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Electricity demand in remote and island areas are generally supplied by diesel or other fossil fuel based
generation systems. Nevertheless, due to the increasing cost and harmful emissions of fossil fuels there is
a growing trend to use standalone hybrid renewable energy systems (HRESs). Due to the complementary
characteristics, matured technologies and availability in most areas, hybrid systems with solar and wind
energy have become the popular choice in such applications. However, the intermittency and high net
present cost are the challenges associated with solar and wind energy systems. In this context, optimal
sizing is a key factor to attain a reliable supply at a low cost through these standalone systems. Therefore,
there has been a growing interest to develop algorithms for size optimization in standalone HRESs. The
optimal sizing methodologies reported so far can be broadly categorized as classical algorithms, modern
techniques and software tools. Modern techniques, based on single artificial intelligence (AI) algorithms,
are becoming more popular than classical algorithms owing to their capabilities in solving complex opti-
mization problems. Moreover, in recent years, there has been a clear trend to use hybrid algorithms over
single algorithms mainly due to their ability to provide more promising optimization results. This paper
aims to present a comprehensive review on recent developments in size optimization methodologies, as
well as a critical comparison of single algorithms, hybrid algorithms, and software tools used for sizing
standalone solar and wind HRES. In addition, an evaluation of all the possible combinations of standalone
solar and wind energy systems, including their assessment parameters of economical, reliability, environ-
mental, and social aspects, are also presented.
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Nomenclature

LPSP loss of power supply probability
LOLP loss of load probability
LOLR loss of load risk
LOLE loss of load expectation
LOEE loss of energy expectation
UL unmet load
DPSP deficiency in power supply probability
EENS expected energy not supplied
ENS energy not supplied
EIR energy index of reliability
ELF equivalent loss factor
D net dump energy
TED total energy deficit
WRE wasted renewable energy
REP renewable energy penetration
FEE final excess of energy
Kl energy fluctuation rate
P(R) risk state probability
ASC annual system cost
TIC total investment cost

LCC life cycle cost
COE cost of energy
LCOE levelised cost of energy
LEP loss of energy probability
TC total cost
TAC annual total cost
E total CO2 emissions
EE embodied energy
LCA life cycle assessment
HDI human development index
JC job creation
SCC social cost of carbon
SOC state of charge
TPC total precent cost
NPC net precent cost
NPV net present value
P(H) percentage of healthy state probability
TC total cost
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1. Introduction

Electrical power is one of the most commonly sought commodi-
ties of mankind. Currently, more than 70% of the global electricity
demand is supplied by burning fossil fuels, such as crude oil, coal,
and natural gas [1]. With the growth of economies and world pop-
ulation, the demand for electricity increases and as a result the fos-
sil fuel consumption increases. However, conventional fuel
reserves are finite and depleting rapidly which require immediate
attention and sustainable approaches to avoid potential energy cri-
sis in the future. Additionally, fossil fuels account for harmful emis-
sions, including greenhouse gasses (GHGs), which contribute to the
global warming [2,3]. In the current context, these problems are
addressed in several ways. One of the popular approach is to widen
the public awareness on reducing energy consumption in domestic
and industrial spheres and promote energy efficient technologies.
Another approach is to promote renewable energy systems (RES)
and develop associated technologies to make them reliable, cost-
effective, environmental friendly and affordable even to the gen-
eral public to use in their residential applications. The latter has
drawn more attention in the research community, industries, and
governments and as a result, many countries and regions have
taken strong initiatives to increase their renewable energy
capacity.

In Europe, the European Technology Platform for Electricity
Networks of the Future, also known as ETP Smart Grids (ETP SG)
produced the Strategic Research Agenda 2035 (SRA 2035) which
expected that by 2020, approximately 34% of the total electrical
energy consumption will come from renewable energy and will
have gone more than that by 2035 [4]. The European Union (EU)
council adopted the Energy Roadmap 2050 in June 2012 which
declared that decarburization by 80% reduction (compared with
the estimated level in 1990) of GHG emissions in European energy
system will be technically and economically feasible. This can be
achieved by implementing numerous strategies, such as increasing
the development of renewable energy generation, which can be
seen clearly where the local and small-scale generation from
renewable energy sources has remarkably increased in Europe
from 312 GW at the end of 2012 to 380 GW at the end of 2014
[4]. In Italy, 11.4 GW of photovoltaic (PV) power capacity had been
connected to the distribution network in December 2012 [4]. In
Germany, as of September 2015, RESs accounted for 47% of
installed net generating capacity [5]. Furthermore, the annual
energy production at about 38.850 GW comes from PVs in August
2015 keeps Germany with the largest amount of installed PV
capacity in the world [5,6], and about 41.353 GW are from onshore
and offshore wind turbines in September 2015 [5]. Similar trends
are observed in other countries and regions such as the USA
[2,7,8], with over 16 GW of installed solar power in 2014 [6]. This
trend increased the total installed PV power globally to reach over
177 GW [4].

