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Research Highlights 

 The concept of multi objective receding horizon optimization (MO-RHO) is presented 

 The measured data profiles are implemented into energy management system  

 The optimal operation scheduling of hybrid renewable energy system is presented 

 The effect of length of prediction horizon on optimal scheduling is analyzed 

 The effect of seasonal variations on economic performance is investigated 

 

Abstract 

In this paper, a methodology for energy management system (EMS) based on the multi-objective 

receding horizon optimization (MO-RHO) is presented to find the optimal scheduling of hybrid 

renewable energy system (HRES). The proposed HRES which is experimentally installed in 

educational building comprising the PV panels, wind turbine, battery bank and diesel generator as 

the backup system. The data acquisition system provides input profiles for receding horizon 

optimizer. A mixed-integer convex programing technique is used to achieve the optimal operation 
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regarding to two conflicting operation objectives including diesel fuel cost and battery wear cost. 

The Pareto frontiers are presented to show the trade-offs between two operation objective 

functions. Analysis of obtained results demonstrates that the system economic and technical 

performance are improved using longer prediction horizon. The results show that using longer time 

view (from 6 hr to 24 hr) the total share of renewable energy in supplying weekly demand can be 

improved up to 18.7%. Therefore, the proposed methodology can manage system to make a better 

use of resources resulting in a better system scheduling. The sensitivity analysis also demonstrates 

the effectiveness of seasonal variations of available renewable resources on the optimal operation 

scheduling. 

Keywords: Multi objective receding horizon optimization, Energy management system, Optimal 

scheduling, Hybrid renewable energy system 

Nomenclature 

𝑃  Power flow, (W) 𝐹𝑖(𝑥)  Objective function 

𝐴  area, (m2) 𝐹𝑖
𝑡𝑟𝑎𝑛𝑠  non-dimension objective function 

𝐺  solar irradiation (W/m2) 𝐶𝐿𝑖
+  relative closeness of Pareto solutions 

𝑇  Temperature (°C) 𝑑𝑖
+

  Pareto distances to the positive solution 

CP coefficient of wind turbine performance  𝑑𝑖
−

  Pareto distances to the negative solution  

𝑉 wind speed (m/s) 𝐶𝑂𝑝𝑒  operation cost ($) 

𝑃𝑊,𝑟  wind turbine rated power (W) 𝐶𝑓  diesel fuel cost ($/liter) 

𝑉𝐶  cut-in wind speed (m/s) 𝑁  Horizon number 

𝑉𝑟   Rated wind speed (m/s) 𝑀  relaxation constant parameter 

𝑉𝑓  cut-off wind speed (m/s) 𝛿  integer variable 

𝐸  Energy (Wh) Subscripts 

𝑡  Time (hr) 𝑃𝑉  Photovoltaic 

𝑆𝑂𝐶   State of charge 𝑐  Cell 

𝐸𝐵𝑎𝑡,𝑚𝑎𝑥   Battery capacity (Wh) 𝑊  Wind turbine  

𝐷𝑂𝐷  Depth of discharge 𝐵𝑎𝑡  Battery 

𝜆𝐿  estimated throughput (cycles Wh) 𝑐ℎ  Charge status 

𝐶𝑇𝐹  cycles to failure 𝑑𝑖𝑠  discharge status 

𝐶𝐵𝑎𝑡,𝑤   Battery wear cost ($/Wh/cycle) 𝐶𝑜𝑛  conversion system 

𝐶𝐵𝑎𝑡,𝑙𝑖𝑓𝑒   net present values of battery ($) 𝑆𝑡𝑜  storage system 



𝐶𝐵𝑎𝑡   cost of battery ($) 𝑛  number of conversion system 

𝑟  discount rate  𝑚  number of storage system 

𝑛  System lifetime (year) Greek symbols 

𝐹𝑢𝑒𝑙𝐷𝐺  diesel fuel consumption (Liter) 𝜂  efficiency 

𝑃𝑟−𝐷𝐺  diesel generator rated capacity (W) 𝜂𝑃𝑉   PV module efficiency 

𝛼𝐷𝐺  diesel fuel consumption coefficients (l/kWh) 𝜂𝑇,𝑃𝑉  PV thermal efficiency 

𝛽𝐷𝐺  diesel fuel consumption coefficients (l/kWh) 𝛼  PV temperature coefficient  

𝑦  System capacity (W, Wh) 𝜌  air density (kg/m3) 

𝑥  State variable 𝑚𝑖𝑛  minimum 

𝑢  Control variable 𝑚𝑎𝑥  maximum 

𝑈  Utility function 𝐷𝐺  diesel generator 

𝑤  weighted factor   

 

1. Introduction 

Climate change, depletion of fossil fuels and increase of electricity demand necessitate the use of 

local energy potentials which cause renewable energy system (RES) to be an efficient and feasible 

solution [1]. Hybrid renewable energy system (HRES) is an integrated system which 

simultaneously uses different energy resources including renewables or non-renewables. HRES is 

consisted of several sub-systems which can be expressed as generation, storage and backup 

systems. The application of HRES has various advantages such as decrease the fluctuations in the 

generation side, operation cost and environmental emissions. It also increases the system 

reliability. In HRES, the required electricity demand at each time step should be satisfied by 

various energy flows from different renewable energy generation, storage or backup systems. The 

determination of these energy flows during the operation time affects the economic performance 

and reliability of HRES. This justifies the application of energy management system (EMS) to 

meet the demand profiles while optimizing the technical and economic performance related to 

operation scheduling of HRES. Therefore, the schedule of HRES should be optimized using 

operation optimization procedure to better manage the energy flows. The first principle of EMS is 

to determine power flows corresponding to renewable and non-renewable generation resources 

while the second principle is based on the controlling and management of HRES operation 

variables (such as state of charge in storage systems) [2].  



Recently, the numbers of researches which are focused on scheduling optimization of HRES are 

growing. There are two main approaches in the literatures for operation optimization to determine 

the scheduling strategy in HRES: 1) conventional optimization and 2) receding horizon 

optimization (RHO).  

