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Abstract

Several potential benefits to the quality and belity of delivered power can be attained with thstallation of distributed generation units. Taea
full advantage of these benefits, it is essentiablace optimally sized distributed generation sirdt appropriate locations. Otherwise, their
installation could provoke negative effects to poweality and system operation. Over the yearsiouar powerful optimization tools were
developed for optimal integration of distributechgeation. Therefore, optimization techniques amioaously evolving and have been recently the
focus of many new studies. This paper reviews reoptimization methods applied to solve the problehplacement and sizing of distributed
generation units from renewable energy sourcesdbaise classification of the most recent and higlityd papers. In addition, this paper analyses
the environmental, economic, technological, teclniand regulatory drivers that have led to thewgng interest on distributed generation
integration in combination with an overview abol¢ tthallenges to overcome. Finally, it examinesigfhificant methods applying optimization
techniques of the integration of distributed getierefrom renewable energy sources. A summary afroon heuristic optimization algorithms with
Pro-Con lists are discussed in order to raise netenpial tracks of hybrid methods that haven't begplored yet.

Keywords: Distributed Generation (DG); Optimizatimethods; Renewable Energy Sources (RES); Heultbods; Power System Losses
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ABCA Artificial Bee Colony Algorithm
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CG, Carbon dioxid
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CSA Cuckoo Search Algorithm

DER Distributed Energy Resource

DG Distributed Generation
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FA Firefly Algorithm
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GA Genetic Algorithm

GHG Greenhouse Gas

HS Harmony Search

ICA Imperialist Competitive Algorithm
IEA International Energy Agency

IPSO Improved Particle Swarm Optimization
LP Linear Programming

MADM Multi -Attribute Decision Making
MILP Mixed Integer Linear Programming
MINLP Mixed Integer Nonlinear Programming
NDC Nationally Determined Contributic
OPF Optimal Power Flow

PGSA Plant Growth Simulation Algorithm
PSI Power Stability Index
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PSO-IW PSO with Inertia Weight
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1. Introduction

For the

first time in more than two decades, thermational community agreed in the Paris COP2A gwint goal for lowering

Greenhouse Gas (GHG) emissions and defined a rgatingive an end to the dominance of fossil fuleét tasted for more than two
centuries. This global deal gave not only a hopeddd citizens from developed and developing cdest but also a powerful signal
for investors to ease the shift toward low-carboan®mies. The most important outcomes of COP2leageat can be summarized
in the following two points [1]:

Legal obligations for countries to set officialdats, called also Nationally Determined ContribosigNDCs), and prepare policies
to achieve them.

Countries can voluntarily use “cooperative appreatho trade emissions obligation, in a decentealjdilateral way. This might

encourage existing national and regional carborketato link together, expand and grow.

This agreement will create a long-lasting framewrkackle environmental problems effectively ardgthe way for even more
ambitious targets over the years. Therefore, implging energy efficiency measures and clean sowfcesergy such as Renewable
Energy Sources (RES) would highly shorten the tinachieve the objective of net zero GHGs emissiblasvever, RES when they
were first introduced created new challenges. @notiie hand, the intermittence problem of renewdiolesed additional technical
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and economic issues, which limited their penetratevel. On the other hand, unlike conventional powlants, RE power plants
require specific locations, which usually resourgegential is high but the distance from load dech#s far. This situation urged the
need for mathematical optimization tools that hielghe planning and decision making process, eaffgavhen it comes to the
selection of RE plants’ sizes and locations. Tooenage more the deployment of RES and reduce tsteofdarge scale investments,
utilities have recently developed Distributed Gaiens (DGs) in order to facilitate investments aneglaite competiveness in the RE
market. In fact, in a liberalized electricity matkepportunities for connected generation at distion levels will increase, especially
when the size and location of DGs from RES arenaigd giving their big impact in reducing the teictah challenges associated
with RE integration such as energy losses. It & bndicated that inadequate determination of @gtion and size, may lead to an
increase in system losses [2][3]. By optimunoadktion and sizing of DGs, not only losses in tbevgr system are reduced, but also
network voltage and reliability are improved. Asesult, the determination of the maximum level dgHfrom RES that can be
incorporated in the system while reducing the lessa be considerate as one of the main objedtvgmwer utilities when it comes
to planning of new power generation sources. Algiosmall distributed and renewable generation niigtrease the costs due to the
complexity of monitoring and running the netwotkwiould however provide a more efficient and se@leetricity network. But with
the continuous technological advancement in mdsedad power system control, the cost of DGs froBESRs expected to be
reduced. Thus, DG modular and small size will #othe installation time compared to large conwerai power plants. In addition,
DGs can be also utilized as a backup solution & @d contingencies giving the islanding capabtitgiven by decentralized power
generation units. In a context of increased unugtan electricity demand and supply, DGs pregbetadvantage of being installed
with lower risk and change in the existing infrasture, which will transform power systems from tralived to decentralized
systems. That is why there is a need to develofs thmt are able to maximize these benefits whdeommodating multiple
conflicting objectives.

The development of DGs throughout the world is @nésd in two levels, with Research & Developmer&[iRadvancements and
the expansion of DG projects. On the research igeire 1 shows the rapid increase witnessed duhie last decade in the number
of research papers that use optimization methodseénDGs deployment from RES using Scopus datdbaseompanying the
evolution in research papers, there has been atpoveth in DG installations. For instance, the fddzation of power market in
Europe fostered the development of DGs with ab6&t #enetration in Denmark and Netherlands [4].
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Figure 1 Number of articles using optimization noeth applied in the deployment of DGs from RES énfast 10 years

This rising interest in the use of optimization huts applied for the deployment of DGs from RE8xganded all over the world
with more than half of the total research papeosipced from developed countries such as Europeamtroes (Italy represents ¥4 of
the total European countries), USA, and Japan. Keweabout 30 % of the total research papers apduged by emerging
developing economies such as China, Iran and Iiidgawre 2 illustrates the relative distribution dguntry of the published articles
during the last decade. The interest in the deeslamuntries and the highest emerging developingtoes can be explained by the
international pressure on the reduction of,@missions and the encouraging policies and inoemtiegarding the use of RES. In
addition, it is noticeable that more interest @rtiig to grow even in countries rich in fossil lBjesuch as Saudi Arabia and UAE.
This is manifested with their decision to consiB&S as a viable alternative to conventional souoesiergy in order to meet their
fast-growing domestic demand, ensure national #gcand diversify their economies.

