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a  b  s  t r  a  c  t

Renewable  energy  resources  such  as  wind  and solar  are  increasingly  more  important  in distribution  net-
works  and microgrids  as their  presence  keeps  flourishing.  They  help  to  reduce  the  carbon  footprint  of
power  systems,  but  on  the  other  hand,  the  intermittency  and  variability  of  these  resources  pose  seri-
ous  challenges  to  the operation  of the  grid. Meanwhile,  more  flexible  loads,  distributed  generation,  and
energy  storage  systems  are  being  increasingly  used.  Moreover,  electric  vehicles  impose  an  additional
strain  on  the  uncertainty  level,  due  to  their  variable  demand,  departure  time  and  physical  location.  This
paper formulates  a two-stage  stochastic  problem  for energy  resource  scheduling  to  address  the  chal-
lenge brought  by  the demand,  renewable  sources,  electric  vehicles,  and  market  price  uncertainty.  The
nergy resource scheduling
mart grid
tochastic programming
ncertainty

proposed  method  aims  to minimize  the  expected  operational  cost  of the  energy  aggregator  and  is  based
on stochastic  programming.  A realistic  case  study  is  presented  using  a real  distribution  network  with
201-bus  from  Zaragoza,  Spain.  The  results  demonstrate  the  effectiveness  and  efficiency  of  the  stochastic
model  when  compared  with  a deterministic  formulation  and  suggest  that  demand  response  can  play  a
significant  role in mitigating  the  uncertainty.

© 2016  Elsevier  B.V.  All  rights  reserved.
. Introduction

The increasing number of renewable energy sources, such as
ind and solar-based generation, positively contributes to the

eduction of the carbon footprint of electricity generation. It also
eads to independence from the fossil fuels in power generation.
owever, unlike the conventional generation units, renewable

ources are characterized by a high level of uncertainty and vari-
bility. Another important feature of modern power systems is the
ncreasing flexibility of customers, provided by controllable loads,
.e., non-critical loads that can be adjusted by the customer or by

 third-party utility on a contractual basis to enable efficient man-
gement of the affordable resources. An example of such loads is
lectric vehicle (EV). In contrast to other types of loads, EVs can
e connected to different locations, thus increasing the level of
ncertainty [1]. An advanced scheduling model taking into account
hese factors is important. In fact, one of the top R&D needs iden-
Please cite this article in press as: J. Soares, et al., A stochastic model f
in smart grids, Electr. Power Syst. Res. (2016), http://dx.doi.org/10.101

ified by department of energy in United States is to have robust
ontrol and predictive models to deal with the stochastic behavior
2]. The motivation of establishing a stochastic modeling frame-
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378-7796/© 2016 Elsevier B.V. All rights reserved.
work is associated with the increasing challenge of addressing the
uncertainty of energy resources in smart distribution networks and
microgrids [3]. These resources’ share is significantly increasing and
can constitute a large portion of the total generation portfolio. In
this context, the entities related with the energy resources manage-
ment (ERM), such as energy aggregators [4], need adequate tools
to tackle the increasing level of uncertainty.

The topic of energy scheduling in smart grids using stochastic
methods is still in its infancy. Several works have been reported in
the literature, mainly focusing on deterministic operation [5–11].
At the transmission-level, the stochastic energy management has
demonstrated good results in taking into account the uncertainty
associated with renewables and worst-case scenarios [12–15].
However, at the distribution and microgrid levels more advances
are needed. The work presented in Ref. [1] regards a two-stage
stochastic formulation to address the energy scheduling in Micro-
Grids (MG) with distributed generation (DG), EVs and energy
storage systems (ESS). The model solves the day-ahead energy
scheduling using a linear formulation without network constraints
and not considering Vehicle-To-Grid (V2G). An iterative approach
or energy resources management considering demand response
6/j.epsr.2016.10.056

is used to validate the network constraints with a power flow soft-
ware returned from the master linear problem. Several scenarios
were considered only for wind and solar power, while the EVs’
behavior, load demand and hourly market prices are considered

dx.doi.org/10.1016/j.epsr.2016.10.056
dx.doi.org/10.1016/j.epsr.2016.10.056
http://www.sciencedirect.com/science/journal/03787796
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Nomenclature

Indices
e ESSs
i DG units
l Loads
m Market
s External suppliers
t Time periods
v EVs
z Scenarios

Parameters
CSupplier External supplier cost [m.u./kWh]
CLoadDR Load reduction cost [m.u./kWh]
CDischarge Discharging cost of ESSs/EVs [m.u./kWh]
CDG Generation cost of DG unit [m.u./kWh]
CNSD Non-supplied demand (NSD) cost of loads

[m.u./kWh]
CGCP Curtailment cost of DG units [m.u./kWh]
MPSell Forecast price of markets [m.u./kWh]
� Occurrence probability of scenarios
T Number of time periods in the scheduling horizon
Z Number of scenarios
�t Duration of period t (1 = h)
Ni Number of DG units
Ne Number of ESSs
Nl Number of loads
Ns Number of external electricity suppliers
Nv Number of EVs
Nm Number of markets
PDGScenario Forecasted generation of non-dispatchable DG

units [kW]
PDGMinLimit Minimum active power of dispatchable DG units

[kW]
PDGMaxLimit Maximum active power of dispatchable DG units

[kW]
PSMinLimit Minimum active power of suppliers [kW]
PSMaxLimit Maximum active power of suppliers [kW]
PLoadDRMaxLimit Maximum limit of active power reduction of

loads [kW]
PDischargeLimit Maximum active discharge rate of ESSs/EVs

[kW]
PChargeLimit Maximum active charge rate of ESSs/EVs [kW]
PMarketOfferMax Maximum energy offer allowed in markets