In the first approach, the historical data for the entire operation life time including the availability 

of renewable resources as well as demand load profiles are provided. All the input data are 

imported and the optimizer tries to find the optimal operation for the whole operation lifetime.  In 

this case, the optimization procedure is performed only one time and the variability of input 

profiles (weather/demand) during operation time cannot be considered in the optimization 

procedure. 

Numerous previous literatures have attempted to achieve the optimal operation scheduling of 

energy system through EMS. The proposed techniques which are applied for operation 

optimization in conventional approach include mathematical programming (mixed integer linear 

programing) [3,4], heuristic methods (genetic algorithm, particle swarm optimization, fuzzy 

algorithm, artificial neural network) [5-9], aging-based modeling [10,11], agent-based modelling 

[12-14], stochastic approach [15] and priority rules [16]. 

Garcia et al. [2,18,19] considered a HRES which is composed of PV/Wind as primary energy 

sources and hydrogen subsystem and battery as the energy storage systems. They present a long-

term operation optimization framework for HRES based on three EMSs. The objective functions 

regarding each EMS are minimization of energy storage utilization cost, maximization the energy 

storage system efficiency and maximization the lifetime of the energy storage devices. The main 

goal of long term optimization is to achieve the efficient use of renewable energy resources and 

scheduling the energy storage systems to store and release the power flows in different time steps. 

Optimal energy management system for an off grid PV/DG/battery and PV/Wind/DG/battery 

hybrid power systems has been presented by Tazvinga et al. [20-22]. The optimization procedure 

minimizes the battery wear and fuel costs to determine the optimal power flow regarding 

availability of renewable energy resources, battery state of charge and load demand. The optimal 

solutions for equally weighted objectives and for a case with larger weight to battery wear cost are 

compared and analyzed. Pascual et al. [23] proposed the energy management methodology for a 

residential grid-connected microgrid which is consisted of PV, wind turbine and battery energy 



storage. The proposed control strategy allows the control of power exchange through a battery and 

utility grid using the charge level in battery, power flows in each node, load and available 

renewable generation forecasts as input data. The system simulation shows that the EMS results 

have an improvement in grid power profile regarding the given storage system. Also, they 

experimentally validated their proposed energy management strategy by the Renewable Energy 

Laboratory at the UPNa. An operation optimization methodology for maximization the economic 

objective regarding the market prices and predicted renewable resources is proposed by Chen et 

al. [24]. The systematic control strategy of renewable energy system to make maximization the 

economic objective is implemented through the operation optimizer in their methodology. The 

capability of computational methodology has been illustrated regarding the optimization results 

for two configurations of HRES. The comparison between economic performance of proposed 

flexible operation strategy and constant operation strategy shows the advantage of their proposed 

optimizer. Finally, the sensitivity analysis regarding two parameters (prediction error and 

variability of market prices) is presented. Marzband et al. [25] and Ikeda et al. [26] presented the 

new operation optimization strategy to schedule of a HRES. In [25] the capability and effectiveness 

of real time operation optimization applications are validated using experimental setup. The 

uncertainty of renewable energy resources as well as demand changes are considered in [26].  

Multi objective optimization can be used to show the trade-offs between conflicting objectives. 

Different objective functions can be optimized regarding operation strategy to achieve the optimal 

scheduling with respect to operator preferences. There are several researches which performed the 

multi objective operation optimization in their proposed EMS [27-28]. Recently, the technique for 

order preference by similarity to an ideal solution (TOPSIS) method has been applied as a tool to 

determine an optimal solution which is closet to positive ideal solution and farthest to the negative 

ideal solution among the Pareto solutions in a multi objective optimization. TOPSIS technique has 

been used in various studies which are related to decision making to calculate the optimal solution 

[29-30]. Li et al. [31] presented an operation optimization framework for a building cluster which 

optimizes the scheduling through particle swarm algorithm based multi-objective optimization. 

The Pareto frontiers have been achieved through multi objective optimization for making trade-

off between thermal comfort level and energy cost saving as two objective functions. A multi-

objective operation optimization is proposed by Di Somma et al. [32] to obtain the optimal 

scheduling of the HRES. Energy costs and environmental impacts are considered as two objective 



functions. Best possible trade-offs between objective functions are presented using weighted sum 

of operation cost and environmental emissions.  

In the second approach (RHO), the real time profiles for specific horizon are provided at each time 

step to optimize the operation scheduling. Receding horizon optimization approach is applied to 

EMS and the real-time operation optimization of HRES  is achieved. In receding horizon 

methodology, decision variables (control variables) are optimized in the moving time horizon as 

the optimal trajectories. These trajectories are updated on an hourly/daily timescale and then the 

results are returned as state variables for further real-time optimization in the next time step. RHO 

methodology has been applied to the determination of optimal operation scheduling for the process 

industries [33-34]. One of the main advantages of RHO in comparison with conventional 

optimization approaches is the ability of considering the uncertainties and intermittent behavior of 

renewable energy resources in operation optimization of HRES. Therefore, the implementation of 

RHO on HRES can improve the technical and economic justification of such systems.  

Feroldi et al. [35] proposed an energy management system to optimize the scheduling of a 

solar/wind hybrid renewable energy system which uses batteries and fuel cells as the storage 

system. Receding horizon optimization is applied with prediction of future renewable generation 

regarding load profiles and the battery state of charge. The application of RHO decreases loss of 

power supply probability up to 88% in comparison to the case of without prediction. Prodan et al. 

[36] presented a reliable energy management framework for a microgrid using RHO methodology. 