2 Scopus is the largest abstract and citation databBpeer-reviewed literature: scientific journdsoks and conference proceedings. Deliveringnapeehensive
overview of the world's research output in thedebf science, technology, medicine, social scignaad arts and humanities, Scopus features somstto track,
analyze and visualize research [5].
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Figure 2 Distribution map of research papers abptitmization methods applied in the deployment &f<drom RES

Despite the various benefits resulting from theloapent of DGs from RES, studies have indicated thiities may face new
challenges of increased system losses caused nainiyappropriate selection of location and sizeD@s [6] [2]. By including
optimization techniques, utilities will be able #oldress the problems of losses, reliability andityuaf the supplied electricity.
Additionally, optimal placement of DGs can furtheduce the need for new time-consuming and costhestments, and save
investments related to the Transmission and Digioh (T&D) systems [7]. In fact, T&D cost reprege the biggest part of the
capital budget for utilities (almost two thirds)eéently, the T&D cost has raised from 25% to arolisd% of the generation cost [2].
Due to the recent concerns on environmental arm@a@sed cost of T&D, large central power plants bexoften ineffective.

This paper shed light on the diverse existing ojz@tion methods applied to the planning and intégmaof DG from RES. The
focus is on solving the problem of placement azihgi of DG units. A summary grouping all the dissed optimization methods
provided at the end will help to choose the mofgtatifve technique to model a similar problem anldesd.

2. Driversand challenges of DG growth

In this section, a synopsis of the diversified dra/that have led to the growing interest on D@grdtion is provided while
focusing on DGs from RES. This analysis will empb@a®n the actual context of the transition intmare active management of
power systems and smart grid application. An ownabout the challenges to overcome will be preskas well.

2.1. Definitions

DG is defined as a small-scale generation sourcdesfricity connected usually to the distributi@vel. The definition of DG
might be different from one agency to another. iRgtance, the International Energy Agency (IEA) {@ffines DG as a generation
plant serving a customer on-site or providing suppm a distribution network, connected to the gatddistribution-level voltages.
Alternatively, International Council on Large ElectSystems (CIGRE) defines DG as a decentralizgtbation that is smaller than
50-100 MW, and usually connected to the distributi@twork [4]. Other organizations like ElectrioviRer Research Institute (EPRI)
outlines the capacity of DG from few kilowatts @30 MW [9].

For a wider concept, Distributed Energy ResourdeRPis considered to be any generation or storagienblogy located near the
load center and has a modular aspect, such as;hydnd, wind generator, photovoltaic (PV) or in tfteem of diesel, fuel cells,
batteries, and also Demand Side Management (DSN¥unes.

2.2. Drivers

The main drivers behind the expansion of DGs froBERan be categorized into five main classes: enmiental, economic,
technological, technical and regulatory drivers.
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5
2.2.1. Environmental drivers

There is no doubt that during the last decade, emscabout climate change raised considerably dube noticed negative
impacts on the environment. This alarming situatioged policy makers to establish policies in ortieenforce the environment
preservation. Therefore, environmental policiesiagmat promoting RE and reducing €@missions are major drivers for the
development of DG coming from RES. In fact, in Eagpregulations have enforced electricity providersonsider cleaner energy
sources [10]. In this context, DGs were perceivedan excellent solution to meet the increasing daeiman electricity while
optimizing the energy consumption, due to the dizabired nature of DGs and their ability to be used co-generation by heat
generating industries.

2.2.2. Economic drivers

One of the objectives behind the liberation of hextricity market was to reduce electricity pritesestablishing a competitive
market. In this context, DGs presented favorabtermtives in order to compete with large scale pog@reration projects. In fact,
large scale projects require the construction @f transmission lines in order to transport eleitiyito the load centers, which can be
considered as an economic constraint. Unlike DQsclware usually installed right next to the lo#tte financial risk is reduced.
Therefore, DG could relieve power companies frorditamhal investments in T&D capacity. Accordingttte IEA, cost savings in
T&D can reach 30% of electricity costs thanks tes@a production [8]. Besides that, the closendsd®s to load centers presents
another economic advantage which is the enhanceafigawer quality and reliability, especially insmof outages. In fact, DGs
make possible the operation in islanding mode whéailure of one power station will have a partéfiect on the overall system.
This will help to prevent major economic lossesase of contingencies [11].

2.2.3. Technological drivers

Recent advancements in technologies related to &igsenergy storage allowed the expansion of smalesgeneration of
electricity such as DG technologies. In fact, thatd technological developments in generators, Isamal medium size generation
technologies used for home application are cosctffe and available in the market, such as middrGCombined Heat and
Power). These micro-CHP are very popular espedialiurope since the electricity is mostly needadhieating in winter [11].

2.2.4. Technical drivers

There are many technical drivers for the growttD@s giving their numerous benefits to the powettesys In fact, to reduce
losses, it is possible to apply several technigeash as feeder reconfiguration, cable gradingaciém placement, and DG unit
placement. However, DG unit placement is the onbn-passive element where loss reduction almost |dotian with
capacitors [12]. In fact, DG has a direct effentpower flow and voltage quality, which is genbraescribed as “system support
benefits”, and includes [9] [13]-[15]:

« Voltage support and power quality enhancement;
+ Loss decrease;

« Capacity relief at T&D levels;

« System reliability;

- Peak load shaving and reliability enhancement;

- Flexibility to track load variation;

- Backup supply in case of sudden contingencies.