The aforementioned renewable energy capacities include large
scale wind and solar systems, as well as residential PV systems.
Majority of the residential PV systems work in the grid connected
mode, in which excess power is injected to the grid during the day
time and power is received from the grid at night. However, in
remote areas where the grid extension is not feasible, HRESs are
used in the standalone mode for individual houses or in micro-
grids (MGs) where several houses are connected to form a small
power grid [9,10]. The second approach is becoming popular in
islands and rural areas [11] as it provides a cost-effective alterna-
tive where power grid extensions is expensive and fuel transporta-
tion is difficult and costly [12]. Currently, the population in islands
is estimated to be over 740 million worldwide based on geographic
information system (GIS) analysis [13]. Another study has shown
that many islands in the Indian and Pacific Oceans spend up to
30% of their gross domestic product (GDP) on conventional energy
resources, such as fossil fuel [14]. In the Caribbean islands, power
systems mainly depend on fossil fuel where the oil price can reach
up to four times higher than the prices in the mainland [15]. In
recent years, the energy demand is increasing in islands and
remote areas, which means that it is not a cost-effective to keep
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relying on fossil fuels. Therefore, standalone HRES or MGs with RES
is a promising and sustainable solution to supply the growing pop-
ulation and industries in remote areas and islands with clean and
cost effective electrical power [14,16,17].

The intermittent nature of the environment is reflected in the
electrical power generated from the RES as most of them come
from the environment. For example, wind and solar energy has
a strong dependency on the environmental conditions, which is
considered as the major drawback of these sources. Nevertheless,
this problem can be solved by combining two or more energy
sources along with a back-up unit to form a HRES [18]. The com-
bination of RES with complementary characteristics, such as wind
and solar, is common in HRESs. Moreover, the integration of
energy storage systems (ESSs), such as battery banks, or conven-
tional energy sources, such as diesel generators, makes HRESs
capable of providing more economic and reliable supply of elec-
tricity to a given application [18,19]. However, the high initial
cost, increased maintenance cost, and different rates of deprecia-
tion are the main challenges associated with these hybrid sys-
tems [18]. Moreover, as the HRES design is affected by various
factors, such as availability of energy sources and specification
of sites, as well as technical, and social constraints [20–22]; they
influence the power production arrangements of the system,
which increases the total cost of the system [22]. In this context,
an optimal sizing combination is a vital factor to achieve higher
reliability with lowest costs.

The optimal design of HRESs is a complicated task since the
optimal configuration depends on the knowledge of energy
sources, technical specifications, environmental conditions, and
load profiles [18]. Studies on modeling, configurations, planning,
and optimization techniques of HRESs have been conducted for
various locations and constraints [3,12,18,20,23–34]. Majority of
these studies have used solar and wind hybrid systems as they
are efficiently complement each other [28]. In [3], authors have
considered the size optimization techniques of on-grid and off-
grid solar and wind hybrid systems. In [23], authors have provided
a review on optimization and control strategies used for stan-
dalone and grid-connected HES. In [27], authors have focused on
modelling and size optimization for stand-alone HRESs. The article
covers some of artificial single algorithms and classical methods as
well. In [29], authors have provided a review on some of the opti-
mization algorithms, operating and control strategies and energy
management of standalone and grid-connected hybrid system
with the feasibility of the different controllers. In [20], authors pro-
vided a review on planning, configurations, modelling and opti-
mization of HRES for standalone applications. However, these
articles have not comprehensively addressed all recent single algo-
rithms, hybrid algorithms and software tools with critical compar-
ison of their performances in sizing of standalone solar and wind
hybrid systems for remote areas and islands. In [24], authors have
provided an overview of some of the sizing algorithms and dis-
cussed the optimal sizing process of two HRESs. In [30], authors
have focused only on some single artificial algorithms for stan-
dalone and grid-connected applications. In [18], authors have pro-
vided a review on the use of artificial intelligent algorithms in
sizing HRES. In [12], the authors focused on integration configura-
tions, storage system options, sizing methodologies and control
and management of standalone HRES. This article provided an
overview of some of the single artificial algorithm, classical algo-
rithms and software tools. In [31], authors have provided a review
on optimum design of many hybrid combinations covering some of
the artificial single algorithms and software tools. In [32], authors
have provided a review on multi-objective artificial algorithms
considering a few combinations of standalone hybrid systems. In
[33], authors have discussed the optimal sizing of different hybrid
system combinations for standalone and grid-connected
applications which covers some of the artificial and classical sizing
methodologies. In [34], authors have focused on hybrid energy sys-
tems based on solar, wind and fuel cell energy sources covering
only multi-objective optimization algorithms. In [8], authors have
focused on the feasibility analysis, control, and modeling of HREs
with some artificial optimization techniques.

