period t, Ri(t) is the energy discharged from energy storage
device in time period t, Cmax

i and Rmax
i are the maximum charging

and discharging capacity of user i’s energy storage device, cG,i(t) is
the energy drawn from the power grid for user i’s energy storage
device in time period t, and rG,i(t) is the energy sold to the grid from
user i’s energy storage device in time period t. ICiðtÞ>0 and IRiðtÞ>0 indi-
cate the states of charging and discharging the energy storage
device respectively.

2.1.5. System-Level load serving
From the system-level perspective, we consider the load

scheduling can be conducted by a load-serving entity. The
load-serving entity may represent a regulated monopoly like most
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utility companies which serve to satisfy the energy demand of a set
users. Considering some end-use controllable resources integrated
into the grid, the model of energy generation for the load-serving
entity is developed as follows.

PðtÞ ¼
X
i

LDR;iðtÞ þ LIDR;iðtÞ þ cG;iðtÞ
�dIDR;iðtÞ � gIDR;iðtÞ � dDR;iðtÞ � gDR;iðtÞ
�rIDR;iðtÞ � rDR;iðtÞ � rG;iðtÞ

0
B@

1
CA ð15Þ

where P(t) is the energy supplied from the load-serving entity.
2.2. Modeling for dynamic energy management

We can now state precisely the objective of the DEM model as
the constrained minimization of the expected generation cost for a
load-serving entity.

F ¼ min
1
T

XT�1

t¼1

Eff ½PðtÞ�g ð16Þ
f ðPðtÞÞ ¼ aP2ðtÞ þ bPðtÞ þ c ð17Þ
Each day is divided into T periods of equal duration, indexed by

t 2 f1;2; . . . ; Tg. f(P(t)) is the utility company’s energy generation
cost function [19].

In summary, combined with user model and supply model
before mentioned, the mathematical model of load scheduling for
the DEM can be obtained according to (1)–(17). We can see the
presented model is a time-coupling optimization problem due to
constraint (8)–(10), (13) and (14). The decision variables in the
model include dIDR,i(t), dDR,i(t), dG,i(t), cDG,i(t), cG,i(t), gIDR,i(t), gDR,i(t),
rIDR,i(t), rDR,i(t), and rG,i(t). Generally, the DEM problem is formu-
lated as the mixed integer linear programming model, where the
binary variable as the states of charging and discharging the energy
storage device. In the specific case, when the states of all the
energy storage are given, all entries in the control decision will
be equal to 1, and in this case the DEM problem can be described
as a linear programming problem. Considering the computational
complexity of such problem due to multiple numbers of users in
the smart grid, this paper focuses on this specific case.

For dynamic energy management (DEM), we consider an elec-
tric power distribution network consisting of a set of energy users.
Each user has a renewable distributed generation unit, an energy
storage device, and a connection to the power grid, which collabo-
ratively meet its elastic and inelastic load demand. Load scheduling
decisions are made dynamically by the utility company in each
time slot. In comparison, the DEM problem can be formulated as
the load scheduling model. The conventional economic dispatch
problem considering the participation of distributed generations
and demand response is not load scheduling problem, but genera-
tion scheduling problem. In mathematics, the decision variables of
the proposed DEM model are used to represent the behaviors of
load appliances, energy storage devices, and distributed generation
sources in the user sector. Generally, the control variables of the
conventional economic dispatch model denote the output of the
generation units in the generation sector. Hence, it exits the differ-
ence between the DEM model and the conventional economic dis-
patch problem, regardless of concepts or models.
3. Solution methodology

In order to obtain the optimal scheduling of the DEM, a fast ran-
domized first-order optimization algorithm is presented, which is
used to solve the DEM model based on the Lagrangian multiplier
framework.
3.1. The Lagrangean multiplier framework

For the complicated constraint (8) which has the time-coupling
characteristic, we can relax the energy level dynamics by using
another set of multipliers [20]. Thus, the energy level can be deter-
mined based on the initial energy level, and power discharged or
charged as:

EiðtÞ ¼ Eið0Þ �
Xt

n¼1

ðCiðnÞ � RiðnÞÞ; t ¼ 1;2; :::; T � 1 ð18Þ

By submitting (18) into (12), the formulation of the energy level
dynamics for an energy storage can be described as

Eið0Þ � Emax
i 6

Xt

n¼1

ðCiðnÞ � RiðnÞÞ 6 Eið0Þ ð19Þ

and

XT
n¼1

ðCiðnÞ � RiðnÞÞ ¼ Eið0Þ � ET
i ð20Þ

where ET
i indicates the energy level of user i’s energy storage device

in time period T.
The original problem for the DEM can be reformulated as

follows.