For instance, in USA, using DG for peak load (psh&ving) was the major driver behind DG growth [IB{> primarily ensures
the supply of electricity, but can also play a rodegrid stabilization due to its capability to geate active power. This helps
improving the network frequency which may drop dgrunder supply or over demand conditions.

The second major driver for DGs development is gngugood power quality. In fact, reliability issueefer to continued
interruptions caused by voltage drops in electrisitpply. For instance, big electricity consumarshsas industries may face some
problems with insufficient supplied electricity. 0%y investing in DG generation units can help tlstrangthen the reliability of the
supplied electricity [10].

2.2.5. Regulatory drivers

Particular attention is being paid around the wasgecially within Europe towards climate changd egulatory schemes that
promote the variation of energy sources for ensepurity purposes. This has resulted into the eynpdait of incentive regulation to
the development of the distributed network througBs especially from RES [17]. Moreover, the highpmart for policies
encouraging active management has enlarged thesafroen transmission networks to distribution nekgdy enabling competition
through small-scale generation.

2.3. Challenges
Despite the numerous benefits and drivers behiedettpansion of DGs, economic and technical chadlerggn result from the

aggressive integration of DGs. Some of the majoblems facing DGs are outlined here. First of with DGs power flow has
changed from unidirectional into bidirectional flomithin a certain voltage level. Thus, an aggressitegration of DG units may
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affect the grid stability and power system qual&ygcordingly, the choice of the installed DG capyetill not only depend on the
cost and benefits of each technology, but also délbend on the optimal location and size that enalgh loss reduction in the
overall system [11]. In addition, the structuretloé¢ electricity market is one of the challengesngdGs installation. In fact, in a
traditional non-liberalized power system, the marseusually characterized by a vertically integchtmonopoly. However, in a
liberalized market, risk investments in DGs areeled through the competitiveness created by newwrbpties.

3. Review of optimization approachesfor DGs placing and sizing

Uncertainties and variability are the main challen@ssociated with RES, especially with non-coptisuavailability of wind,
solar and hydro resources. To accommodate theratteg of large share of RES, it is important tawdn@ppropriate planning tools
able to optimize the integration of variable RESanyl optimization techniques related to energy ol in general exist in the
literature, such as conventional and intelligerarsle methods. In principal, searching for the optirsite and capacity of DG is
usually modelled as a non-linear mathematical dgtitton problem. Various constraints and objecfiwections are first set. The
optimization technique help in decision-making Bngrating one optimal or a set of optimal solutionsutput variable from a
reduced set of initial input variables. Broadlyerh are two approaches to solve a problem, by ematitods such as Mixed-Integer
Linear Programming (MILP) which is usually very effive but necessitate excessive computing timehand to implement on real
size problems, and heuristic methods which is basedimplifying the problem and offering satisfyisolutions. In this section, a
simple formulation of the most common problem iegemted, which is to find the optimal DG size and location that minimize the
network total losses. The resulting objective fimtis minimized in the presence of suitable edqualnd inequality constraints. Prior
to introducing the mathematical model, some notasgorovided.

Parameters:

N: total branches number

rij: resistance between buand bug

Vi, Vj: voltage magnitude at biisind bug respectively

o, 0;: voltage angle at busand bug respectively

Decision variables:
P Qi active and reactive power injection at bus
P;, Q;: active and reactive power injection at pus

Based on the exact formula of total losses develdpeElgerd [18], the objective function requirbg tminimization of the total
power losses. That is,
Minimize(P,,s,{DG(i, size)}) Q)

Pross = Xiey Xh=qlaij (P P+ QiQ;) + Bij(QiP; — PiQ))] (2

Where, the coefficients; and5; are determined as
Tij Tij .
aij = Tél COS((SL' - 6]) 'ﬁij = T‘;J Sln(5i — 6]) (3)

Wherer;; + jx;; = Z;; is theij™ element of Zbus] matrix withZbus] = [Ybus]™1.

Subject to:
- Power balance constraint

H(x,u) =0 (4)
Where
- Xis the vector of power system optimization varigble
- uis the control vector of the independent variables.
- Voltage limits constraint as follows:
ymt < v < yme (5)
WhereV™ andV™ are the minimum and maximum values of voltageuai b normally the bus voltage lies betwe®ls <
V; <1.05PU.
- DG real power output constraint is as follows:
PpU™ < Ppg < PRWX (6)
WherePJid™ andPpi* are the minimum and maximum active power outpUudGf

To solve these models, a large variety of optinidratechniques were proposed in the literatureasoAs illustrated in Figure 3,
these methods can be generally classified as tlieumgthods, analytical-based techniques, gradiadtsecond order methods, and
iterative methods. Heuristic methods may includedie Algorithms (GAs), Artificial Bee Colony Algithm (ABCA), Tabu Search
(TS) and Particle Swarm Optimization (PSO). Thegsintzation methods have given acceptable resuis the years, in addition to
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mathematical programming such as Linear Programr(lit) and Optimal Power Flow (OPF), are also widptgsented in the
literature.

Gradient and second order

Analytical based methods
2 * Loss Sensitivity Factor
methods

‘(.

Heuristic methods

: L. *Ant Colony Optimization (ACO)

Iterative methods iair. S0 eEvolutionary Algorithms (EA)
\_ { « Genetic Algorithms (GA)
 Particle Swarm Optimization (PSO)
* Path Relinking (PR)
* Tabu Search (TS)

Figure 3 Classification of different methodologiesolve DGs placement and sizing problem

Considering the objective function, two categonésptimization methods can be presented, whiclsiergle-objective and multi-
objectives approaches. The most common objectivedan this review is the minimization of the povesistem losses. In addition,
other approaches focus on saving the total cosichMban be evaluated from different perspectivasfact, the problem can be
formulated from the perspective of a DER developethe perspective of Distribution System Operd280) that want or refuse to
invest in DER [19].