[kW]
PMarketOfferMin Minimum energy offer allowed in markets

[kW]
ETrip Forecasted energy demand for EVs’ trip [kWh]
EBatCap Maximum energy stored allowed by ESSs/EVs

[kWh]
EMinCharge Minimum energy stored required in ESSs/EVs

[kWh]
�c Charging efficiency of ESSs/EVs
�d Discharging efficiency of ESSs/EVs

Variables
OCD+1

Total
Day-ahead operation cost [m.u.]

pDG Active power generation of DG unit [kW]
pSupplier Active power of external supplier [kW]

pSell Active power sold to market [kW]
EStored Energy stored in ESS/EVs [kWh]
xDG Binary variable of state of DG units
xSupplier Binary variable of choosing suppliers
xESS/EV Binary variable representing discharging state of

ESSs/EVs
yESS/EV Binary variable representing charging state of

ESSs/EVs
xMarket Binary variable that represents the choice of mar-

kets

Sets
�d Set of dispatchable DG units
pLoadDR Active power reduction of loads [kW]
pDischarge Active power discharge of ESSs/EVs [kW]
Please cite this article in press as: J. Soares, et al., A stochastic model f
in smart grids, Electr. Power Syst. Res. (2016), http://dx.doi.org/10.101

pCharge Active power charging of ESSs/EVs [kW]
pNSD Active power of NSD of load [kW]
pGCP Generation curtailment power of DG units [kW]
DG

�ndDG Set of non-dispatchable DG units

deterministically. In Ref. [4], an optimal bidding strategy for
EV aggregator is formulated under uncertainty in day-ahead
context to minimize charging costs while satisfying EVs’ demand.
V2G possibility of EV aggregators is not modeled in the paper.
The day-ahead stochastic scheduling method presented in Ref.
[13] considers the hourly forecast errors of wind energy and
system load. The work is developed for a conventional generation
system with wind energy, but at transmission network side. In Ref.
[16], the authors develop a stochastic energy scheduling model
for a local smart grid system with a single energy source and
several consumers. The problem is transformed into an easier
and simple optimization in order to be used in a distributed and
real-time environment. The uncertainty in the fuel cell outages
is considered in the optimization model developed in Ref. [17]
to perform the battery scheduling of a MG.  The stochastic model
results indicate that a conservative yet more lucrative solution is
obtained, resulting in potential savings exceeding 6%. In Ref. [18],
an optimal day-ahead scheduling is formulated for a microgrid.
The model proposed by the authors is a two-stage stochastic
formulation to cope with the intermittent nature of the renewable
energy while exploiting the thermal dynamic characteristics of
the buildings. Recently, in Ref. [19], a two-stage stochastic model
is proposed to address the centralized ERM in hybrid AC/DC
microgrids considering DGs, ESS and EVs and uncertainty in
regular and EV demand, renewable generation, and fluctuating
electricity prices. However, the possibility of DR is not considered
in the referred work. Furthermore, evaluated it considers a smaller
grid system (38-bus) with only 8 DG units. Their work is more
oriented for smaller hybrid AC/DC grids whereas our model is
devised for larger smart grids and tested with a real 201-bus
system. Their model is mixed integer nonlinear whereas ours is
mixed integer linear to increase computational performance. The
works presented in Ref. [20,21] address the day-ahead resource
scheduling of a renewable-based virtual power plant. The work
considers uncertainties in price, load demand and renewables
but fails to consider the possibility of DR, EVs and V2G. A specific
work regarding stochastic energy management using compressed
air storage integrated with renewable generation is studied in
Ref. [22]. In Ref. [23], authors provide a robust optimization
for scheduling optimization considering uncertainties. These
works [20–23] demonstrate that it is possible to mitigate system
uncertainties with adequate use of energy resources, namely ESS
systems. However, these works do not consider EVs and its related
uncertainties, which are a relevant feature of future grids. In Ref.
or energy resources management considering demand response
6/j.epsr.2016.10.056

[24] a two-stage stochastic offering model for a VPP is presented.
The model considers an intermittent source, a dispatchable and
a storage unit. The VPP trades in the day-ahead and balancing
markets, while the uncertainty is considered in the market price

dx.doi.org/10.1016/j.epsr.2016.10.056
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Table  1
Summary of the contributions regarding revised papers.

Ref. Model includes Sources of uncertainty

V2G DR ESS

[1] No No Yes Only in wind and PV
[4] No No No Driving patterns and market bids
[13] No Yes No Only in wind
[16] No No No Only in energy demand
[17] No No Yes Only in the fuel cell outages
[18] No Yes Yes Load, renewable generation and electricity price
[19] Yes No Yes Load, renewable generation, EV demand and price
[20] No No No Renewable generation, load and electricity price
[21] No No No Renewable generation, load and electricity price
[22] No Yes Yes Wind/PV, load demand and market price
[23] No Yes Yes Wind/PV only
[24] No No No Wind, market bids and price rivals’ offers
[25] No No No Wind and market price
[26] No No Yes Intermittent source and market price
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Proposed work Yes Yes Yes 

nd intermittent generation. In Ref. [25], a two-stage robust
ptimization approach is used to deal with uncertainties in wind
ower and market price of a VPP participating in both day-ahead
nd real-time markets. Authors indicate that their approach is
uitable to represent the uncertain data, but suggest stochastic
rogramming could be used and compared as future work. In
ef. [26], a multi-stage risk-constrained stochastic complemen-
arity approach is proposed for wind power producers to tackle
ncertainties in wind, market prices, demands’ bids and rivals’
ffers using a set of scenarios. The results reveal that the expected
rofit increases when a strategic position is adopted, while taking

 risk-averse position decreases the expected profit by a small
argin. Authors claim they use a computer with 250 GB of RAM

o tackle the optimization problem. They suggest that the model
ay  be decomposable and subject of future research. These works

24–26] are more concerned in the market interaction, namely
he VPP risk and strategy than the energy resources scheduling,
articularly of large-scale nature.