An on-grid microgrid includes a wind turbine and a battery bank as the storage system. The main 

objective of this work is to optimize the operation scheduling of battery system to minimize the 

operation cost. It is concluded that the proposed framework is an effective approach to optimize 

the scheduling and management of HRES using resource/demand profiles, objective function and 

constraints. Petrollese et al. [37] proposed a novel energy management strategy for a renewable 

hydrogen energy system. The energy management strategy is developed to achieve the long term 

optimal planning as well as short-term optimal energy scheduling. Several experimental studies 

show that the application of energy management system can enhance the reliability and technical 

performance of the HRES while can reduce the system operation cost. Wang et al [38] presented 

the receding horizon optimization methodology for energy management of HRES in the chlor-

alkali chemical unit. The energy management framework is proposed in order to supply the 



demand with the objectives of minimizing the operation cost and environmental emissions. The 

on-grid HRES includes PV, wind turbine and fuel cell to supply demand load. Sensitivity analysis 

are conducted to illustrate the effect of key parameters on the operation of HRES. Demand side 

energy management is also added to their proposed EMS to capture the effect of demand profile 

changes on the optimal scheduling in [39]. In the other work, a real time optimization methodology 

is developed to achieve optimal scheduling electricity supply system [40]. An EMS is also 

proposed for realization the economic and environmental objectives while meeting production 

requirements. Demand response strategies are implemented into their methodology to improve the 

system reliability. A receding horizon optimization framework based on two stage methodology 

for building energy management (BMS) is developed by Gruber et al. [41]. The proposed HRES 

includes PV, diesel generator (DG) and battery storage system which is applied to meet the 

dispachable/non-dispachable demand loads. The optimal scheduling management for a medium-

size hotel which is simulated in an experimental setup is developed through the proposed 

framework. The results illustrate that the proposed EMS can be implemented in the flexible power 

scenarios and various desirable conditions.   

In this paper, the novel energy management system (EMS) based on receding horizon optimization 

is presented. Multi objective receding horizon optimization (MO-RHO) is proposed to show the 

trade-offs between conflicting operation objective functions. Battery wear cost and diesel fuel cost 

are two objective functions which are implemented in a HRES which includes PV, wind turbine, 

batteries and a diesel generator as the backup system. The required data profiles (weather and 

demand) for MO-RHO are imported from a real experimental setup which is installed at 

department of energy engineering building, Sharif University of Technology (SUT) to meet the 

required demand load. The imported data profiles are used in a mixed integer convex optimization 

(MICO) framework which is solved using CVX solver to achieve the optimal operation strategy. 

The sensitivity analysis is also performed to analyze the effect of prediction horizon and seasonal 

variations of renewable generation profiles on the optimal operation scheduling.  

In short, the main contributions of proposed paper are as follows: 

 The concept of multi objective receding horizon optimization (MO-RHO) for optimal 

scheduling of buildings is presented. 



 The measured data profiles are implemented into real time optimization framework at each 

moving prediction horizon.   

  The share of direct/indirect renewable energy resources in supplying the demand load of 

proposed building is analyzed to capture the effect of length of prediction horizon of RHO 

methodology and seasonal variations of generation profiles on optimal scheduling. 

 

2. Problem under study 

The configuration of hybrid renewable energy system which is considered in this work is 

illustrated in Fig. (1). The EMS framework is implemented into HRES as a case study for assessing 

the proposed EMS. The HRES includes PV and wind turbine as primary renewable resources, 

diesel generator for backup system as well as battery bank for storing the surplus energy and 

improving the HRES reliability.  All HRES sub-systems and loads are connected together through 

a DC bus by means of specified converters as a stand-alone system. The battery storage system 

and DG compensate the lack of renewable generation power for supplying the demand load in 

HRES. The yi denotes the size of specific sub-system and Pi (t) denotes the various power flows in 

each time step which are specified by the energy management system. The main goal of the 

proposed EMS is determination of power flows as the control variables (PBat and PDG) while the 

demand load is completely satisfied and operation cost is minimized. In this study, the weather 

and demand profiles which are imported in proposed EMS as the input parameters are measured 

by HRES experimental setup. The weather data including solar radiation, wind speed, PV and 

ambient temperatures are measured by sensors in HRES experimental setup which is installed in 

educational building at Tehran-Iran (latitude: 35.41, longitude: 51.19).  

A hybrid renewable energy system is experimentally installed at the roof of department of energy 

engineering building to show the viability of our methodology using measured profiles as the input 

data for the proposed EMS. As the Fig. (2) shows, the installed HRES includes two renewable 

power generation sub-systems: the rooftop photovoltaic system and a three bladed horizontal axis 

wind turbine. The HRES also includes charge controllers, battery bank and a power island. In 

summary, the detail of the commercially renewable energy generators, the battery bank and the 

other devices comprising the installed HRES, are presented in Table (1). The lead acid battery is 



designed by 6 cells of 1.8 V. The battery management system (BMS) which is connected to power 

island by RS485 interface is implemented to monitor the state of charge (SOC) and the state of 

health (SOH) of battery bank and keep the battery from risky operation using battery temperatures 

and voltages. The installed HRES provides the possibility of implementation and verification of 

energy management system to increase the system productivity and capability. The measured 

profiles including solar irradiation, wind speed and PV cell/ambient temperatures with the 

accuracy of ±10W/m2, ±1m/s, ±1°C and ±1°C respectively, are transmitted using RS485 protocol 

to a communication interface (sample rate: 10s). The developed data logging and monitoring 

system lets us to monitor the real-time energy flows from resources to final uses. It is expected 

that the department desired electricity loads are practically supplied by the installed HRES setup.  

 

3. Problem formulation  

The first step to develop the energy management system of HRES is the analysis of different sub-

system performances based on the input data profiles. For this goal, the input/output technical 

model which calculates the power generation at each time interval according to experimental 

design parameters and measured input data are required. The technical model of HRES is consisted 

of four main sub-models. These sub-models are PV, wind turbine, battery and diesel generator 

which are implemented through the hourly time interval analysis of weather data profiles (solar 

irradiation, wind speed and PV/ambient temperatures) from experimental setup. At the same step, 

the operation cost model which includes the battery wear and diesel fuel costs are presented as two 

operation objective functions.  

3.1. Renewable energy generation systems 

Solar and wind are considered as two renewable energy resources which are converted to 

electricity by PV module and wind turbine.  