Actually, multiple objectives of an optimizationgimlem create naturally a certain conflict, wheresitggle solution is able to
satisfy all the different perspectives. For exampiea DG placement and sizing problem, the objectunction of maximizing DG
capacity can create a conflict with not only ther@ase of line losses, but also with the potemizlease in investments cost as well
as society's interest to reduce L£@missions [20]. In general, multi-objective optmation problems contain various objective
functions that need to be simultaneously minimiaechaximized [21].

One of the most common available approaches toeswiulti-objective optimization problems is the soled weighted sum
approach which consists in converting the multiechiye problem into a single-objective problem gsjpre-specified weights.
Despite the simplicity of the weighted sum approabkre are some disadvantages associated wilmibne hand, weighted sum
approach cannot be applicable to non-convex prab[@2] and dissimilar objectives cannot be addgettoer. On the other hand, the
proposed solution is only applicable for the sewvefghts (priorities) chosen for the objective ftioes.

Figure 4 summarizes the above discussed elemamténfp a general mathematical optimization modegéntimerates all possible
types of constraints and objective functions relatethe allocation and sizing problem of DGs.

3.1. Conventional methods

In this section, some conventional optimization e are reviewed to solve the problem of DGs atlon and sizing. In fact,
during the recent years the interest in using ditalyapproaches to handle optimization problem drasvn greatly [12] [23][34]in
addition to traditional methods such as methodsdas Linear Programming.

3.1.1. Analytical approaches

Analytical approaches usually produce a numerigalagon that can be examined for optimization. &heuracy of the method
highly depends on the model developed. It migha bks applied in combination with another model Hase the simulation results of
the system. However, they are mostly based on ¢fieal, calculations, and mathematical analysigyldffer the advantage of short
computing time and easiness in implementation wéilsuring convergence of the problem. Neverthetegsassumptions used for
simplifying the problem may threaten the accuratyhe solution when the problem becomes complex.ifigtance in [26], the
applied analytical method was based on the anabfst®ntinuous power flow calculations and idepttion of the buses that are
most susceptible to voltage drop. This approackigatdo be successful in improving voltage profite aeducing power losses while
increasing power transfer capacity.

Moreover, some new analytical approaches were bas&bwer Stability Index (PSI) in order to illete the impact of DG on the
power system. PSI analytical approach was testg&7inon several types of buses in radial distitrunetworks.
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= Line or transformer overloading or = DG with constant power factor
capacity limits * DG penetration limit
= Total harmonic voltage distortion = Maximum number of DGs
Limit = Limited buses for DG installation
= Short-circuit level himit = Discrete size of DG units.
= Reliability constraints, e.g., max
_ SAIDI ,
-

=

-
ey o

for - Constraints

Optimization Method : Optimal
Initial Tnput > - Output
variables variables

Single Objective Function —

% The weighted sum of individual objectives

“* Goal programming method

“*Selecting the best compromise solution in a set of
feasible solutions

Multi-Objective Functions
F1,F2,....Fi

Minimization Maximization
Total power loss of the system DG capacity
Energy loss Profit
SAIDI A benefit/cost ratio
Cost Voltage limit loadability
Voltage deviations

Figure 4 Elements of a general mathematical opétiia model related to the allocation and sizingbfgm of DGs

3.1.1.1. 2/3rule

The 2/3 rule consists on applying a simple inteitiule for only approximate placement of capaciboristribution systems based
on graphical display of the power flow. This analst method suggests that if we consider the sfahe DG unit to be 2/3 of the
uniform load, and the location is set at 2/3 of ditance from the feeder, total VAR-miles of flean be minimized. For multiple
units (N units), it can also be generalized to2Ri1) Rule”. In [28][29] this rule was applied incase where the load is distributed
in a uniform way on a radial feeder. In fact, 2f3h® incoming generation was chosen as the capaicthe DG to be placed at 2/3 of
the line length in order to minimize the losses aoltage impacts.

3.1.1.2. Loss Sensitivity Factor and Sensitivity Analysis

Loss sensitivity factor method is essentially m&tl to reduce the number of all feasible solutifmmming the search space by
linearizing the original non-linear equation arouhd initial operating point. This approach hasrbeetensively applied to determine
the size and location of DGs using the exact lossfila developed by Elgerd [18], such as it wadiegpn [12][29]. The use of
analytical methods in combination with loss sewsiti factor is highly common in the literature due the simplicity of
implementation [24][25][31][32].

Sensitivity analysis method consists on changinges@arameters in order to see their impact on it fesults [35]. The
methodologies that use sensitivity analysis helpethuce the computational time which can be ciigspecially with large real case
systems. In fact, sensitivity analysis method ighhi effective in assessing uncertainties suchhas dnes resulting from RE
intermittent nature. In fact, the different resuitghe output variables are dependent on theréiffesources of uncertainty associated
with the inputs where this impact is assessed tir@ensitivity analysis. The uncertainty in thepatitof the modelled system can be
apportioned to different sources of uncertaintyittinputs. In [33][34] the authors studied thelraad reactive power losses
sensitivity taking into consideration the size @& DThe search space and computational time wersdemably minimized.

3.1.2. Linear and Non-Linear Programming (LP & NLP)

LP is a type of mathematical programming utilizegotlve a mathematical model where the requirenametsepresented by linear
relationships for maximizing or minimizing the objiwe function. One of the methods to solve LP feois is the simplex method
that it is based on polytope edges of the visutitinasolid to determine the optimal solution [3B6P is widely used in power system
optimization problem as it gives the exact solutisuch as finding the optimal size of DG units[3/]-[39] LP was implemented to
improve the effect of DG reactive power demandlengystem voltages and increase the number of cteth®Gs while respecting
the distribution voltage limits.
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However, the mathematical model to solve is calMdided Integer Nonlinear Programming (MINLP) wherethariables are
continuous and discrete and the objective funcied constraints are non-linear (such as with pdwaéance and cost equations. In
the context of finding the optimal location andesf DGs in the power system, MINLP has been useskieral papers [40][42],
where the optimal locations of DGs were determiaechomically and operationally based on power $esssitivity index. However,
the very large number of decision variables anddhg computation time are the major drawbacks 6fIIMP.