Even though, the abovementioned literature covers a wide
range of sizing optimization, a comprehensive review, putting
together the recent single and hybrid size optimization algorithms
and software tools with critical comparison of their performances
in standalone solar and wind based hybrid systems for remote
areas and islands, has not yet been reported. Given the potential
of PV-WT HES, especially standalone system for remote and island
areas, this article fills this particular gap by presenting a compre-
hensive review on the recent development in single algorithms,
hybrid algorithms and software tools used for optimal sizing of
PV-WT HES and assessment parameters including economical, reli-
ability, environmental, and social aspects. Additionally, this article
provides the reader with critical comparison between size opti-
mization techniques used for standalone PV-WT HESs with differ-
ent energy sources and storage systems.

The rest of the paper is structured as follows: Section 2 presents
the possible solar and wind configurations and combinations for
standalone application, together with a discussion their advan-
tages and limitations. Section 3 explains data input models and
the assessments used for optimal design of standalone PV-WT
HESs. Section 4 reviews and lists the most recent optimization
methodologies for standalone solar and wind energy systems,
including single classical algorithms, single modern algorithms,
hybrid algorithms and software tools. Moreover, this section pre-
sents a performance comparison of optimization algorithms as
well. Section 5 presents the findings and discusses the highlighted
issues in size optimization and the future trends in size optimiza-
tion of standalone HRESs. Conclusion drawn from the study are
also presented in Section 5.
2. Combinations of standalone solar and wind HES

The integration of RESs with other conventional energy sources
(CESs) and/or energy storage (ES) devices is common in forming
hybrid systems to satisfy a given load demand. For example, PV-
WT combination provides more reliable power for off-grid and
standalone applications compared to individual systems [20].
However, as mentioned above, this particular RES combination
requires an energy storage system to be added to alleviate the
supply-demand mismatch. Moreover, CESs, such as diesel genera-
tors, or modern sources, such as fuel cells, can also be added to
the RES to achieve a better energy balance. Fig. 1 shows four pos-
sible configurations of such standalone solar and wind HES. Out of
these configurations, the dc-coupled connection, shown in Fig. 1
(a), has become popular among many researchers because of the
ease of integration and the absence of power quality issues, such
as harmonics and reactive power [35–43]. The blackout for ac loads
in the event of a failure in the inverter stage is a major drawback of
this configuration. To overcome this problem, a number of invert-
ers can be connected in parallel with the main inverter and a fault
accommodation mechanism can be employed [44]. However, these
solutions increase cost, complexity, weight, and volume. The ac-
coupled system, shown in Fig. 1(b), is a better solution where all
the sources are connected to a common ac-bus through interfacing
power electronic converters [45–48]. Even if there is a fault in an
inverter, the others can continue to supply the entire load or a part
of it. Nevertheless, the need for synchronization and inherent
power quality issues, such as harmonics and reactive power, are
the major disadvantages of this architecture [12,44]. The hybrid-



Fig. 1. Standalone PV-WT HES configurations: (a) DC-coupled, (b) AC-coupled, (c) hybrid-coupled option 1 and (d) hybrid-coupled option 2.
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coupled systems, shown in Fig. 1(c) and (d), are becoming popular
nowadays as they combine the advantages of both dc- and ac-
coupled systems, as well as cost-effectiveness and flexibility to
combined loads and sources depending on their characteristics
[49–54], [17,55–58]. Moreover, they are more efficient as some
of the sources can be connected to the bus directly or with a simple
conversion stage [20,44]. However, there is no ‘one fit all’ solution
in terms of the combination of RESs and their interconnection;
thus, the most suitable combination and architecture should be
chosen for the given application and geographical location. Com-
monly used solar and wind RES combinations are briefly discussed
below.
2.1. Solar and wind