These works reveal some gaps that require additional attention.
ncertainty on wind and solar generation are usually considered,
hile the variability of market prices and load demand is frequently

verlooked. Moreover, when formulating the energy scheduling
rom the viewpoint of an EV aggregator, the uncertain problem
s formulated without considering the V2G possibility. Further-

ore, demand response (DR) is not considered in most of the
tudied works and the case studies are relatively small in terms
f optimization problem size, therefore lacking realism. This paper
resents a stochastic programming approach for ERM in a smart
istribution network, in the context of smart grids (SG) consider-

ng several forms of energy resources, including DR. The proposed
odel formulates the uncertainty in regular load demand, wind and

hotovoltaic (PV) power, EVs demand and location. In addition, the
ariability of market prices is considered in the model. The energy
ggregator aims to minimize the expected operation cost while
anaging distributed energy resources (DER), including DG (e.g.,
ind, PV, and biomass), EV with V2G possibility, ESS, electricity

upplier contracts, market transactions and DR. Thus, the proposed
ntegrated energy management model with the several sources
f uncertainty is innovative in the literature. Table 1 summarizes
he features found in the studied references regarding sources of
ncertainty considered and the features present in the models.

Regarding previous works, the major contributions of this paper
re as follows:
Please cite this article in press as: J. Soares, et al., A stochastic model f
in smart grids, Electr. Power Syst. Res. (2016), http://dx.doi.org/10.101

) Proposing a two-stage stochastic model for smart grids char-
acterized by heterogeneous management of large-scale energy
All sources of uncertainty (Wind/PV, EVs, regular demand and market price)

resources considering uncertainty in wind, PV, EV and market
price integrated in the same model;

2) Consideration of DR program in the two-stage stochastic model,
and assessing its impacts when uncertainty is considered;

This paper is organized in five main sections: after this intro-
duction, Section 2 presents more details about the stochastic model
approach and describes the two-stage stochastic formulation, Sec-
tion 3 describes the test system, while the results of the case study
and the discussion are presented in Section 4. Finally, Section 5
presents the conclusions.

2. Stochastic model

The energy scheduling problem is formulated in this section as a
two-stage stochastic model. Theoretical background on two-stage
or multi-stage stochastic programming models can be found in Ref.
[27]. The idea is to make an optimal decision in the first stage,
on the day-ahead energy transactions, while taking into account
possible real-time operations like the wind, solar power and EVs’
uncertainty, in the second stage. The objective is to minimize the
expected operation costs, by reducing the risk of energy transac-
tions for the energy aggregator. With the proposed model, it is
possible to obtain the amount of electricity to be purchased from
the electricity suppliers, the sale of energy to the market and the
commitment of the dispatchable DG units over the next 24 h. To
achieve this, a scenario based approach is used to model the under-
lying uncertainty. It means that wind and solar generation or the
load demand varies from one scenario to another. The first-stage
decisions do not change across the scenarios in the second stage,
i.e., the variables without uncertainty remain the same for every
scenario.

2.1. Uncertain data

In stochastic programming problems, the stochastic processes
are represented with continuous or discrete random variables.
Dealing with a finite set of possible outcomes is the adopted way  in
decision-making problems under uncertainty, otherwise it would
be impossible to solve the problem [28]. An appropriate represen-
tation of a continuous random variable using a finite set of values
can be difficult. Scenarios can be generated using different tech-
or energy resources management considering demand response
6/j.epsr.2016.10.056

niques, including path-based methods, moment matching, internal
sampling and scenario reduction [28]. Different realizations of the
random variables can be represented by arcs in a scenario tree. The
probability of a scenario to occur is the product of the probabilities

dx.doi.org/10.1016/j.epsr.2016.10.056
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Fig. 1. Scenario tree with 5 scenarios and 10 nodes [29].

ssociated with the arcs. The sum of the probabilities of the gen-
rated scenarios is equal to 1. Fig. 1 presents a simple example of
ne scenario tree with 5 scenarios and 10 nodes. Node 6 (n6) cor-
esponds to scenario 1 and its probability results from the product
f nodes n2, n3.

In order to improve computational performance, scenario
eduction is usually applied to downsize a scenario set while keep-
ng stochastic information as intact as possible. Scenario reduction
echniques start with a large set of randomly generated scenarios.
he large set is reduced to a small set trying to maintain the original
robability distribution function. In other words, it would be pos-
ible to measure the quality of the reduction process by comparing
he optimal solution obtained with the reduced set and with the
riginal set. If the solutions are close enough, it means that a good
eduction has been obtained. Nevertheless, this comparison is only
ossible for small instances due to computational limitations.