There are many computing tools to solve LP and MptBblems, some of them are open source tools, ({@IN-OR) or
commercial solvers (including CPLEX, GUROBI, XPRESSNDO, MATLAB to quote just a few).

3.1.3. Optimal Power Flow (OPF)

The goal of an OPF is to define the optimum ecowcawpierating cost to instantaneously operate a peysem while considering
the impact of the transmission and distributionterys. OPF was widely employed in the literaturedolving DGs allocation and
sizing problem since it considers already the endoaaspect in the optimization problem [43][46].rFexample “reverse load-
ability” approach was considered with OPF to maxinihe size of DG and find available locationsha system considering the
obligatory constraints underlined by the voltagal drarmonics. In addition in [47] to solve the capa@llocation problem,
switchgear was also considered as an additiondl el constraint imposed to protect equipmerihgisan OPF model within
limited numbers of contingencies (line outages).

3.1.4. Fuzzy Logic (FL)

Firstly, FL was introduced in 1979 as a generalizabf classical set concept to solve problemseedldo power system. In fact, it
consists on the identification of a membership fiomccontaining the level of association of eacmponent by indicating a number
between 0 and 1. This function measures the resembllevel of any element to a fuzzy subgroup [#8f most commonly utilized
membership functions are the triangular, trapezpmacewise-linear, and Gaussian functions. Thaler of memberships allowed
is infinite [49].

FL is highly used in the allocation and sizing gesb of DGs. For instance, in [50] FL was implemeite solve the optimal
location problem of DGs aiming to minimize real poosses and enhance voltage profile.

3.2. Intelligent search methods

Artificial Intelligence is generally described aset exhibition of intelligence within machines [SHleuristic methods are
considered as intelligent search methods, whiclsisbron algorithms that speed up the process diffina satisfactory or near
optimal solution [52]. The major advantage of hstici approach comparing to analytical approachsissimplicity. However, it
sacrifices accuracy and precision. A meta-heuristian iterative process that can help to find rgatimal solutions in a more
efficient way [53]. The objective of meta-heuristic to enlarge the aptitudes of heuristics byijmjrone or more heuristic methods
[54]. The following sections present some of thestopular approaches, such as Genetic Algorithi) (Gimulated Annealing
(SA), Tabu Search (TS), Particle Swarm Optimiza{i®80), Ant Colony Optimization (ACO), and Harmd®garch (HS).

Figure 5 presents the historical evolution of thaseristic methods. Genetic algorithm was the fisiposed method. Other
methods that are based on natural evolution andarsocial behaviors followed the GA. New methodshsas HS were recently
suggested which are based on different areas suctusical harmony.

Tabu Search
Genetic Algorithm * By Fred W. Glover and Ant Colony Optimization
* By John Holland formalized in 1989 + Published by M. Dorigo et al
1975 1986 1996

- e @ -

1983-1985 1995 2001
Simulated Annealing Particle Swarm Optimization Harmony Search
* 1983 by Scott Kirkpatrick, C. * By Kennedy, Eberhart *+ By Zong Woo Geem

Daniel Gelatt and Mario P. Vecchi and Shi

+ 1985by Vlado Cerny

Figure 5 Historical developments of some heurigtitmization methods

3.2.1. Genetic Algorithm (GA)

GA is among the first developed heuristic methddses1975 by Holland. It can be defined as a setechnique based on the
principles of genetics and natural selection, saghselection, crossover, mutation, and inheritgbg Under a specified selection
rules, GA permits for a population to evolve intstate that maximizes the “fitness” in contrasotioer search techniques that work
on a single solution.
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In fact, the population of elements is assimilatectchromosomes, which encrypts potential candidatesvolve toward better
state. Conventionally, solutions are representeoiniary code. The first population is randomly gaited and through evolution of
generations, the suitability of every candidatevsluated. The selected candidates are modifiemigir mutation to form a new
population. This will be repeated until the aldomit reaches a satisfactory level or maximum levéepétions.

In the literature, GA is considered to be the naggilied optimization techniques in solving the peof of DGs placing and sizing
[56][63]. In [64][65] GA was applied in the aim Bave the system expansion costs and increase stesrsyeliability. As these two
objectives are conflicting pareto-optimum modelsevesed in order to determine the dominant solutom single run.

New enhanced methods are being proposed in theoP&ithg and sizing problem, such as in [66] whefevas combined with
Multi-Attribute Decision Making (MADM) method corgéring different parameters of power system. Ot#hdranced methods of
GAs can be listed such as Adaptive Genetic AlgoriffAGA) which has proved in [67] to be more robastl has greater search
ability level, as well as Quantum Genetic Algoritfea].

Table 1 compares the major disadvantages and ayemthat GAs face.

Table 1 Advantages and disadvantages of Genetirigtign (GA)

= Have greater success at finding the global opttmalwide variety of
functions

= Do not require derivatives
= Can be applied with both discrete and continuouamaters

Advantages

= Can be applied for complex and not well definecbfgms

» Bad solutions do not negatively affect the endtsmiu

= Can be time consuming for large and complex probldoe to
repeated fitness function evaluation

Can suggest bad solutions

= Can be trapped into local optima

Disadvantages

= Can be inaccurate

3.2.2. Smulated Annealing (SA)

SA is an iterative algorithm used to solve comlmnat optimization problems that exploits crystadiiion process in a physical
system usually when the search space is discr@ie @giginally, it was defined by S. Kirkpatrick,. ©. Gelatt and M. P. Vecchi in
1983, then by VCerny in 1985. The cooling criterion is the coreraif SA optimization method. In fact, SA dependstbree
variables: initial temperature (T), cooling raf®,(@and final temperature {}). The process is initiated with a feasible solugmint.
After system perturbation, new possible solutiorils ve determined based on a probabilistic acceggasriterion. In the literature,
SA was used in [70][71] to locate and define thpacity of DGs while reducing computing time compgrio GA and TS methods.
In addition, SA method is suitable for optimizatiproblems which are based on stipulated reliabdifjeria. For example, in [72]
power system planning based on reliability resuitéd optimal size and location of DGs while megtithe consumer requirements
with minimum system upgrade.