min
1
T

XT�1

t¼1

Eff ½PðtÞ�g

s:t: Eið0Þ � Emax
i 6

Xt

n¼1

ðCiðnÞ � RiðnÞÞ 6 Eið0Þ

XT
n¼1

ðCiðnÞ � RiðnÞÞ ¼ Eið0Þ � ET
i

LIDR;iðtÞ ¼ dIDR;iðtÞ þ gIDR;iðtÞ þ rIDR;iðtÞ
LDR;iðtÞ ¼ dDR;iðtÞ þ gDR;iðtÞ þ rDR;iðtÞ
gDG;iðtÞ ¼ dIDR;iðtÞ þ dDR;iðtÞ þ dG;iðtÞ þ cDG;iðtÞXTD
t

LDR;iðtÞ P UDR

0 6 CiðtÞ 6 min Cmax
i ; Emax

i � EiðtÞ
� �

0 6 RiðtÞ 6 min Rmax
i ; EiðtÞ

� �
ICiðtÞ>0 þ IRiðtÞ>0 6 1

ð21Þ

For simplification of the modeling and simulation, (21) can be
abstracted as

min f ðxÞ
s:t: hðxÞ ¼ 0

gðxÞ 6 0
ð22Þ

Due to recent advances in convex optimization algorithms for
big data, first-order methods play a profound impact on solving
large-scale optimization problems. First-order methods can obtain
low- or medium-accuracy solutions by utilizing only first-order
oracle information from gradient calculations for an optimization
model. A classical first-order technique is the gradient method,
which uses the gradient vector and iteratively performs the follow-
ing update.

xvþ1 ¼ xv � avrf ðxvÞ ð23Þ
where v is the iteration count, av is a scalar parameter indicates an
iteration step-size, and rf ð�Þ represents the gradient variable.

In order to employ the first-order method to solve problem (22),
we can transform such problem into an unconstrained optimiza-
tion problem. Then, the augmented Lagrangian function for the
abstracted original problem is structured below
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/ðx; k;l;rÞ ¼ f ðxÞ þ kThðxÞ þ 1
2
rkhðxÞk2

þ 1
2r

f½maxð0;lþ rgðxÞÞ�2 � l2g ð24Þ

where k and l are Lagrangian multipliers associated with equality
and inequality constraints, as well as r is a large enough scalar.

The abovementioned mathematical programming problem can
be further relaxed in the following representation.

/�ðx; k;l;rÞ ¼ f ðxÞ þ kThðxÞ þ 1
2
rkhðxÞk2

þ 1
2r

f½ðlþ rgðxÞÞ�2 � l2g ð25Þ

The basic idea of augmented Lagrangian technique is to relax
the complicated constraints by using Lagrangian multiplier. Fur-
thermore, the proposed original problem can be transformed into
a simple and unconstrained optimization problem.

3.2. Constructing low-rank matrix approximation

The proposed DEMproblem contains a large number of variables
and constrains and becomes a large-scale optimization problem in
this paper. For such optimization problem, it is difficult to solve the
model (25) using general optimization tools. Ref. [21] demonstrates
first-order methods are well-positioned to address such large-scale
problem. First-order methods can obtain numerical solutions by
using only first-order oracle information from the objective of the
optimization problem. The key link of applying first-order methods
to solving optimization problems is making use of proximal map-
ping principle to handle a great deal of complicated variables
[22]. Generally, randomization is the approximation technique that
is used to implement and enhance the scalability of first-order
methods. The basic idea of randomization techniques is to ran-
domly update optimization variables, and replace the deterministic
gradient with the simple linear algebra operation.

The low-rank matrix approximation technique as the random-
ized linear algebra plays a significant role in data analysis and sci-
entific computing [23]. When the matrix objects have low-rank
representations, the efficiency of seeking the solution for the opti-
mization problem will improve. The work of computing a low-rank
approximation to a given matrix can be divided into two computa-
tional stages. The first stage is to establish a low-dimensional sub-
space that captures the property of the matrix. The second stage is
to restrict the matrix to the subspace and implement the computa-
tion of a standard factorization, such as QR factorization, and sin-
gular value decomposition (SVD), of the reduced matrix. We can
summarize the implementation of the applications on the low-
rank matrix approximation technique as follows.

Stage (I) Randomized range finder

Given an m � n matrix M and an integer r, this scheme com-
putes an m � r orthonormal matrix Q whose range approximates
the range of M.

(1) Generate an n � r Gaussian random matrix X.
(2) Form the m � r matrix W =M X.
(3) Construct an m � r matrix Q whose columns form an

orthonormal base for the range of W using the QR
factorization.

Stage (II) Direct SVD

Given matrices M and Q holds, this procedure computes an
approximate factorizationM � U

P
V⁄, where U and V are orthonor-

mal, and
P

is a nonnegative diagonal matrix.
(1) Form the matrix B = QTM.
(2) Compute an SVD of the small matrix: B � ~U

P
VT .