The ERM problem under study involves several sources of uncer-
ainty in the input data, namely in the load demand, market price,
ind and solar generation forecasts. Moreover, the presence of

Vs poses an additional source of uncertainty in the ERM prob-
em, because trips and energy demand of EVs depend on the users’
ehavior, which is not easy to predict. The aggregator requires
nowing the timing of the trips and the associated expected energy
onsumption, as well other parameters, such as battery size. This
eans that the drivers would need to notify the aggregator of their

lanned trips in advance, or eventually machine learning algo-
ithms could be used to forecast driving needs [4].

The lack of realistic historical data is a barrier to actually build
ccurate case studies. Hence, most of the time, forecasts and asso-
iated errors are assumed based on previous experiences, trying to
imulate real-world behavior. The stochastic model is used assum-
ng that a correct set of scenarios can be generated considering
uture availability of such historical data. In fact, scenario gen-
ration is a broad topic that is beyond the scope of this paper.
evertheless, in the current literature, some authors have pre-

ented possible approaches that can be implemented in scenario
eneration tools in control centers for the ERM. In Ref. [1], Monte
arlo simulation (MCS) is used to capture the uncertainty of the
ind power forecast. A scenario reduction technique is used to

educe the number of scenarios generated. Furthermore, they
ssume that solar scenarios forecast errors follow a normal distri-
ution. The authors finally consider 10 independent scenarios for
he wind generation and another 10 scenarios for the solar gen-
ration, which results in 100 scenarios with an equal probability
f 0.01. A traffic simulation is used in Ref. [4] to observe arrival,
eparture times and energy consumption for each vehicle. The
uthors model the arrival, departure time and trip consumption as
tochastic variables using exemplary distributions. By using these
Please cite this article in press as: J. Soares, et al., A stochastic model f
in smart grids, Electr. Power Syst. Res. (2016), http://dx.doi.org/10.101

istributions, it is possible to generate different realizations of the
riving pattern for each individual vehicle. Authors in Ref. [30] use
he statistical nonparametric bootstrap method as an alternative to

CS  to account for the EVs charging temporal uncertainties.
 PRESS
s Research xxx (2016) xxx–xxx

2.2. Implementation requirements

The proposed model is one-step forward toward an effective
energy management of the future smart grid. The optimization
can be implemented in real-world cases once the main pillars of
smart grid are developed, i.e., technology, policy and standards. It
is assumed that the infrastructure has the following characteristics:

1) The smart distribution grid and microgrids are independent
entities that are able to manage its assets, local DERs and energy
supply;

2) The advanced metering infrastructure is in place with communi-
cation capability to allow the broadcast of the electricity market
prices for the next 24 h;

3) The control center can communicate with the local controllers
of DERs and is equipped with an energy management system, in
which the proposed model can be implemented;

4) The energy management system runs the two-stage stochastic
optimization routine every 24 h and has forecasting and scenario
generation tools required to run the model;

5) In the considered model the energy aggregator does not buy
energy to the market, instead it buys from external supplier with
fixed contract price;

6) Generation curves and hot/cold start-up constraints of the small
dispatchable generation units are not considered in the present
model.

2.3. Objective function

The objective function E
(
OCD+1

Total

)
, which represents the

expected day-ahead operation costs in monetary units (m.u.), is
minimized over the scheduling horizon T (1). The scheduling hori-
zon covers the 24 h of the next day. The first stage variables
correspond to the dispatchable DG units, suppliers and market
bids. Second stage variables are clearly identified in the formulation
when the z index is present in the variables’ subscript.

Minimize E
(
OCD+1

Total

)
=

T∑
t=1

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝

∑
I ∈ �d

DG

pDG(i,t) · CDG(i,t)+

Ns∑
s=1

pSupplier (s,t) · CSupplier (s,t)

⎞
⎟⎟⎟⎟⎠ · �t

⎤
⎥⎥⎥⎥⎦

+
Z∑
z=1

T∑
t=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
i ∈ �nd

DG

pDG(i,t,z) · CDG(i,t)+

Nl∑
l=1

pLoadDR(l,t,z) · CLoadDR(l,t)+

Ne∑
e=1

pDischarge(e,t,z) · CDischarge(e,t)+

Nv∑
v=1

pDischarge(v,t,z) · CDischarge(v,t)+

Nl∑
l=1

pNSD(l,t,z) · CNSD(l,t)+

Ni∑
pGCP (i,t,z) · CGCP (i,t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

· �(z) · �t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)
or energy resources management considering demand response
6/j.epsr.2016.10.056

i=1

−
Z∑
z=1

T∑
t=1

[
Nm∑
m=1

pSell(m,t) · MPSell(m,t,z) · �(z) · �t

]

dx.doi.org/10.1016/j.epsr.2016.10.056
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.4. Stochastic model constraints

The constraints incorporate the multi-period equations for EV
harging and discharging rates, battery capacity and balance con-
idering predicted demand and location, technical limits of ESSs,
alance and capacity in each period, dispatchable DG capacity and
upplier’s limits. In addition, the DR is considered in the constraints,
amely the maximum amount of power reduction of each load. It

s important to note that some of the constraints spread across all
cenarios, like the energy balance equation. However, there are few
onstraints that are not dependent on the variation of the scenarios,
.g., the limits of the dispatchable generation.