Table 2 presents the general advantages and digades of SA method.

Table 2 Advantages and disadvantages of Simulatecdaling (SA)

Q = Can be simply implemented
IS . . . .
g = Can provide good solutions for many combinatoriabems
5 | = Can be robust
<
* May terminate in a local minimum
8 | = Have large computing time
(@]
g = Cannot provide information about the amount by Whie local
g minimum deviates from the global minimum
=]
_8 * Local minimum can depend on the initial configusat{generally no
a guideline is available for the choice)
= Cannot give an upper bound for the computation time

3.2.3. Tabu Search (TS

TS is a meta-heuristic approach that was firstiggested by F. Glover in 1986 to solve optimizatoblems [73][74]. The
approach is based on the principle of adaptive mmgrand responsive exploration that enable searcttirgsolution space in an
economic and effective way until no improvementeiached.
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TS was highly identified in solving the locatingdasizing of DGs problem. For example in [75][76pl&han et al. focused on DG
optimal planning with the objective to minimize bdbsses and line loadings. However, TS has theddantage of large number of
iterations and parameters to be determined.

Table 3 summarizes the main identified advantagdsésadvantages of TS.

Table 3 Advantages and disadvantages of Tabu SEBE83h

= Can be used for complex problems
= Have explicit memory

= Can be applied to discrete and continuous variables

Advantages

= Can be used for large problems

= Can depend on the strategy for Tabu list maniprati
= Can get stuck in local minima
Should determine many parameters

* Have many iterations

Disadvantages

= Can depend on parameter settings to find globanoion

3.2.4. Particle Svarm Optimi zation (PSO)

PSO is an optimization approach developed by Ebedmal Kennedy in 1995. It is principally inspiredm the social behavior of
bird flocking and fish schooling (the particles ar®ving in a multidimensional search space, whéngle intersection of all
dimensions forms a patrticle) [77]. The systemrnstlff adjusted with a set of arbitrary solutionsl @ine optimization search is ensured
through updating generations. At each iteratiore ffarticles assess their positions consideringr tfitsiess level, while the
neighboring particles show the history of theirstigositions in order to refine the final solutipt8].

In DGs locating and sizing problem, PSO was exttgmsed in the literature [79]-[81]. For instange[82] PSO is used to select
the optimal location, type, and size of DG unitsathieve the optimal integration of DGs taking intinsideration harmonic limits
and protection constraints. In addition, a PSO araployed in [83][84] to not only reduce Total HamiwDistortion (THD), losses,
and costs, but also improve the voltage profilee Tésults proved that PSO gave better solutionitgueaid less number of iterations
compared to GA method. In fact, PSO presents aeshcomputational time in comparison with GA and b& adapted to real cases
for power networks.

Table 4 lists the main advantages and disadvant#g@SO method.

Table 4 Advantages and disadvantages of Particlr8wW@ptimization (PSO)

= Can be simple to implement

= Have few parameters to adjust

= Able to run parallel computation

= Can be robust

= Have higher probability and efficiency in findintget global optima

Advantages

= Can converge fast
= Do not overlap and mutate
» Have short computational time

= Can be efficient for solving problems presentirffjalilty to find
accurate mathematical models

= Can be difficult to define initial design paramster
= Cannot work out the problems of scattering

= Can converge prematurely and be trapped into & foicemum
especially with complex problems

Disadvantagesg

New enhanced PSO methods are being proposed iDGhéocating and sizing problem, such as Improve® RBPSO) [85],
Binary PSO (BPSO) [86], Social Learning PSO (SLP§3J), PSO with Inertia Weight (PSO-IW), and PSQhaConstriction Factor
(PSO-CF) [88].

3.2.5. Ant Colony Optimization (ACO)

ACO algorithms were first published by Dorigo etiml1996, which are principally inspired from thecil behavior of insects
(such as ants) in finding the shortest paths talggt food [89]. Physically, researcher discovetteel existence of pheromone trails
left by ants. This substance is used by other anntsder to share the information about their paike other meta-heuristics, the



12

397  process is initialized by random solutions whick assimilated to random searches performed byaattghe trails resulting from
398 ants’ movement. Consequently, the shorter the ghthmore trails density increases. This infornratiall be considered in the
399 following searches. In [90][91] ACO is proposeddolve the location and size problem of DGs from R&Sadial distribution
400 systems while minimizing total system losses. Thgdaive function used in [91] was based on a bditg index, where ACO
401  algorithm was applied to solve discrete optimizatiroblems. The results showed that ACO gave bstiltion quality and less
402  computational time compared to GA. However, ACOspres longer time to converge since the solutiacepgo be evaluated is
403 larger, but still shorter than with analytical madis.

404 Table 5 lists more details about the advantagesiaadivantages of ACO method.
405 Table 5 Advantages and disadvantages of Ant Calyptimization (ACO)
ol Can search among a population in parallel
3 = Can give rapid discovery of good solutions
e
g = Can adapt to changes such as new distances
<

= Have guaranteed convergence

= Probability distribution can change for each itiorat
» Have a difficult theoretical analysis
Have dependant sequences of random decisions

= Have more experimental than theoretical research

Disadvantages

= Have uncertain time to convergence

406  3.2.6. Harmony Search (HS)

407 HS approach is a meta-heuristic optimization methwbath was developed relatively recently in 200dn&pally, HS is inspired
408 by the technique used by musicians in order to aw@rthe harmony of their instruments. Unlike otaristing algorithms based on
409 natural observed behaviors, HS is characterizatidynusical performance process looking for a bégemony [92].