As solar and wind are strongly correlated to the climate, the
generated power fluctuates within a large range and thus the con-
nection to a grid or a back-up device is required to supply the
required load. Therefore, the use of a single source, such as wind
or solar, for off-grid applications is considered unreliable [3,59].
Moreover, wind system alone is found to be uneconomical for
some standalone applications [50,57,60–63]. However, WT pro-
duces more power than PV system alone, and thus, integrating
WTs with PV is important in establishing an eco-friendly HRES
for diesel-free generation in standalone applications [64]. In this
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context, solar and wind configuration has more sense in on-grid
application [65]. In off-grid application, solar and wind are usually
connected with a storage system and/or other energy sources to
maintain continued power supply.
2.2. Solar, wind, and energy storage

In standalone application, the widely used hybrid solar, wind
and energy storage (PV-WT-ES) system combination has proven
its reliability to satisfy the load requirements of remote and rural
areas. In this combination, PV panels (PVPs) and WTs are con-
nected to a storage device in order to eliminate the power fluctu-
ation of solar and wind resources and to meet the load demand.

The hybrid PV-WT-BS system proved to be the most cost-
effective combination for islands and remote area compared to
PV-BS, WT-BS, and PV-WT hybrid configurations [49,66]. This has
been verified through an examination with seven different heuris-
tic optimization techniques [67]. Moreover, recent studies have
shown that, PV-WT-BS HES can fully satisfy the load requirements
in residential applications in remote and rural areas [49,64,68,69].

Hydrogen tank (HT) is another energy storage option. However,
due to high initial costs of such storage system and the need for a
fuel cell (FC) to convert the stored energy back into electricity, the
hybrid PV-WT-FC energy system is considered to be less cost-
effective compared to the hybrid PV-WT-BS system [50,70]. Never-
theless, the hybrid PV-WT-FC energy system is more cost effective
and reliable compared with hybrid PV-FC and WT-FC systems
[70,71]. Depending on the area specification such as water avail-
ability and rainfall rate, pumped hydro storage system can be a
reliable energy storage option. A technical feasibility study by
[72] found that a hybrid PV-WT-pumped hydro storage system is
capable of supplying the full load demand in a remote area without
grid support. Another storage option is the super-capacitor which
has a high power density and high charge/discharge efficiency
[73]. However, they have not been widely used because of their
high cost and limited energy capacity compared to battery or other
competitive energy storage technologies.
2.3. Solar, wind, and other renewable energy source and storage

In this combination, all energy sources combined with PV and
WT are RESs, including FC, hydro generator (HG), biomass (BM),
and biogas (BG). The main advantage of this combination is its
minimal or zero carbon emissions. Furthermore, the use of more
RES to compensate conventional sources increases job creation
(JC) as it increases the manufacturing and installation rates of
renewable systems [74]. FC system, including electrolyzer (EL)
and HT, provides an environmental friendly and high efficiency
energy system [53,75]. However, the initial cost of this system is
relatively high [50]. Therefore, integrating FC and HT with a hybrid
solar and wind system can effectively reduce the installation costs
of FC and HT [76]. Out of the above-mentioned RES combinations
the PV-WT-FC system with HT storage found to be more common
as it provides a cost-effective solution compared to PV-FC and WT-
FC systems [39,50,53,57,71].

In certain locations, especially in rural and remote areas, the use
of an integrated renewable energy (IRE) system by utilizing as
much renewable sources as possible at the site to produce electric-
ity can provide more cost-effective option than introducing CES.
For example, for villages and areas where biomass resources are
available, PV-WT-BM-BS can provide a more cost-effective option
than using CES such diesel generator [17] .Some other hybrid com-
binations, such as PV-WT-BG-BM-BS and PV-WT-BG-BM-HG-BS
systems are also capable of providing cost-effective and reliable
systems for remote areas and villages [74,77].
2.4. Solar, wind, and conventional energy source and storage