(3) Form the orthonormal matrix U ¼ Q ~U.

3.3. Algorithm for obtaining feasible solutions

The whole procedure for solving the problem in (25) using the
randomized first-order optimization method in the Lagrangian
framework is described as follows.

Step 0: Initialization. Initialize multipliers k and l as well as
penalty parameter. Set the initial iteration v = 0.
Step 1: Solution of the relaxed primal problem. Solve the
relaxed prime problem at the iteration v. We can obtain the
optimal solution by using the following representation.
rx/
�
ðmÞðz; k;l;rÞ ¼ 0 ð26Þ

Step 2: Randomization. At the vth iteration, constructing low-
rank matrix approximation U(v).
Step 3: Multiplier updating. The augmented Lagrangian algo-
rithm is used to update the multipliers in the whole iteration
process.

kðvþ1Þ ¼ kðvÞ þ rfhðxðvÞÞ½UðvÞ �g
lðvþ1Þ ¼ maxf0;lðvÞ þ rfgðxðvÞÞ½UðvÞ �gg

(
ð27Þ

Step 4: Convergence checking. If multipliers do not change sig-
nificantly in two consecutive iterations, stop, the solution has
been reached; otherwise, v = v + 1 and continue with Step 1.

4. Simulation results

In this section, we provide numerical examples to complement
the analysis in the previous sections. To evaluate the performance
of our proposed algorithm, Matlab Optimization Toolbox is used to
implement the simulations based on the assumptions and the data.
All tests are conducted in the environment of a 32-bit computer
with 12 GB of RAM and an Intel core 2 duo CPU. Hence, the numer-
ical results from the scenarios simulated and compare will be
obtained.
4.1. Description of the data and assumptions

It is assumed that a 24 h operation horizon is taken into account
in the simulation procedure. In the example system, there are 50
users with renewable distributed generation sources, energy stor-
age devices, elastic and inelastic load appliances in basic case. We
assume that the maximum capacity of each user’s renewable dis-
tributed generation source is 0.2 kW. Considering the stochastic
characteristics of distributed generation resource, we consider
the output of the distributed generation resource is the random
variable, which satisfies the normal distribution with the mean
value is 0.1 and the standard deviation is 0.05. The maximum
charging and discharging capacities of user’s energy storage
devices are assumed to be 1.5 kW h. The maximum energy level
of the energy storage equipment is set to be 0.24 kW h. Both elastic
and inelastic load demands are considered as uniform random
variables over the intervals [1,4] and [1,8] kW h. We set all elastic
load demand deadlines to 12 h in one day, i.e., TD = 12. We select
a = 0.75, b = 0.1, and c = 0 in all simulations, unless otherwise
stated.
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4.2. Numerical results and discussions

To demonstrate the advantage of the proposed algorithm, we
show a numerical comparison of the randomized first-order opti-
mization method and the general Lagrangian multiplier method
in Fig. 1. For the Lagrangian multiplier method with low-rank
matrix approximation, the fitness value of the objective converges
to 4.5 � 109 in about 10 iterations, while the other method needs
40 iterations to yield the same fitness value. This is due to the fact
that the optimization variable matrix can be described using a low-
rank representation, and consequently improves the computa-
tional speed. Further, notice that the randomized first-order
method exhibits its significant acceleration since it can rapidly
obtain an optimal solution with randomized linear algebra
operations.

It is an important task to find an approximate value for the rank
r of optimization variable matrix. Generally, higher values of r will
increase the column or row subset selection for the optimization
variable matrix, and the resultant optimal solution can be achieved
more rapidly. To investigate the impact of the selection of r on
computational performance, Fig. 2 plots the correlation between
the iterations and fitness values of the objective function in prob-
lem (21). Fig. 2 shows an example of a randomized low-rank
approximation, which is performed based on the classical QR fac-
torization and SVD technique, using a random initial value. The
result in Fig. 2 displays that we can significantly accelerate the
computation efficiency by setting a higher value r in the optimiza-
tion procedure. Thus, the approximation can be very efficiency if
the rank of the matrix is chosen properly.

In order to demonstrate the impact of number of dimensions on
convergence performance of the proposed method, four scenarios
associated with different amounts of end-users are designed.
Assuming that N is the number of end-users, Fig. 3 shows effect
of number of end-users on the total cost of DEM during the overall
scheduling period. In each case that each user has both an elastic
Fig. 1. A numerical comparison of Lagrangian multiplier method with
load and an inelastic load demands, we can compare the total
energy generation cost of the DEM scheme for four designed cases.
The computational complexity of the DEM problem depends on
number of decision variables, time slots in the simulation process,
and number of end-users.