410 HS was applied in [93][94] to find the optimal D@chtion in combination with loss sensitivity factpproach. In [94] it was
411  concluded that deploying HS algorithm was more piatde than PSO for DG allocation to amelioratdage stability.
412 Table 6 displays some of the advantages of HS rdetho
413 Table 6 Advantages of Harmony Search (HS)
ol No Initial value settings are required
3 = Can use discrete and continuous variables
c
S | = cannot diverge
T
<

* may escape local optima

= Ability to search for local is weak
= Can reach a high number of iterations

= May encounter unproductive iterations without impng the
solution

Disadvantages

= Have high dimensional multimodal problem

414  3.2.7. Further Heuristic Methods

415 Some authors implemented further heuristic metteffilsient for solving the DGs locating and sizingoplem appeared in recent
416  years, such as:

417 - Artificial Bee Colony (ABC) which is an optimization algorithm inspired by tbearching behavior of honey bee swarm. ABC

418 algorithm was applied in [95][96], where the conipain of the method with PSO approach showed that ABered better quality
419 of the solution and faster convergence.

420 . Cuckoo Search Algorithm (CSA) which is based on the obligate brood parasitissoofie cuckoo species that is characterized by
421 placing their eggs in the nests of other host g3fd7]. CSA was implemented in [98] to enhanceagd profile and minimize
422 power losses for DG biomass and solar-thermal DiG.un

423 . Shuffled Frog Leaping Algorithm (SFLA) which is based on the behavior of frogs while they searching for their food [99].
424 SFLA has been successfully applied to DG allocatind sizing problem. For example, in [100] SFLA vegoplied in order to
425 maximize the system voltage profile and reduces llisses. SFLA has the advantage to associate dretive benefits of GA and

426 PSO algorithms.
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- Shuffled Bat Algorithm (SBA) which is inspired by the echolocation behaviomi€ro-bats. This proposed algorithm was tested
in [101] on a radial distribution systems to demmate its effectiveness With 100% base load confitiat a first stage , then with
120%.

Plant Growth Simulation Algorithm (PGSA) which mimics the growing process of plant photptsm. The principle of PGSA
is based on the search of the feasible regioneapltint grows in a certain environment. At eachngeaof the objective function,
the algorithm looks for the possibilities to growew branch on different nodes and then forms ¢imepdete model [102]. In [103]
PGSA was efficiently applied where the objectivadiion was to decrease the losses and improvedhage profile. The major
advantage of PGSA is the capability to functiorhwiit the need for external parameters.

Biogeography Based Optimization (BBO) which is based on the mathematical models of ligggphy. It describes several
behaviors related to species like animals, fiskdsjior insects, such as their evolution, theirratign between regions, and their
extinction [104]. This new approach was employefilDb] for the optimal allocation and sizing of e&jior banks and DGs under
the objective of improving power quality and THD.

Firefly Algorithm (FA) which is based on the signal transfer used betviegfties in a courtship system. In fact, the fiyés
flash aims to act as a signal system to seduce fite#lies [106]. In [107] the optimal allocatioof DG was ensured by FA with
the objective of minimizing real and reactive poweses and line loading.

Imperialist Competitive Algorithm (ICA) which is a search strategy method based on satiticpl science in order to solve
optimization problems. Firstly, ICA starts with aritial random set of individuals of P countriedhéelselected best countries are
named the imperialists and the rest are consideskxhies of these imperialists. Then, based on eaplrialist’'s power colonies
are divided among imperialists in order to buildiah empires [108]. In [109] the determination dG location and size was
ensured by ICA while including sensitive loads tigb islanding mode of a distribution network.

3.3. Hybrid Heuristic Methods

Researchers are continuously adopting new techsigné combining existing methods with the aim opriaving certain factors
such as the quality of the solution and the sinigliof implementation. The new combined method ssially called a hybrid
technique. Several types of hybrid algorithms wagosed in the literature to solve the optimahtamn and size of DGs. Through
this survey it was possible to raise the existiegvrhybrid approaches and combinations. The matsglayed in Figure 6 shows
clearly the areas for potential new combinationkyibrid optimization methods and enables reseasdioeidentify new combinations
that were not previously considered and might lgabdetter solutions and improvements. In additibe, matrix shows that GA has
the highest number of orange cells, which refera tagh number of highly published papers combir@%y with other commonly
used methods such as PSO to solve the sizing aedrpkent problem of DGs. The matrix was based otighddl articles during the
last decade.

Published Hybrid Heuristic Methods Matrix

GA PSO Al GATS

%//////////% Approach

Tabu Search

PSO

Fuzzy Logic

Harmony Search

Linear
Programming
Immune
Algorithm
OPF

Simulated
Annealing

Scatter Search

.

Evolutionary

£-constraint
method

Figure 6 Matrix of existing published hybrid metlsdd solve the location and size problem of DGs
4, Synthesis of optimization approaches for DGs placing and sizing

In this section a synthesis of optimization techeis used to solve the DGs placement and sizinglgmols presented. The
methods are classified into three main categonslligent search methods, hybrid methods, andrentional methods. The major
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references are listed based on the different dbgétinctions and constraints employed by the agthbhe most common objective
function is the power loss minimization. As for thenstraint, voltage constraints are the most commioes. To summarize,
analytical methods are considered simple and repichplement. However, due to the simplifying asptions, their results can be
less accurate. Among the available conventionahat, the most efficient methods are the LP andMWLThe main advantage of
the exhaustive search method is that it guarantefisd the global optima, unlike heuristic methadsere the resulting point can be
trapped in local optima. But they present sometéitions with real and large-scale systems. Hearisiethods are usually very
efficient in finding near-optimal solutions espdgiawith complex problems. Even though, heuristiethrods necessitate high
computational effort, it does not affect their esdize application in solving DG placement and gjzimoblem.

A summary grouping all the discussed optimizaticgthmds is presented at Table 7. It could be used@sde for selecting the
most effective technique to model a similar probland solve it by looking at the high number of fied research using these
methods. But it also opens opportunities for paatiariginal areas where further investigations stitt needed such as with heuristic
and hybrid methods. The effectiveness of an optition method will depend on the most prioritizedtéa between the efficiency,
quality of the solution, simplicity, and speed.