In this combination, PV and WT are combined with CES and ES
system. Mostly, in this combination, diesel generator (DG) and bat-
tery storage (BS) are coupled with PV and WT. Although this con-
figuration produces some emissions due to the use of CES, it is
widely used in standalone application as it is more reliable in sup-
plying the load demand. The use of BS is more cost-effective than
totally relying on DG as a back-up source of PV andWT [78]. There-
fore, the PV-WT-DG-BS HES is common in standalone applications
as it can ensure continuity of power supply [61,79,80]. Depending
on the load demand and the size of the battery, the DG can be con-
sidered as a back-up power source. The DG operates only when PV
power, WT power, and BS back up are not able to supply the load
demand [81]. This reduces the operating hours of the DG and thus
reduces the emissions [80,82]. Therefore, PV-WT-DG-BS HES is
more cost-effective and reliable for standalone application than
PV-WT-DG HES [38,79,83].
2.5. Solar, wind, and other renewable and conventional energy source
and energy storage

In this combination, PV and WT are combined with RESs, CES
and ES. This combination is not widely implemented as it has a
high initial cost and maintenance cost. However, in some locations,
this combination provides a cost-effective system more than other
configurations depending on the site’s specifications, such as the
availability of RESs, transportation of fuel, and load demand. Some
studies proposed combinations such as PV-WT-DG-FC-BS-HT [84],
PV-WT-DG-hydro generator (HG)-BS [85,86], PV-WT-DG-FC-BS-HT
[40], PV-WT-DG-FC-bio-diesel(BD)-BS [87], PV-WT-HG-BS [88],
and PV-WT-BD-HG-BS [89].
3. PV-WT HES requirements and assessment parameters

3.1. Data input

Solar irradiance and wind speed data affects the size optimiza-
tion sizing results. The accuracy of the optimization results
improves when the forecasted data is used instead of the data of
the past years [90–93]. Moreover, the peaks of solar irradiation
and wind speed influence the size optimization results by increas-
ing the initial and operation cost values [46]. Therefore, imple-
menting estimation and forecasting techniques to obtain a
forecasted data improves the accuracy of the size optimization
algorithm results. Hocaoglu et al. [93] investigated the effects of
past years’ solar irradiation data on the sizing of HES, and found
that previous years’ data cannot produce a similar loss of load
probability (LLP) for a future year. Gupa et al. [90] investigated
the use of historical and forecasted data on the optimization
results. The authors implemented a back propagation trained arti-
ficial neural network (BPANN) for forecasting wind speed and solar
irradiance. The study found that the forecasted weather data
improves the optimization results. Sinha and Chandel [94] used
artificial neutral network (ANN) to predict solar and wind data,
and found that the predicted data by ANN are close to the mea-
sured and estimated data. Rajkumar et al. [95] applied an Adaptive
Neuro-Fuzzy Inference System (ANFIS) to model a PV module and
WT and thereby generate solar radiation, wind speed, and temper-
ature datasets. To predict the output power of PV and WT,
weather-generated data are used to train the neuro-fuzzy model.
Nogueira et al. [96] calculated the hourly generated wind and solar
power using a statistical model based on the Weibull and Beta
probability density function (pdf). Khatod et al. [97] also had
applied Beta and Weibull distributions for predicting the solar
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radiation and wind speed. Ekren and Ekren [98] used the ARENA
simulation software to predict the wind speed, solar radiation,
and electricity consumption distributions at a telecommunication
base station in order to design a HES to supply it. The authors in
[37] used autoregressive moving average models (ARMA) to model
the variation of solar irradiance and Weibull distribution to model
for wind speed in Kent, UK. Zhao and Yuan [82] obtained the one
year hourly wind speed data through HOMER according to Weibull
distribution and local meteorological data collected, and obtained
the one year hourly solar radiation data on horizontal plane by
using solar radiation law. Azimi et al. [99] developed a hybrid fore-
casting method consists of a time series analysis, a novel cluster
selection algorithm and multilayer perceptron neutral network
(MLPNN) to predict solar radiations. Chen [100] estimated the
WT and PV power generation based on previous hourly solar irra-
diation, wind speed, and temperature data. Vasilj et al. [101] pre-
sented an estimation model based on Monte Carlo simulation
(MCS) to estimate the power uncertainties and associated balanc-
ing and reserve power requirements of hybrid PV-WT system
due to solar irradiation and wind speed uncertainties. The model
uses production simulation for solar radiation and wind speed
and forecast error simulation for wind speed, PV power, and load
forecast error.