The power produced by a photovoltaic module can be calculated using Eqs. (1) and (2) [42]: 

𝑃𝑃𝑉(𝑡) = 𝜂𝑃𝑉𝜂𝑇,𝑃𝑉𝐴𝑃𝑉𝐺(𝑡)  (1) 

𝜂𝑇,𝑃𝑉(𝑇𝑐) = 𝜂𝑇,𝑃𝑉(25⁰𝐶)[1 + 𝛼(𝜂𝑇)(𝑇𝑐 − 25⁰𝐶)]  (2) 

 



Where, Ppv is the output power, G(t) is hourly total solar irradiation, ηPV is PV efficiency and APV 

is the panel area (m2). PV cell temperature which is measured using temperature sensor is used to 

calculate PV module efficiency. The G(t) and TC which are experimentally measured are used as 

input profiles in receding horizon operation optimization. The other PV model parameters are 

given in Table (2) based on installed experimental setup. 

The wind turbine converts wind kinetic energy to electrical energy. The generated power from a 

wind turbine is determined by Eq. (3) [43]. 

𝑃𝑊(𝑡) =

{
 
 

 
 

0                       𝑉 < 𝑉𝐶
1

2
𝐶𝑃𝜌𝐴𝑊𝑉

3(𝑡)       𝑉𝐶 < 𝑉 < 𝑉𝑟

𝑃𝑊,𝑟                           𝑉𝑟 < 𝑉 < 𝑉𝑓
0                       𝑉 > 𝑉𝑓

  (3) 

 

Cp is the coefficient of performance of wind turbine. AW is the rotor swept area, ρ is air density, 

PW,r is the wind turbine rated power, VC, Vr and Vf are cut-in, rated and cut-off wind speeds, 

respectively. The main characteristics of the installed wind turbine are depicted in Table. (2). V(t) 

is hourly wind speed which is experimentally measured in time step (t).  

 

3.2. Energy storage system 

The energy storage system is consisted of lead-acid battery banks which are charge or discharge 

regarding the renewable generation power (PV/wind) and the load profile at each time step. The 

following dynamic equation is used to describe the energy stored in battery as the state variable.   

𝐸𝐵𝑎𝑡(𝑡 + 1) = {
(1 − 𝜏)𝐸𝐵𝑎𝑡(𝑡) + 𝑃𝑐ℎ(𝑡)𝜂𝑐ℎ

(1 − 𝜏)𝐸𝐵𝑎𝑡(𝑡) − 
𝑃𝑑𝑖𝑠(𝑡)

𝜂𝑑𝑖𝑠

  (4) 

 

Where, EBat (t+1) and EBat (t) are the amount of energy stored in battery at time step t+1 and t, ɳbat 

and ɳdis are the battery efficiencies including charge/discharge efficiencies. τ is self-discharge 

coefficient and Pch(t)/ Pdis(t) are charged/discharged power flows in each time step (t). SOCmin and 

SOCmax are lower and upper limits of battery state of charge (SOC) and DoD is the depth of battery 

discharge [44].  



𝑆𝑂𝐶𝑚𝑖𝑛 × 𝐸𝐵𝑎𝑡,𝑚𝑎𝑥 ≤ 𝐸𝐵𝑎𝑡(𝑡) ≤ 𝑆𝑂𝐶𝑚𝑎𝑥 × 𝐸𝐵𝑎𝑡,𝑚𝑎𝑥  (5) 

𝑆𝑂𝐶𝑚𝑖𝑛 = (1 − 𝐷𝑂𝐷)  (6) 

 

The power flows from/to batteries are restricted by Eqs. (7) and (8) [44].  

0 ≤ 𝑃𝑐ℎ(𝑡 + 1) ≤ (𝑆𝑂𝐶𝑚𝑎𝑥 × 𝐸𝐵𝑎𝑡,𝑚𝑎𝑥) − 𝐸𝐵𝑎𝑡(𝑡)  (7) 

0 ≤ 𝑃𝑑𝑖𝑠(𝑡 + 1) ≤ 𝐸𝐵𝑎𝑡(𝑡) − (𝑆𝑂𝐶𝑚𝑖𝑛 × 𝐸𝐵𝑎𝑡,𝑚𝑎𝑥)  (8) 

 

The operation cost of the batteries is one of the significant HRES operation costs that has not been 

comprehensively investigated in the conventional EMS studies. The lead acid batteries have been 

used in the installed HRES. Post-processing and performance degradation models are two common 

lifetime models for lead acid batteries. The post-processing model (PPM) doesn’t include a 

performance model while the performance degradation model (PDM) integrates a performance 

model with lifetime considerations and so that the battery performance can be investigated based 

on the utilization scheduling of the battery [45]. Ah-throughput and cycle counting are two lifetime 

consumption methods in PDM which are required to calculate the battery operation cost.  

In this study, the Ah-throughput counting method is employed to determine the battery lifetime 

consumption [45]. The mentioned method assumes that the fixed quantity of energy can be cycled 

in a battery storage system before the battery needs replacement. In this method, λL is the estimated 

throughput over a battery storage system lifetime and almost specified by the DoD-cycles to failure 

(CTF) curve (which is provided by the manufacture) and the maximum capacity of battery 

(EBat,max). λL is presented as Eq. (9) [20]: 

λL = DOD × CTF × EBat,max  (9) 

 

The battery capacity degradation depends mainly on charging/discharging scheduling and battery 

DoD [20]. To obtain the operation cost of battery bank, the battery utilization cost per cycle 

($/kWh/cycle) is needed. The battery wear cost (CBat,w) is calculated by dividing the battery 

lifetime cost which is defined by sum of the replacement cost of battery bank during the HRES 

lifetime (CBat,life) (Eq. (13)) to the net energy consumption of battery bank (λL) as shown in Eq. 

(10) [27]. CBat,life is the net present values (NPV) [46] of battery replacement cost that occurred in 

each replacement time of battery in the duration of HRES operation (20 year) [44]. 