.4.1. Energy balance
The balance constraint (2) is included in the proposed model.

he amount of generated energy should equal the amount of con-
umed energy at every instant t. In the proposed model, balance
q. (2) is a multi-period, multi-scenario equation as the balance
ust be satisfied not only for each period t but also within the dif-

erent scenarios z. Compared with the deterministic counterpart,
he stochastic model has a much higher number of energy bal-
nce constraints. The equation terms include the dispatchable DG
eneration, the acquisition of energy with external suppliers, the
on-dispatchable DG forecast, the load demand (subtracting the
cheduled demand response or the “non-desirable” not supplied
emand), the EVs charge and discharge, and the storage charge and
ischarge. Finally, the market sale is added to the balance. The result
f this equation as represented should be zero. The stochastic bal-
nce constraint will validate if the first stage variables can match
he load balance among the different scenarios z as follows:

∑
i ∈ �d

DG

pDG(i,t) +
Ns∑
s=1

p
Supplier (s,t) +

∑
i ∈ �nd

DG

(
pDG(i,t,z) − pGCP (i,t,z)

)
+

Nl∑
l=1

(pNSD(l,t,z) + p
LoadDR(l,t,z) − p

Load(l,t,z))

+
Nv∑

v=1

(p
Discharge(v,t,z) − p

Charge(v,t,z))+

Ne∑
e=1

(p
Discharge(e,t,z) − p

Charge(e,t,z)) −
Nm∑
m=1

pSell(m,t) = 0 ∀t, z

(2)

.4.2. DG units and external supplier
A binary variable is used to represent the commitment status of

ispatchable DG units. A value of 1 means that the unit is connected.
aximum and minimum limits for active power in each period t

an be formulated as:

xDG(i,t) · PDGMinLimit(i,t) ≤ pDG(i,t) ≤ xDG(i,t) · PDGMaxLimit(i,t)

∀t, ∀i ∈ �dDG

(3)

pDG(i,t,z) = PDGScenario(i,t,z) ∀t, ∀i ∈ �ndDG, ∀z (4)

The upstream supplier maximum limit in each period t regard-
ng active power can be formulated as:
Please cite this article in press as: J. Soares, et al., A stochastic model f
in smart grids, Electr. Power Syst. Res. (2016), http://dx.doi.org/10.101

xSupplier(s,t) · PSMinLimit(s,t) ≤ pSupplier(s,t) ≤ xSupplier(s,t)

·PSMaxLimit(s,t)∀t, ∀s
(5)
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2.4.3. Energy storage systems
The constraints for the ESS (batteries) are described below. The

ESS charge and discharge cannot be simultaneous. Therefore, two
binary variables guarantee this condition for each ESS:

xESS(e,t,z) + yESS(e,t,z) ≤ 1 ∀t, ∀e, ∀z (6)

The battery balance for each ESS can be formulated as:

EStored(e,t,z) = EStored(e,t−1,z) + �
c(e) · pCharge(e,t,z) · �t − 1

�d(e)
· [

12pt]pDischarge(e,t,z) · �t∀t, ∀e, ∀z
(7)

The maximum discharge limit for each ESS can be represented
by:

pDischarge(e,t,z) ≤ PDischargeLimit (e,t,z) · xESS(e,t,z) ∀t, ∀e, ∀z (8)

The maximum charge limit for each ESS can be represented by:

pCharge(e,t,z) ≤ PChargeLimit (e,t,z) · yESS(e,t,z) ∀t, ∀e, ∀z (9)

The maximum battery capacity limit for each ESS can be repre-
sented by:

EStored(e,t,z) ≤ EBatCap(e) ∀t, ∀e, ∀z (10)

Minimum stored energy to be guaranteed at the end of period t
can be represented by:

EStored(e,t,z) ≥ EMinCharge(e, t, z) ∀t, ∀e, ∀z (11)

2.4.4. Electric vehicles
The charge and discharge of each EV is not simultaneous. Two

binary variables are needed for each vehicle that can be represented
by:

xEV(v,t,z) + yEV(v,t,z) ≤ 1 ∀t, ∀v, ∀z (12)

Battery balance for each EV. The energy consumption for period
t travel has to be considered jointly with the energy remaining
from the previous period and the charge/discharge occurred in the
period:

EStored(v,t,z) = EStored(v,t−1,z) − ETrip(v,t,z) + �c(v) · pCharge(v,t,z)

·�t  − 1
�d(v)

· pDischarge(v,t,z) · �t∀t, ∀v, ∀z
(13)

When connected to the grid the vehicle cannot discharge to the
grid more than the admissible rate. The discharge limit for each EV
considering battery discharge rate can be formulated as:

pDischarge(v,t,z) ≤ PDischargeLimit (v,t,z) · xEV(v,t,z) ∀t, ∀v, ∀z (14)

When connected to the grid the vehicle cannot charge more than
the admissible safety rate. The charge limit for each EV considering
battery charge rate can be formulated as:

pCharge(v,t,z) ≤ PChargeLimit (v,t,z) · yEV(v,t,z) ∀t, ∀v, ∀z (15)

The maximum battery capacity limit for each EV can be repre-
sented by:

EStored(v,t,z) ≤ EBatCap(v) ∀t, ∀v, ∀z (16)

Another important aspect is the minimum stored energy to be
guaranteed at the end of period t. This can be seen as a reserve
energy (fixed by the EVs’ users or estimated by the operator) that
or energy resources management considering demand response
6/j.epsr.2016.10.056

can be used for a regular travel or an unexpected travel in each
period t:

EStored(v,t,z) ≥ EMinCharge(v,t,z) ∀t, ∀v, ∀z (17)

dx.doi.org/10.1016/j.epsr.2016.10.056
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.4.5. Demand response
Eq. (18) formulates a DR model, namely direct load control, in

hich the consumer receives an incentive if their load is reduced.
he maximum amount that each load l can be reduced in each
eriod t in scenario z, can be formulated as:

p
LoadDR(l,t,z) ≤ P

LoadDRMaxLimit
(l, t) ∀t, ∀l, ∀z (18)

.4.6. Market
The stochastic model is compatible with the possibility to make

ffers in several markets, for instance in the wholesale market
nd/or the local energy markets [31]. The energy aggregator may
esire to keep its market offers within certain limits or a given mar-
et may  have a minimum required amount to access. Therefore,
he market offers are constrained by Eqs. (19) and (20), namely

aximum and minimum offer:

p
Sell(m,t) ≤ P

MarketOfferMax(m,t) · xMarket(m,t) ∀t, ∀m (19)

p
Sell(m,t) ≥ P

MarketOfferMin(m,t) · xMarket(m,t) ∀t, ∀m (20)

.5. Solution algorithm

The formulated problem is a Mixed Integer Linear Programming
MILP), due to the presence of both continuous and integer variables
nd linear constraints. The MILP is implemented in TOMLAB, which
s an advanced optimization toolbox for MATLAB [32], using CPLEX
olver.

Several quality metrics can be used to appraise the inter-
st of using stochastic programming models and to evaluate the
alue of having accurate forecasting procedures to obtain the most
ikely scenarios. The Expected value of Perfect Information (EVPI),
escribed by Eq. (21), represents the quantity that the decision
aker would need to pay to obtain perfect information about the

uture. zS∗ is optimal objective function of the two-stage stochastic
rogramming problem, and zP∗ is the optimal objective function
f the same problem when the nonanticipativity of decisions is
elaxed. In this problem, which is known as the wait-and-see prob-
em, all variables are defined as scenario-dependent [28].

VPI = zS∗ − zP∗ (21)

The Value of Stochastic Solution (VSS) measures the economic
dvantage of using the stochastic programming approach over a
eterministic problem (22). In order to obtain zD∗, the first step

s to replace the uncertain parameters in the original two-stage
roblem with their expected values. After solving this deterministic
roblem, the first stage decision variables of the original problem
re replaced with the optimal values obtained in the previous step.

 new stochastic programming is obtained, and zD∗ is the optimal
bjective function of this modified problem [28].

SS = zD∗ − zS∗ (22)

. Test system

The proposed methodology is tested using a case study imple-
ented on a real distribution network with 201 buses. This network

s part of the distribution grid in Zaragoza, Spain. Fig. 2 depicts
he single-line diagram of the 201-bus 11 kV distribution network
33]. Given the original network one optimal reconfiguration was
btained with the considered DGs, storage units and EVs. In this
ase study, the production and consumption values are modified
o meet the expectations for year 2030. A high penetration of DG
Please cite this article in press as: J. Soares, et al., A stochastic model f
in smart grids, Electr. Power Syst. Res. (2016), http://dx.doi.org/10.101

nits was considered, corresponding to about 70% of the installed
apacity, according to what is expected in 2030 [34]. Regarding
G, the photovoltaic installed capacity represents about 30%, wind

epresents 22%, small hydro represents 11%, biomass represents
 PRESS
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4% and the cogeneration represents 33%. Moreover, an approxi-
mate number of 1300 EVs was  estimated to connect to this part of
the distribution grid during a typical day, taking into account the
expected rate of EVs’ penetration (14%), in the fleet size of Spain for
2030 [35]. The mentioned penetration rate is the recommended
value, according to [35], in order to understand the effects of mass
integration of EVs in the different applications. The charging and
discharging efficiency considered for EVs and ESS is 90% and the
minimum state of charge in the end of day should be at least 30%
(imposed by hard constraint (16)).

In this case study, the energy aggregator is able to manage 118
DG units, the energy bought from external supplier, 6 storage units,
1300 EVs,1 and 89 aggregated consumers with DR programs. It is
assumed that the aggregator manages the customers in the area,
using the proposed stochastic model, with the aim to minimize the
expected operation costs. The scenario-based approach requires to
have scenarios that catch the representative uncertainty in the data.
Due to computational limitations, a simplified load balance and
few representative scenarios are considered for each uncertain type
of data, namely wind and solar energy production, as well as the
EVs’ travels and market prices. In this work, EVeSSi [36] was used
to generate different samples of driving patterns using departure
times, and locations as stochastic variables. Therefore, varying trip
duration and energy consumption was obtained in each sample.
Then, 3 representative samples of the obtained trips’ realizations
were chosen to be used in the scenario-based approach. For wind,
solar generation, and regular demand, 3 representative scenarios
were generated based on the initial forecast available as well as
the corresponding average error. These scenarios can be seen in
Figs. 3 and 4. The techniques learned from [37,38] have been used
to generate these scenarios, namely MCS  and clustering to track
similarity features and reduce burden to 3 representative scenarios.
The 3 representative EV scenarios can be seen in Fig. 5.

In the case of the market price 2 different scenarios are con-
sidered as can be seen in Fig. 6. In addition, only one market m
was considered in this case study, namely the day-ahead market.
Finally, equiprobable scenarios were built, using a scenario tree to
obtain a set of 162 possible scenarios, i.e., combining each of the
representative scenarios.

Table 2 shows the energy resources data and prices. The
information of price is depicted in monetary units per MWh
(m.u./MWh).