Not only the site energetic potential (solar radiation and wind
speed) but also the load profile constitution affect the optimization
results [79]. The load profile can be accomplished through mea-
surement and load research surveys. If the load profile is not avail-
able, synthetically generated load profiles can be used. Several
studies have been conducted on load profile estimation using dif-
ferent estimation and prediction methods [102–109]. ANN is used
in [110] to generate a load profile based on its typical meteorolog-
ical year 2 (TMY2) weather data. The ANN model was trained with
the TMY2 weather data and the load profile data of neighboring
regions is used to estimate a residential load for Gujarat, India.
Cross-entropy (CE) is a non-parametric estimation method for den-
sity probability. This method has been used by [111] to estimate
the pdf of the user energy consumption starting from measured
data.

Given the fact that most of standalone HESs are used in remote
and rural areas, the load profile data is unavailable in many cases.
Therefore, increasing the research on improving the accuracy of
estimation and forecasting approaches to obtain more accurate
load profile data is necessary so as to increase the accuracy of
the size optimization results.
3.2. Assessment parameters of PV-WT HES

There are various indicators reported in literature to assess
HRES. These indicators can be broadly classified into four cate-
gories, namely: economical, reliability, environmental, and social
assessments. These parameters evaluate the availability and fea-
sibility of HES to help in the design and construction of an opti-
mal system for a given application. Economical assessment is a
main factor in determining the desirable minimum initial, main-
tenance, replacement, and any other future costs of a HRES. The
reliability assessment evaluates the hybrid system’s ability to
ensure the cohesion of HRES in order to satisfy load demand.
Environmental assessment evaluates the amount of CO2 and
other obnoxious emissions produced by the system throughout
a given period of time. Social assessment evaluates the capability
of the HES to produce energy for increasing the human develop-
ment index (HDI). Moreover, it evaluates the social acceptance of
installing hybrid system and job creation. The summary of the
assessment parameters for standalone PV-WT HES is illustrated
in Table 1.
4. Size optimization techniques

Size optimization techniques can be classified into classical
techniques, modern techniques and software tools. Classical tech-
niques use iterative, numerical, analytical, probabilistic, and graph-
ical construction methods [3]. These methods utilize differential
calculus in deriving the optimum solution [20]. Modern techniques
use artificial and hybrid methods [3,23]. These methods can deter-
mine the global optimum system and has better convergence and
accuracy in finding a set of optimal solutions [3,25]. The third size
optimization approach for HES sizing include computer software
tools. The most widely used software tool in size optimization
for standalone PV-WT HES is Hybrid Optimization Model for Elec-
tric Renewables (HOMER) [23,112]. Another software, named
Improved Hybrid Optimization by Genetic Algorithm (iHOGA)
has been used in sizing optimization for standalone PV-WT HES
[23]. Fig. 2 shows the recent size methodologies for standalone
PV-WT HES.

As the HRES design is complex due to the uncertainties associ-
ated with renewable resources and other technical factors and the
constraints associated with the site location and system compo-
nents. Classical techniques are not efficient in solving such com-
plex problems. Therefore, in the last decade, modern techniques
that are based on meta-heuristics algorithms have extensively
been used [3,113].

Sizing optimization methodologies can use either a single
objective optimization (SOO) function or multi objective optimiza-
tion (MOO) functions. SOO is used to find the optimum solution
corresponding to the minimum or maximum value defined by
the SOO function. In contrast, MOO combines two or more individ-
ual objective functions to determine a set of trade-off solutions,
which allow decision makers to select the most suitable solution
based on the problem requirements [32]. In this context, the use
of MOO provides more efficient results as it finds the global opti-
mum Pareto-set solutions, thereby improves the cost-
effectiveness and reliability of HES combination compared to the
SOO [39,42].

Most classical techniques use single algorithms with SOO func-
tion. Modern techniques use single and hybrid algorithms to solve
SOO or MOO problems. Hence, modern methods are more flexible
in dealing with complex optimization problems, and they provide
more accurate results. An overview of the optimization techniques
discussed in this paper is shown in Fig. 3.
4.1. Single algorithm

Single algorithms including classical and artificial techniques
used to solve the size optimization for PV-WT HES are reviewed
in the following sub-sections and the summary of each technique
is presented in Table 2.
4.1.1. Classical techniques
A limited number of studies have recently been carried out

using classical methods in size optimization of standalone PV-WT
HES. Most of these studies are conducted using iterative algorithms
[47,50,114–121]. Hosseinalizadeh et al. [50] implemented an iter-
ative algorithm to optimize a standalone PV-WT-FC-BS-HT HES in
terms of minimizing the system’s total COE for four different
regions in Iran. The authors used a proton exchange membrane
fuel cell (PEMFC) as a back-up source to the battery storage system
rather than directly supplying the load. The PEMFC operates when
the charge level of the battery bank drops below the allowable
level. The authors of [50] have assessed the reliability of the HES
by using LOEE and LOLE as assessment parameters. In this study,
it has been assumed that the value of LOLE parameter must be less



Table 1
Summary of economical, reliability, environmental, and social assessment parameters for PV-WT HES.