𝐶𝐵𝑎𝑡,𝑤 =
𝐶𝐵𝑎𝑡,𝑙𝑖𝑓𝑒

λL
  (10) 

𝐶𝐵𝑎𝑡,𝑙𝑖𝑓𝑒 = ∑ 𝐶𝐵𝑎𝑡 ×
(𝑟+1)𝑛−1

𝑟×(𝑟+1)𝑛
 𝑛=5,10,15   (11) 

 

3.3. Backup system  

Diesel generators (DG) are considered as the backup system in the proposed hybrid renewable 

energy systems. DG converts the chemical energy stored in diesel fuel into electricity which is 

used to supply the required load. DG power in addition to battery charge/discharge flows are the 

independent variables which can be directly controlled in HRES. DG fuel consumption is the major 

portion of operation cost in the HRES which is a function of generator size and the load at each 

time step. Thereupon, the fuel consumption of a DG can be calculated using Eq. (12) [43]. 

𝐹𝑢𝑒𝑙𝐷𝐺(𝑡) = 𝛼𝐷𝐺𝑃𝑟−𝐷𝐺 + 𝛽𝐷𝐺𝑃𝐷𝐺(𝑡)  (12) 

 

Pr-DG is the rated capacity in installed setup while PDG is the practical output power of DG in time 

step (t). Also, αDG and βDG are diesel fuel consumption coefficients. Fuel price is averagely 

considered to be 1.2 $/L [44]. The technical and economical parameters used in battery and DG 

models are given in Table (3).  

 

4. MULTI OBJECTIVE RECEDING HORIZON OPTIMIZATION 

In this study, the concept of multi objective receding horizon optimization (MO-RHO) is proposed 

which implements the multi objective approach into receding horizon optimization.  

The mathematical framework of energy management methodology is presented in Fig. (3). The 

EMS framework is consisted of three sections: 1) performance model, 2) operation cost model and 

3) receding horizon optimization. The input parameters of EMS include technical and economic 

parameters as well as available energy sources and demand profiles which are imported from 

experimental setup at each prediction horizon. The y is the capacity vector of the different devices 

in HRES including PV, Wind and battery bank. In this paper, the practical values of the installed 

HRES capacities (are presented as y in the framework input) are used for the operation 



optimization. At the first section, using input profiles the output energy flows are determined for 

conversion and storage systems (PCon, PSto). In this section, the simulation models are used for 

determination of generation power profiles in order to keep and generalize the flexibility of our 

proposed framework. At the second section, the corresponding operation cost of HRES sub-

systems regarding the output energy flows is determined. The operation cost is consisted of the 

fuel cost and battery wear cost which are two main operation objective functions in receding 

horizon optimization. At the third section, the operation optimization is performed using receding 

horizon optimization technique to achieve optimal scheduling. The receding horizon optimizer is 

applied at each time step during the operation time of HRES. At each time step, the measured 

demand and weather profiles for the specific horizon regarding the number of future time steps are 

imported to the optimization solver. The mixed integer convex programing is used to optimize the 

control variables. It is proven that the convex optimization guarantees the achieved optimal 

solution is unique and global. Therefore, the resulted optimal schedule of system is globally 

optimal and consequently the objective function (diesel fuel cost and battery wear cost) which are 

related to this scheduling will be the global optimal solution. The amount of energy in battery 

(EBat) is the state variable which is calculated at each time step and used as initial variable for 

future time step. The optimizer tries to optimize the operation cost as the objective function 

regarding related constraints. Dynamic constraints provide time relationship between state 

variables while the technical constraints determine the feasible region of the optimization problem. 

The obtained trajectories in each horizon include battery charge/discharge power flows (Pch/Pdis) 

and DG generation power (PDG) which are the control variables and amount of energy in battery 

as the state variable (EBat). The first values of the power trajectory vectors are implemented as the 

optimal solution for time step (t). In the next time step, the input profiles as well as trajectories are 

updated and new initial conditions and profiles are implemented into the next moving horizon till 

the final time step number is reached. 

 

Finally, the main output of the receding horizon optimization is to determine the optimal operation 

scheduling using the available renewable resources based on the desirable objective functions. 

Fuel cost is the conventional operation objective which affects the economic performance of the 

HRES. However, the battery wear cost which can be optimally tuned imposes the significant cost 

on operation cost of HRES. Therefore, to achieve the optimal scheduling these two objective 



functions should be simultaneously considered in the optimization procedure. These objectives are 

conflicting since the first objective determines the non-renewable resource utilization while the 

second objective relies on the indirect renewable energy utilization.  

In this context, multi objective optimization technique can be implemented into receding horizon 

optimization problem to show the trade-offs between optimal solutions regarding two operation 

objective functions. In this study, the weighted global criterion method which is one of the 

conventional methods for multi objective optimization problem is used. In this method, all desired 

objectives are combined for making one single objective [46]. The weighted factors are assigned 

to the different objectives to show the model preferences. The general utility function (U) is 

weighted exponential sum as is presented in Eq. (13) [47].  

𝑈 = ∑ 𝑤𝑖 × [𝐹𝑖(𝑥)]
𝑝,

𝑓
𝑖=1    𝐹𝑖(𝑥) > 0  ∀𝑖  (13) 

 

Where wi is the weighted factor which follows as Eq. (14) and f is the number of objective 

functions. Usually one is considered as a fixed amount for p then, the operator tunes w to illustrate 

the preferences a priority or w systematically is modified for obtaining the Pareto frontiers. As the 

dimensions of considered objectives are different, usually it is useful to transform the original 

objectives. One of the most common approaches for solving this problem is presented in Eq. (15) 

[17].    

∑ 𝑤𝑖
𝑓
𝑖=1 = 1  (14) 

𝐹𝑖
𝑡𝑟𝑎𝑛𝑠 =

𝐹𝑖(𝑥)

|𝐹𝑖
𝑚𝑎𝑥|

  (15) 

After identification of Pareto optimal points, the TOPSIS method is applied for ranking these 

solutions regarding the shortest distance from ideal positive solution and farthest distance from 

negative ideal solution. For this aim, the distances of the each Pareto solution to the positive and 

negative ideal solutions (di
+ and di

-), are calculated [30]. Afterward, the relative closeness of Pareto 

solutions (CLi
+) to the ideal solution are calculated from Eq. (16) and ranked based on the relative 

descending order of Pareto solutions [30].  