The prices in Table 2 have been designed according to Ref.
[39]. The capacity column is the aggregated minimum/maximum
availability of a given resource during the considered day in
MW. Analogous the forecast column is the aggregated mini-
mum/maximum predicted amount of a given resource or load
during the considered day in MW.  The aggregator has several con-
tracts with different energy resources and consumption sources.
The DG and ESS units are not owned by the aggregator in this case.
The aggregator incurs in a cost when buying energy from the differ-
ent energy resources at the contracted price and receives an income
when selling energy.

Two different cases have been considered to compare the per-
formance of the two-stage stochastic programming under different
situations. Case 1 considers DR availability, while case 2 does not.
The results discussion of these cases are described in the next sec-
tion.
or energy resources management considering demand response
6/j.epsr.2016.10.056

1 1300 EVs are aggregated in 100 equivalent units to reduce computational bur-
den.

dx.doi.org/10.1016/j.epsr.2016.10.056
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Fig. 2. 201-bus MV network used in the case study.
(Adapted from Ref. [33]).

Fig. 3. Wind and solar scenarios.

Fig. 4. Regular load demand scenarios.

dx.doi.org/10.1016/j.epsr.2016.10.056
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Fig. 5. Electric vehicles scenarios: number of grid-connected EVs.

Fig. 6. Market prices scenarios.

Table 2
201-bus grid scenario characterization.

Energy resources Prices (m.u./MWh) Capacity (MW)  Forecast (MW)  Units #
Min–max Min–max Min–max

Biomass 150–150 0.00–0.52 1
CHP  100–120 0.00–4.00 4
Small  hydro 130–130 0.12–0.35 1
Photovoltaic 200–200 0.00–1.70 82
Wind  120–120 0.07–0.94 30
External supplier 90–200 0.00–7.30 1
Storage Charge 120–120 0.00–1.50 6

Discharge 180–180 0.00–1.50
Electric vehicle Charge 130–130 0.00–6.94 1300

Discharge 190–190 0.00–6.16

4

d
i
i
c
R
p

Demand response Reduce program 110–170 

Load  90–150 

Market 80–130 

. Results and discussion

The proposed two-stage stochastic model is applied to the
escribed case study in Section 3, namely the 2 cases regard-

ng DR availability. The dimension of the optimization problem
s 3,802,992 variables (of which 824,424 integer) with 1,594,740
Please cite this article in press as: J. Soares, et al., A stochastic model f
in smart grids, Electr. Power Syst. Res. (2016), http://dx.doi.org/10.101

onstraints (162 scenarios). The work was developed in MATLAB
2014a 64 bits using a computer with one Intel Xeon E5-1650
rocessor and 12 GB of RAM running Windows 8.1.
0.33–0.89 89
4.77–13.88 168

0.00–4.00 1

Figs. 7 and 8 present the stochastic resource scheduling for
cases 1 and 2, respectively. The scheduled generation (first
stage decisions) concerning the external suppliers is respectively
138.27 MWh  and 147.22 MWh  for cases 1 and 2 (dark blue in
the figure). The dispatchable generation scheduled is respectively
79.30 MWh  and 81.08 MWh  for cases 1 and 2. The uncertain dis-
or energy resources management considering demand response
6/j.epsr.2016.10.056

patched amount, only certain in real-time (includes EVs, ESS and
DR) is provided by the optimization and shown as blue-grey semi-
transparent bars for each period, while the certain amount is a solid

dx.doi.org/10.1016/j.epsr.2016.10.056
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Fig. 7. Stochastic energy resource scheduling for case 1 (with DR). (For interpretation of the references to color in this figure legend, the reader is referred to the web  version
of  this article.)
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ig. 8. Stochastic energy resource scheduling for case 2 (no DR). (For interpretation
f  this article.)

ar. As shown in the figures, the uncertainty is higher during day-
ight periods, namely between periods 9 and 20. This is due to the
igher uncertainty in renewable generation, particularly in solar
ower.

Figs. 9 and 10 present the stochastic consumption scheduling for
ases 1 and 2, respectively. The optimal values for the market pur-
hases (in light blue) are same for all scenarios, namely 18.11 MWh
nd 14.82 MWh  for cases 1 and 2, respectively. In case 2, there is

 small possibility that NSD occurs in some scenarios (up to 0.53
Wh  in period 13), depending on the available renewable energy

roduction. This value could be higher in a traditional deterministic
pproach, which is not desirable.

Figs. 11 and 12 present the stochastic energy resources for cases
 and 2, respectively. It can be seen that there is a reasonable uncer-
ainty in the variable renewable generation. This can lead to the use
f DR in some scenarios. In case 2 there is no DR possibility, which
an impact the use of ESS and EVs discharge (see Fig. 12) when
ompared with case 1. In fact, this depends on the scenario, which
eans that the values can vary between the depicted minimum

nd maximum in the figures.
Please cite this article in press as: J. Soares, et al., A stochastic model f
in smart grids, Electr. Power Syst. Res. (2016), http://dx.doi.org/10.101