Assessment Indicator Description Ref.

Reliability
Loss of Power Supply Probability (LPSP) The probability of unmet load over the total energy produced [67,72,83,90,95,164,165]
Loss of Load probability (LOLP) or (LLP) The ratio of annual energy deficits to annual load demands [120,146]
Loss of Load Risk (LOLR) or loss of load
expectation (LOLE) or loss of energy
expectation (LOEE)

The average number of hours for which the system load is expected to exceed
the available generation capacity

[49,50,97]

Unmet Load (UL) The amount of power shortage at load that exceeds the amount of generated
energy from all energy sources and stored energy in all storage devices

[72,90,113]

Deficiency in Power Supply Probability
(DPSP)

The amount of power shortage at each hour [37]

Expected Energy not Supplied (EENS) or
Energy not supplied (ENS)

The amount of load energy not supplied during a period of time. [49,54,97,140]

Energy Index of Reliability (EIR) The ratio of expected energy not supplied to the load demand [140]
Equivalent Loss Factor (ELF) The ratio of the effective forced outage hours to the total number of hours [39,52]
Net Dump energy (D) The total dump energy produced from RES [55]
Total Energy Deficit (TED) The ratio of energy not supplied to the consumer when was requested on the

total energy required
[118]

Wasted Renewable Energy (WRE) The energy produced by RES that cannot be stored in the storage system [166]
Renewable energy penetration (REP) The ratio of total energy generated from RESs to the total energy demand of

the load for a year
[47]

Final Excess of Energy (FEE) The difference between the accumulated electrical energy of the battery and
initial electrical energy of the battery

[35]

Loss of Energy Probability (LEP) The ratio of the wasted energy by the scheduler model and the total load
demand during a year

[42]

Energy Fluctuation Rate (Kl) The fluctuation rate of the entire system indicating that the optimal system
output energy is matching the load demand to reduce the energy impulse of
the system, increase the power supply quality and reduce the work load of the
scheduler model

[42]

Risk state probability P(R) The percentage of time when generation is inadequate to supply load within a
study period

[132]

Percentage of healthy state probability P(H) The percentage of time for which the system has adequate reserves to satisfy
laid down reverse criteria within a study period

[132]

Economic
Net Precent Cost (NPC) or total precent cost
(TPC) or Net present value (NPV) or total
cost (TC)

The total investment, maintenance, operation and replacement costs
throughout the life time of the system

[21,78,118,167]

Total investment cost (TIC) Include capital cost, installation cost, annual operation and maintenance cost
and replacement cost throughout the system lifetime

[51]

Life Cycle Cost (LCC) The costs of system operation throughout lifetime. Does not include
manufacturing and disposal costs

[54,55,66,131]

Levelised cost of energy (COE) or (LCE) or
(LCOE)

The ratio of the costs and total energy consumed by the load throughout the
lifetime of the system

[45,121,132,167,168]

Total annual cost (TAC) or annual system
cost (ASC)

The summation of capital costs, replacement costs, operation costs and annual
maintenance costs

[53,82]

Cumulative savings Sum of money which is saved by hybrid system for a period of time because of
fuel saving

[147]

Environment
Total CO2 Emissions (E) or fuel emissions The total amount of kg of CO2 emissions produced by the system throughout a

period of time
[55,82,83,113,169]

Embodied Energy (EE) The energy that the hybrid system does not consume during its use, but
involves the consumption of non-renewable primary energy for components
manufacturing. In other words, it is the energy required by all the activities
associated to a production process

[131]

Life cycle assessment (LCA) The assessment of all the stages of a product’s life of hybrid system
components including emissions associated with material manufacturing,
procurement and transportation

[80]

Social Criteria
Human Development Index (HDI) HDI is a country development indicator that takes into account life expectancy

at birth, expected years of schooling and gross national income per capita. It
depends on the consumption of electricity, so the extra energy that can be
supplied by the hybrid system can improve the HDI index