Particularly, we notice that the number of dimensions of deci-
sion variables is 500 � 24 � 10 when the number of end-users is
500, which produces an exceptionally large-scale optimization
problem. To evaluate the impact of number of end-users on the
computational performance, we add some scenarios in the case
study when number of end-users is set different values N = 100,
200, 500. The number of dimensions of decision variables is
24,000, 48,000, and 120,000 in the scenarios where N = 100, 200,
500. The result shown in Fig. 3 suggests that the numerical benefits
of such randomized first-order method, since the randomization
step in the optimization process makes the sparsity of the variable
matrix much better.

The preferences assigned by the aggregated end-users to the
time slots for the inelastic and elastic loads are displayed in
Fig. 4. The simulation results in Fig. 4 demonstrate that the power
to satisfy the different loads is more provided from end-users than
grids. Fig. 4 illustrates the benefits of dynamic energy management
in the user sector over the traditional economic dispatching. Since
more energy users can interact with the actual operation of power
grids, the sharing energy benefits significantly for each participant
in the energy market.

To further study the effectiveness of our proposed methodology
in solving the large-scale optimization problem, we report the
results associated with computational performance indices in
Table 1, based on the comparison of the computational perfor-
mance of different methods. All that includes the proposed
algorithm, Genetic Algorithm (GA), and gradient descent method,
is run under the same computer environment. The optimal solu-
tions of the proposed optimization problem using randomized
first-order algorithm and other methods are very close, which
low-rank approximation versus without low-rank approximation.



Fig. 2. The impact of randomization on the convergence performance of the proposed algorithm.

Fig. 3. The effect of number of end-users on the total cost of DEM during the overall scheduling period.
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illustrates the effectiveness of randomized first-order approach as
a good choice for the big data optimization problem. We can see
that the running time for one iteration, which is defined as the time
for reading, processing and writing data, shows our presented
method can save more computational time than other methods.
Moreover, the index of total time indicates the time for obtaining
an optimal DEM strategy using the corresponding method. The
numerical result shows the proposed algorithm in this paper has
less running time than others in whole optimization procedure,
which demonstrates the computational benefit of our method.
The optimal results of total energy generation cost via GA and gra-
dient descent algorithm are nearly similar, which are different
from the one of the randomized first-order method. Specifically,
the optimal value of total cost obtained from the proposed algo-
rithm has worse optimality than the other algorithms. This demon-
strates that even through the randomized first-order method leads



Fig. 4. Preferences assigned by the aggregated end-users to the time slots in the basic case.

Table 1
Comparison of the computational performance of different methods. (N = 500, r = 24).

The proposed algorithm Genetic algorithm Gradient descent algorithm

One iteration (sec) 3.8 230.5 515.2
Optimal value of total cost ($) 4.604 � 104 4.207 � 104 4.182 � 104

Total time (min) 6.2 481.1 846.5
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to rapidly achieve a feasible solution, it may incur the solution is
not optimal. Hence, the case study in this paper holds the idea that
the randomized first-order algorithm no longer seeks to high-
accuracy solutions since big data models are necessarily inexact
or simple, which is similar to one in [24]. As for real-world prob-
lems, increasingly large data sets may affect the optimality and
feasibility of the solution at the optimization phase. Often, it is dif-
ficult to deal with optimization problems efficiently, of which the
data and parameter sizes are too large. The randomized first-
order algorithms can exhibit significant acceleration over their
deterministic counterparts since they can generate a good quality
solution with high probability by inspecting only a negligibly small
fraction of the data. Although traditional optimization tools can be
used to address the issue of large data optimization, it is computa-
tionally intractable when the problem dimensions grow. In a big
data optimization approach, first-order methods with randomiza-
tion for scalability are assumed to base on simple linear algebra
principles and the aiming is to gain surprisingly accelerations even
on classical optimization problems. Therefore, the randomized
first-order method is more computationally tractable as compared
to a traditional optimization problem in the context of big data.

5. Conclusions

In this paper, we investigate how to conduct the DEM strategy
when considering the integration of a large deal of end-users
who have controllable energy resources in the smart grid. A ran-
domized first-order methodology is presented and used to
approach the large-scale optimization problem. The proposed algo-
rithm can be implemented using the Lagrangian multiplier frame-
work with randomization. The low-rank approximation technique
as a randomized linear algebra is employed to conduct a sparse
matrix whose entries represent all decision variables. As such, a
feasible scheduling solution for the DEM in the smart grid can be
obtained in high-efficiency. Numerical results demonstrate the
computational performance and convergence of our proposed
algorithm. Furthermore, the results also display our model can pro-
vide a feasible load scheduling for all end-users to achieve the min-
imal energy generation cost. Finally, we also notice that even
though the proposed algorithm has the computational benefit for
large-scale optimization problem, it may incur a medium-
accuracy solution based on the idea of big data analytics.
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