Table 3 summarizes the obtained results in both cases for 162
nd 81 scenarios (without market uncertainty). When DR is not
vailable (case 2), the VSS, EVPI, and the expected total operation
ost of the stochastic solution is higher. VSS reduces with DR up
e references to color in this figure legend, the reader is referred to the web version

to just 2–3% of the expected costs. Without implementing DR pro-
grams, there is less flexibility from loads as it not possible to use it to
mitigate generation imbalances. In this case, the cost is much higher
with a deterministic approach in both 162/81 scenarios and the pro-
posed model reduces the expected cost up to 17–19%. The higher
EVPI in case 2 also indicates that the importance of the uncertainty
ahead is higher. There is a small percentage difference regarding
VSS and EVPI with or without market uncertainty. However, the
expected operation cost (zS*) is higher with market uncertainty due
to the imperfect information about future market price. Regarding
the computational performance, execution times seem adequate
for the decision maker, but due to the high number of variables,
high memory use is expected (about 10 GB in case 2). The sce-
nario without market uncertainty is considerably lighter in terms of
computational burden, i.e., execution time is almost one third and
memory use about half. This may  suggest that memory use grows
linearly with the number of scenarios. The indicated memory is
the maximum peak during execution and usually lasts for a brief
moment before stabilizing in lower values. For a higher number of
scenarios, a server with 64 GB or 128 GB is advisable.
or energy resources management considering demand response
6/j.epsr.2016.10.056

The results of VSS in general shows that stochastic modeling is
more essential when the aggregator is not employing DR programs,
because the gain obtained is higher. Additionally, EVPI reveals that

dx.doi.org/10.1016/j.epsr.2016.10.056
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Fig. 9. Stochastic consumption scheduling for case 1 (with DR). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of  this article.)

Fig. 10. Stochastic consumption scheduling for case 2 (no DR). (For interpretation of the references to color in this figure legend, the reader is referred to the web  version of
this  article.)
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Fig. 11. Stochastic scheduling of

aving perfect information is more essential for the aggregator
hen they are not employing DR programs.
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Finally, a sensitivity analysis for the scenario with market uncer-
ainty (162 scenarios) has been made to evaluate VSS and EVPI

etrics under different DR availability. To simulate different DR
vailability, the limit represented by Eq. (18) has been modified
y resources for case 1 (with DR).

from 0% to 100% using increments of 20%, then VSS and EVPI were
calculated. Fig. 13 shows VSS and EVPI percentages when DR avail-
or energy resources management considering demand response
6/j.epsr.2016.10.056

ability was gradually incremented (a) and the reduction of the
expected operation cost (b). Indeed, 100% availability corresponds
to case 1 and 0% corresponds to case 2 already presented in this
section. The VSS and EVPI percentage reduction is most noticeable

dx.doi.org/10.1016/j.epsr.2016.10.056
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Fig. 12. Stochastic scheduling of energy resources for case 2 (no DR).

Table 3
Advantage of stochastic programming approach.

Indicator 162 scenarios 81 scenarios (no market uncertainty)

Case 1 (with DR) Case 2 (without DR) Case 1 (with DR) Case 2 (without DR)

VSS (m.u.) 607 (2%) 6259 (17%) 967 (3%) 6959 (19%)
EVPI  (m.u.) 549 (2%) 1587 (5%) 503 (2%) 1340 (4%)
zS* (m.u.) 29,639 30,814 29,174 30,147
zP* (m.u.) 29,091 29,227 28,672 28,807
zD* (m.u.) 30,246 37,073 30,141 37,106
Memory** (GB) 9.5 9.4 5.7 5.7
Execution time (s) 247 237 93 84

* Values may  vary with system configuration and solvers.
** Peak memory monitored using Windows resource monitor.
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Fig. 13. Sensitivity analysis regarding

n the 0–60% range, i.e., VSS declines from 17% to 6% while EVPI
eclines from 5% to 2.7%. Afterwards, the reduction is more gentle,
ut sill reducing to 2% for both VSS and EVPI with 100% DR avail-
bility. The reduction means that the advantage of the stochastic
rogramming when DR is present is less noticeable but still positive.
nother interpretation is that the results suggest that increasing
R availability further mitigate the impact of the uncertainty in

he operation costs, by using DR resource as a way to balance the
ncertainty effects.
Please cite this article in press as: J. Soares, et al., A stochastic model f
in smart grids, Electr. Power Syst. Res. (2016), http://dx.doi.org/10.101

. Conclusions

Wind and solar are increasingly being adopted in distribution
etworks. While it is true that they contribute to reduce the carbon
ng levels of DR availability (0–100%).

footprint of power systems, it is also inevitable that they compli-
cate planning and operation activities. This is mainly caused by the
intermittency nature of these resources. Moreover, EVs impose an
additional strain on the uncertainty level, because of their vari-
able demand, departure time and physical location. Nevertheless,
high flexible loads, DG and ESS can mitigate these issues. Energy
aggregators can help by optimizing the available resources and
anticipating to the several uncertainties.

This paper presented a new stochastic model with several
uncertainty sources, including load demand variability, intermit-
or energy resources management considering demand response
6/j.epsr.2016.10.056

tency of wind and PV generation, EVs stochastic demand and
location and market price in the same model. The results reveal that
the stochastic programming can be used as an efficient approach
to deal with the uncertainty in ERM. In the tested cases, the

dx.doi.org/10.1016/j.epsr.2016.10.056
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ethod appears to be more advantageous, compared to determin-
stic counterpart, particularly in situations with higher risks for the
ggregator’s operation, such as limited flexibility, i.e., no DR. Indeed,
he case study revealed that DR allowed to reduce the impact of
ncertainties, namely achieving reductions of 4% in operation costs,
0% in VSS and 65% in EVPI indicators considering market price
ncertainty. The VSS and EVPI reductions observed in the presented
ases and the sensitivity analysis suggests that the sources of uncer-
ainty have less impact on the expected operation costs, when DR
s present.
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