Table 7 Summary of optimization techniques usesbtee the placement and sizing problem of DGs

Category | Optimization Objective Function Constraints References
Technique
. Capacity limits
. . . [6]56], [57], [59]-[68],
GA Minimize the total real power losses Voltage constraints [110][124]
. Three-phase short circuit current
. Maximize the network
Evolutionary performance (voltage quality and \
Programming harmonic distortion) Voltage constraints [130][131]
. Minimize the network costs
inimi . Network constraints
SA Minimize total system cost per year _ | - e o [70172], [152]
(deployment costs + heat compensation costs) . Stipulated reliability criteria
(] B N
° Differential
% Evolution [114], [125]-[129], [141]
E ACO [90], [91], [114], [132]
[S)
8 ABC [95], [96], [133], [134]
n
*g CSA [98], [135]
%’ FA [107], [136]
= ICA [109], [137][139]
SFLA [100]
SBA Minimize the losses Voltage constraints [101]
PGSA [103]
BBO [105]
PSO [79]-[88], [114], [140][148]
Hereford Ranch
Algorithm (HRA) [149]
TS [75], [76], [114], [150], [151]
HS [93][94]
Technical constraints:
9 . Capacity limits
g GA and EL Reduce power loss and costs of distribution . Voltage [153]-[155]
@ systems
3 . Three-phase short circuit currents
é . Number and size of DGs
I
Primal Dual Interior- Minimize the losses Individual generation capaliityts [156][157]
Point PDIP and OPF g P
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Category | Optimization Objective Function Constraints References
Technique
GA and OPE Reduce‘the cost of active and reactive pow ”Technical constraints [161]-[164]
generation
. Loading conditions
Sensitivity Analysis Minimize the losses . Generation penetration level [58]
and GA
. Power factor
Evolutionary *  Voltage
Programming with Minimize active energy loss . Line loadings [34]
Sensitivity Analysis . Number of DGs
OPF with Second
Order Algorithm Minimize the losses, VAR losses, and Voltage constraints [29]
Method (Gradient loadings in selected lines 9
Method)
GAand TS [165]
GA and PSO [166]
GA and are-
Constrained Method [158]
PSO and FL [159][160]
Minimize the losses Voltage constraints
GA and SA [167]
TS and FL [168]
PSO and OPF [169]
Analytical Technique (28]
and 2/3 Rule
LP Maximize the revenue of the rural system Vaoeyof energy and non-energy related [37][39], [110], [170]
relevant constraints
OPF Maximize social welfare and maximize profit  Itge constraints [43]-[47] ,[174]-[180]
Analytical N . [12], [24], [27], [31][33],
Techniques Minimize total power loss Voltage constraints [1711173]
4 Iteratlv_e Search Lower down both cost and loss Voltage constraints [26], [183]
IS Technique
c
% Minimize total system planning:
© . i . Voltage constraints
g Costs of DG investment = oo [40]-{42], [181], [182], [19]
= MILP « DG operation & maintenance +  Capacity limits
3]
Z . Purchase of power from the
8 existing TRANSCOs
Analytical
Techniques (Not [23]
iterative algorithms) | \inimize power loss Voltage constraints
Analytical approach
(Sensitivity Analysis) [26], [33], [184][185]
FL [50]

5. Conclusion and future challenges

This paper explains the need for optimization tégines applied for efficient integration of DGs esiply from RES. It presents
the global context that encouraged both the dewedop of RES and the decentralization of generatinits through DGs. The
exponential increase of research papers using izatiion techniques to solve DGs placement and gipimoblem shows the great
interest towards this topic among power systemarebers. This paper offers a review of the recentliphed works about the
application of different optimization techniquesstave the optimal location and size of DG probiarpower systems. It summarizes
the several conventional and heuristic optimizatieohniques used to address the problem, and fedasshem taking into
consideration their main advantages and limitatidiee review provides also a survey of most reearks as essential guidelines
for the future research and enhancement on optidlplacement and sizing. It shows the variety & #xisting optimization
techniques especially with heuristic and metah@anmethods. It shed light on various existing optation methods applied to the
planning and integration of DGs from RES. Solvihig {oroblem consists on determining the objectiuvecfion to model the problem
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and set system constraints | order to reduce theespf potential solutions (for example the buséere to locate DGs at the
distribution level. Despite the efficiency of exacéthods to solve this problem, the limited hardwaapabilities especially with large
size problems make exact deterministic methodsanagtible option. Heuristic methods offer more fledy to solve the problem,

especially with multi-objective optimization. Howery most of the heuristic methods despite beingeineral simple to implement
present some common disadvantages such as bemgdrén a local minimum. It has been noticed thatadd PSO are among the
most promising optimization techniques to solve B@s planning optimization problem. However, arnabjt approaches are still
being used in recent research giving their advantdgxplaining the physics and mechanisms beliadrtathematical models. It is
also suitable when it comes to validation of nucerinethods.

Since most of the reviewed papers addressing obtiaaement and sizing of DGs have utilized statigsting distribution
network, dynamic models are needed to addresstiemgfuture planning of DGs. In addition, futureuphing of DGs from RES will
show the presence of uncertainties in several peteas) such as the generation of wind and solastuéint oil prices, load forecast,
electric vehicles ...etc. Accordingly, these uncatias should be taken into consideration in thénogitplacement and sizing of DGs
from RES.
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Highlights

e Thorough review of the recent works about optimization techniques applied to solve the problem of
placement and sizing of DGs from RES.

e Drivers that have led to the growing interest on DGs integration and the challenges to overcome are
analyzed.

e A summary of common heuristic optimization algorithms with their Pro-Cons are discussed.

e New possible hybrid optimization methods that haven’t been yet considered were identified which might
lead to better solutions and improvements.

e This survey is an essential guideline for the future research and enhancement on optimal DG placement and
sizing.