𝐶𝐿𝑖
+ =

𝑑𝑖
−

(𝑑𝑖
++𝑑𝑖

−)
                0 ≤ 𝐶𝐿𝑖

+ ≤ 1                  𝑖 = 1,2, … ,𝑚  (16) 



 

Where m is the number of Pareto solutions. Each solution which has the largest value of CLi
+ is 

considered as the optimal solution based on the TOPSIS method.  

To determine the optimal scheduling of HRES in the MO-RHO methodology, the different desired 

objectives with the related dynamic and state constraints are applied using the mathematical 

modeling of an optimization procedure. The receding horizon method optimizes the control 

variables in each time step regarding deterministic multi objective optimization. Optimal 

trajectories are obtained as the output in related time step and the first values of these trajectories 

are reported as final optimal solution in current time step. Then the obtained trajectories are used 

as the initial condition for next time step. Finally, the operator can alter the weighted factor for 

showing the preferences to determine the Pareto solutions.  

In this study, the considered operation objectives of HRES are battery wear cost and diesel fuel 

cost which are optimized in the specific horizon through the multi objective optimization 

technique. To solve the MO-RHO problem and manage the operation of HRES, the dynamic 

formulation is considered. The u=[PDG , Pch , Pdis] and x=[EBat] are the control variable and the 

state variable (feedback variable) vectors which are imposed in the receding horizon optimization 

model. The model of proposed optimization for each time step (t) is formulated as Equations (17) 

and (18).  

𝑚𝑖𝑛  ∑ 𝐶𝑂𝑝𝑒
𝑡+𝑁−1
𝑖=𝑡 (𝑢(𝑖|𝑡) , 𝑥(𝑖|𝑡))  (17) 

𝐶𝑂𝑝𝑒(𝑢(𝑖|𝑡), 𝑥(𝑖|𝑡)) = 𝑤 × (𝐶𝑓 𝐹𝑢𝑒𝑙𝐷𝐺(𝑖|𝑡)) + (1 − 𝑤) × (𝐶𝐵𝑎𝑡,𝑊 [𝑃𝑐ℎ(𝑖|𝑡) + 𝑃𝑑𝑖𝑠(𝑖|𝑡)])  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    ∀ 𝑖 ∈ [𝑡 , 𝑡 + 𝑁 − 1]  

𝑃𝐶𝑜𝑛,𝑛(𝑖|𝑡) + 𝑃𝑆𝑡𝑜,𝑚(𝑖|𝑡) ≥ 𝐷(𝑖|𝑡)          𝑛 = 𝑃𝑉,𝑤𝑖𝑛𝑑, 𝐷𝐺  &  𝑚 = 𝑏𝑎𝑡𝑡𝑒𝑟𝑦  

𝐸𝐵𝑎𝑡(𝑖 + 1|𝑡) = (1 − 𝜏)𝐸𝐵𝑎𝑡(𝑖|𝑡) + 𝑃𝑐ℎ(𝑖|𝑡)𝜂𝑐ℎ − 
𝑃𝑑𝑖𝑠(𝑖|𝑡)

𝜂𝑑𝑖𝑠
  

𝑆𝑂𝐶𝑚𝑖𝑛 × 𝑦
∗
𝐵𝑎𝑡

≤ 𝐸𝐵𝑎𝑡(𝑖|𝑡) ≤ 𝑆𝑂𝐶𝑚𝑎𝑥 × 𝑦
∗
𝐵𝑎𝑡

  

0 ≤ 𝑃𝑐ℎ(𝑖 + 1|𝑡) ≤ (𝑆𝑂𝐶𝑚𝑎𝑥 × 𝑦
∗
𝐵𝑎𝑡
) − 𝐸𝐵𝑎𝑡(𝑖|𝑡)  

0 ≤ 𝑃𝑑𝑖𝑠(𝑖 + 1|𝑡) ≤ 𝐸𝐵𝑎𝑡(𝑖|𝑡) − (𝑆𝑂𝐶𝑚𝑖𝑛 × 𝑦
∗
𝐵𝑎𝑡
)  

𝑃𝑐ℎ(𝑖|𝑡) ≤ 𝑀 × 𝛿(𝑖|𝑡)  

𝑃𝑑𝑖𝑠(𝑖|𝑡) ≤ 𝑀 × (1 − 𝛿(𝑖|𝑡))  

(18) 



0 ≤ 𝑃𝐶𝑜𝑛,𝑛(𝑖|𝑡) ≤ 𝑦∗
𝑛
         𝑛 = 𝑃𝑉,𝑤𝑖𝑛𝑑, 𝐷𝐺    

 

Where α (i|t) generally indicates the value of α parameter at the time step i, ∀ 𝑖 ∈ [𝑡 , 𝑡 + 𝑁 − 1]. 

α (t|t) denotes the optimal parameter at the current time step (t) while α (i|t), ∀ 𝑖 ∈ [𝑡 + 1 , 𝑡 + 𝑁 −

1] is the predicted parameter using the information available at time step (t), over the future time 

steps that may or may not be implemented in the next time steps. N represents the length of the 

receding prediction horizon, i is the counter of time step in the specific horizon which is updated 

in each horizon and y* is the actual sizing of the HRES components which are determined using 

installed experimental setup. Also, δ denotes the binary variable (δ∈ {0,1}) and M is a relaxation 

constant parameter which is significantly more than the other parameters.  

The related constraints generally include supplying the hourly demand, dynamic equation over the 

amount of energy in battery as the state variable, the maximum and minimum limitations of energy 

stored in battery bank and the power rate limit on charge/discharge of battery bank. Also, the mixed 

integer constraints are implemented to the optimization model to consider the physical limitation 

of the charge/discharge state of battery bank. The produced power from renewable energy 

generators are limited by the actual sizing which are determined from the experimental setup.  

 

5.  Result and discussion  

In this section, the results of MO-RHO methodology are presented. To show the capability of the 

proposed framework, the real practical profiles are measured and collected in developed database. 

The measured profiles from experimental setup for a sample week (first week of January) are 

implemented into the proposed energy management system. The input data which are presented in 

Fig. (4) include solar irradiation, wind speed, PV cell and ambient temperatures.    

The receding horizon optimizer tries to find the optimal trajectories and solutions in each moving 

horizon regarding measured data profiles. Fig. (5) illustrates the hourly optimal power flows and 

related trajectories in moving horizons for sample day (hours: 24-48). 

In Fig. (5-A), (5-B) and (5-C) the optimal power flows for three control variables including diesel 

generator and battery charge/discharge are presented. The energy analysis in the considered sample 



day shows that DG optimally supplies the demand load at midnight’s hours (hours 26-31) when 

the power from PV and wind turbine are not sufficient. Batteries are charged during the midday 

hours (hours 36-39) when the solar power is more than the demand load. Battery discharge is 

happened from sunset to the midnight hours (hours: 40-44) since there are not renewable resources 

to supply demand while the batteries are sufficiently charged.   

Fig. (5-A) shows DG optimal power generation in each time step with two sample trajectories for 

time steps 26 and 27. As it can be seen, in time step 26, the optimal trajectory for six future hours 

is presented which its trend is generally followed by the trajectory corresponding to the time step 

27.  The first values in each trajectories corresponding to each time steps are implemented as the 

optimal DG power flows which make the final receding horizon optimization solution in operation 

time. Also, the calculated state variables (amount of energy in batteries) in each time step are 

applied as the initial values for receding horizon optimization in the next time step. It is worthy to 

indicate that using receding horizons it is possible to capture the variation of load in future time 

steps (Hour: 31) and generation profiles to estimate the optimal power flows.  

Fig. (5-B) and (5-C) show the optimal battery charge/discharge optimal power flows with two 

sample trajectories (time steps: 36 and 37 for charge and time steps: 41 and 42 for discharge). The 

optimal initial values at each trajectory are reported as the optimal solution and the optimal 

trajectories of control and state variables in each time step are implemented as the initial condition 

for future receding optimization.   

 

Fig. (6) shows the measured daily demand profile which should be supplied by proposed HRES. 

This includes the library lighting, personal computer, roof day/night lighting, and communication 

interface devises. There are three ways to supply the demanded load which called direct renewable, 

indirect renewable (discharge from batteries) and diesel generator. As indicated in this figure, by 

increasing the length of prediction horizon, the total share of renewable energy (direct renewable 

+ indirect renewable) in supplying the load is increased. This is mainly due to the longer vision of 

receding horizon optimizer which leads to better schedule of charge/discharge of batteries. When 

the longer length of horizon is considered, more view of future can be captured and therefore it 



will be possible to achieve the optimal schedule in current time step based on satisfying the total 

constraints over the longer length of proposed horizon. 

 

Fig (7) presents the weekly demand profile which is supplied by HRES. As it can be seen, by 

increasing the length of horizon from 6 to 12 hours, diesel generator power flow is decreased from 

41.1 kWh to 24.3 kWh entire the week. It means that using longer prediction horizon (from 6 to 

12 hours) the diesel consumption and related environmental impact are decreased up to 12.82%.  

 

The operation cost of HRES is divided into two main parts including diesel fuel cost and the battery 

wear cost. Increasing the share of renewables in supplying the demand, leads to decrease of diesel 

fuel consumption. Therefore, there is a trade-off between these two objective functions. As 

indicated before increasing the length of prediction horizon leads to better managing of battery 

scheduling and increases the share of renewable energy. However, this could increase the battery 

cycling and consequently the battery utilization cost is increased. Fig (8), shows the effect of length 

of prediction horizon on conflicting behavior of diesel fuel cost and the battery wear cost. Recent 

researches have proven that is a trade-off between selection of length of prediction horizon and 

CPU running time [39]. As the length of horizon increases the corresponding optimal operation 

cost decreases while simultaneously the time for running the optimization problem increases. As 

the RHO is the online optimization procedure and must be run in each time step, the running time 

is an important issue. Therefore, there is a trade-off between these two factors and decision maker 

must decide based on need and existence conditions.  

The multi objective optimization technique which is applied to receding horizon optimization 

(MO-RHO) is a powerful decision making tool to achieve the optimum operation of HRES based 

on multiple objective functions. The trade-offs between two conflicting objectives (diesel fuel cost 

and the battery wear cost) regarding different weighted factors are presented as the Pareto frontiers. 

Fig. (9) shows the Pareto frontiers which are obtained using different weighted factors for two 

objective functions. As it can be seen, by increasing the weighted factor which means that diesel 

fuel cost is more important than the battery wear cost, the share of renewable energy is increased. 

Therefore, to study the effect of battery wear cost on operation schedule in comparison with diesel 

fuel cost the weighted factor of each objective function should be consequently changed. The effect 



of variation the relative importance of battery wear cost and diesel fuel cost on the optimal 

solutions and scheduling are presented in Table (4). As it is shown, when the weighted factor is 0 

(higher battery wear cost) the battery is not applied and the demand is supplied by DG. With the 

increase of weighted factor (higher diesel fuel cost), the battery is applied to supply the demand. 

Therefore, by increasing the diesel fuel cost the share of battery in supplying the demand can be 

increased up to 34.18%.  

 

In operation optimization procedure, the operator could select one solution among other optimal 

solutions regarding the preferences and priorities in operation of HRES. TOPSIS method can be 

used to rank the optimal solutions using a mathematical model. As it can be seen in Fig. (9), the 

point P is the positive ideal solution while the point N is the negative ideal solution. The amount 

of relative closeness (CLi
+) of Pareto solutions to the ideal solution with their ranking are expressed 

in Table (5). As the result, point B which has the maximum CL+ is selected as the best solution 

while the point A and C obtain the second and third ranks, respectively.  

 

Input profiles such as generation/demand data profiles affect the optimal scheduling. For analyzing 

the effect of weather data profiles on the optimal schedule of HRES, the sensitivity analysis is 

performed regarding weather seasonal variations. To this aim, the input weather data profiles are 

recollected from a sample week in summer (Fig. (10)) and the results are compared with prior 

results which were related to sample week in winter.  

 

Fig. (11-A) and (11-B) shows the optimal power flows regarding three control variables which are 

DG power generation and battery charge/discharge power flows for a sample week of winter and 

summer, respectively. As it is expected, the share of direct renewable energy is dramatically 

increased by 30% due to higher solar energy potential in summer week. This decreases the diesel 

fuel consumption and battery net energy consumption. Consequently, the diesel fuel cost and 

battery wear cost are decreased. Therefore, the total operation cost of HRES will be reduced. 

However, increasing the length of predicted horizon in summer week (Fig. (11-C)) increases the 

indirect share of renewable energy (battery discharge) and consequently improve the economic 



justification of HRES. Table (6) summarizes the results of seasonal sensitivity analysis and 

increase of the length of predicted horizon on optimization results.  

 

6. Conclusion 

A novel energy management system based on multi-objective receding horizon optimization has 

been proposed in this paper. This methodology uses real time data from an experimental setup 

which is installed to supply the desired demand of the SUT hybrid renewable energy laboratory. 

Two objective functions (diesel fuel cost vs. battery wear cost) are considered in multi objective 

optimization methodology which are implemented into receding horizon optimizer. The energy 

analysis is performed to evaluate the economic and technical performance of the system. The 

results of RHO are more effective and feasible in comparison with other conventional optimization 

procedures. The results show that the prediction horizon which is considered as one of the main 

parameters in receding horizon optimization procedure can significantly affect the optimal 

scheduling. Then, the results obtained from a sample week in winter have been compared with a 

sample week in summer to evaluate the effect of resource variation on operation scheduling of 

HRES. It is concluded that in a sample week in summer the share of direct renewable energy is 

superior to a sample week in winter due to higher solar potential in summer. This causes the 

operation cost of the system to be decreased up to 10%.   
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Fig. 1. Schematic diagram of the hybrid renewable energy system (HRES) 

 



 

Fig. 2. HRES installed in SUT hybrid renewable energy laboratory 
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Fig. 3. Mathematical framework of energy management system 

 



 

Fig. 4. Measured RHO input weather profiles from sensor box for a winter week 

 



 

Fig. 5. Illustrative RHO optimal trajectories and implementation using the receding horizon concept.  (A), 

(B) and (C) show the RHO optimal power flows of three control variables 

 



 

Fig. 6. The optimal share of energy supply side to meet daily demand profile in two length of horizons 



 

Fig. 7. The accumulated optimal share of energy supply side to meet weekly demand profile in two length 

of horizons 



 

Fig. 8. The effect of receding horizon number on battery wear and fuel cost of HRES 

 

Fig. 9. The Pareto frontiers and Pareto curve: diesel fuel cost vs. battery wear cost 



 

Fig. 10. Measured RHO input weather profiles from sensor box for a summer week 

  



 

 

 

 

Fig. 11. Optimal power flows (control variables) using RHO concept for a winter/summer week and two 

length of horizons    
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Table. 1. The detail of the commercially available HRES devices 

Components Type Number Capacity 

PV Sharp NU-E235E2 (235W) 22 5170 W 

Wind turbine Sunning wind turbine (600W) 1 600 W 

Charge controllers Flexmax 60 outback (3000W) 2 - 

Battery bank Narada (100Ah, 12V) 8 9600 Wh 

Power island SMA SI 4850 (48V, 50A) 1 - 

Communication interface Webbox 1 - 

 

  



 

Table. 2. Characteristics of installed renewable energy system 

Technical parameters 

Parameter Value Unit 

Photovoltaic 

𝑃𝑃𝑉,𝑟 235 W 

𝜂𝑃𝑉 0.14 - 

𝐴𝑃𝑉 1.64 m2 

𝛼 0. 485 %/⁰C 

𝑁𝑂𝐶𝑇 47 ⁰C 

Wind turbine 

𝑃𝑊,𝑟 600 W 

𝐴𝑊 2.27 m2 

𝑉𝐶 2.5 m/s 

𝑉𝑟 12 m/s 

𝑉𝑓 14 m/s 

 

  



 

Table. 3. Modeling parameters of battery bank and diesel generator 

Technical parameters 

Parameter Parameter Parameter 

Diesel generator 

𝑃𝑟−𝐷𝐺 5000 W 

𝛼𝐷𝐺 0.081451 Liter/kWh 

𝛽𝐷𝐺 0.3058 Liter/kWh 

Battery 

𝜏 0.0002 - 

𝜂𝑐ℎ 100 % 

𝜂𝑑𝑖𝑠 90 % 

𝐷𝑂𝐷 20 % 

𝑆𝑂𝐶𝑚𝑎𝑥 100 % 

CTF 1400 cycle 

Economic parameters [44] 

𝐶𝑓 1.2 $/Liter 

𝐶𝐵𝑎𝑡 750 $/kWh 

 

  



 

Table. 4.  The variation of optimal solutions with respect to different weighted factors    

Weighted 

factor 

Battery wear 

cost ($) 

Diesel fuel 

cost ($) 

Total operation 

cost ($) 

Share of battery in 

supplying the 

demand (%) 

0 0 122.87 122.87 0 

0.5 5.45 115.2 120.64 13.67 

1 13.59 104.96 118.55 34.18 

 

 

Table. 5. The relative closeness of Pareto solutions with their ranking in TOPSIS approach 

Alternatives A B C 

CLi
+ 0.6029 0.6066 0.5900 

Ranking 2 1 3 

 

  



 

Table. 6. The summarized optimization results for a winter/summer week and two length of horizons 

Sample week Winter week Summer week 

Length of horizon N=6 N=12 N=6 N=12 

Total load (kWh) 130.76 130.76 130.76 130.76 

Direct renewable (kWh) 71.8 71.76 100 100.38 

Battery charge (kWh) 18.88 38.74 15.95 22.13 

Battery discharge  
kWh 17.89 

13.68% 

34.66 

26.5% 

15.25 

11.67% 

20.46 

15.64% % 

Diesel generator (kWh) 41.1 24.34 15.1 9.92 

Share of total renewable  
kWh 89.6 

68.52% 

106.41 

81.38% 

116 

88.7% 

120.84 

92.41% % 

Share of diesel generator (%) 31.43% 18.61% 11.54% 7.6% 

Total operation cost ($) 120.60 118.81 108.48 107.92 

 

 