[21]

Job Creation (JC) The jobs created of manufacturing, installation and O&M of the hybrid system
components. The number of jobs created by a hybrid system depends on the
combination of components, so more jobs created better hybrid system
combinations

[21,74]

Social Cost of Carbon (SCC) Imposed by incorporating an additional cost component. It acknowledges
effect of emissions from DGs on society

[132]

Socio-demographic factor It describes the energy consumption pattern of a household load in a certain
location. This factor can be used in sizing HES by estimate how a one class of
user responds to the demands from another class of user

[36]
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Fig. 3. Overview of the size optimization techniques discussed in this paper.

Fig. 2. Recent size optimization methodologies for standalone PV-WT HES.
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than 2% in order to achieve a reliable system. The study found that
the PV-WT-BS HES is more economical and reliable without the FC
system. Smaoui et al. [76] proposed an optimization methodology
based on iterative technique to optimize the size of a standalone
PV-WT-FC-HT HES in order to supply a desalination unit for the
Kerkennah Island in South Tunisia. The optimization algorithm
was implemented in two parts by calculating the FC installed
and EL installed powers, and the proposed combination part which
is tested to assess technical performance. The main objective of the
optimization is minimizing the total capital cost of the system. The
study found that the proposed HES was able to meet the load
demand, and the complementary characteristics of the hybrid
combination of PV and WT reduced installation costs due to
decreased storage requirements. Bhuiyan et al. [47] proposed an
enumeration-based iterative algorithm to optimize the component
sizes for an islanded micro-grid for off-grid communities. The sys-
tem consists of PV, WT, BS, and DG. The main optimization func-
tion of minimizing the LCC is used to assess the feasibility of the
HES combination. The LPSP and REP are used to assess the reliabil-
ity of the system by exanimating the effect of these parameters on
LCC. The proposed algorithm provided lower LCC compared to
HOMER. Additionally, the study found that LCC value is minimized
without seasonal variations and high REP. Moreover, the LCC value
is reduced when LPSP percentage is decreased.

DIRECT algorithm is an efficient deterministic algorithm in find-
ing the global optimum of several problems. This algorithm is used
in [79] to determine the optimum system configurations that the
system total cost is minimized while the availability of energy is
guaranteed. In this study, the reliability of the system is assessed
by analyzing the battery SOC and the power balance between gen-
eration and demand. Furthermore, the study found that PV-WT-DG
HES system is found to be techno-economic in meeting the energy
demand of remote consumers.

A few studies have recently used linear programming (LP) in
optimizing the size of standalone HES with PV and WT [96,122].
Nogueira et al. [96] proposed a methodology that uses LP to size
and simulate a standalone PV-WT-BS HES for a remote rural area
by minimizing the TC of the system while satisfying the load
demand. The reliability of the system is assessed by using the LPSP
parameter. The optimal sizing of the system is performed with six
different scenarios, each with varying lengths of critical periods of
predetermined amounts of consecutive hours and LPSP. Malheiro
et al. [45] implemented the deterministic optimization, mixed-
integer linear programming (MILP), to find the optimal mix
between PV-WT-BS-DG by minimizing LCOE over a lifetime of
20 years. The optimal system was achieved with 90.0% of renew-
able fraction. Ferrer-Marti et al. [123] proposed a methodology
using MILP and exact solve procedure with taking into account
the energy demand at the consumption points and the energy
resource maps to find the optimal size and location of the hybrid
PV and WT system components. The objective function of the opti-
mization is to minimize the initial system cost which is used as the
parameter to assess the system. The study found that the optimal
location, in addition to optimal size, reduces the initial investment
costs.

Gan et al. [46] used a graphical user interface (GUI) to optimize
the size of a hybrid PV, WT, BS, and DG system considering the
peaks and troughs of wind speed and solar irradiance over a year.
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The objective function of this optimization is to minimize the use
of diesel generator. The decision of turning on the diesel generator
optimally is considered as the economical assessment parameter
while power balance and SOC are used to assess the reliability of
the system. The proposed method used the measured annual
hourly solar irradiation and wind speed to simulate the real time
operation of the hybrid system. The study found that the peaks
of solar irradiation and wind speed affect the size optimization of
the results.

Analytical methods are based on mathematical analysis, theo-
retical analysis and calculations. These methods use computational
models to find the HES size as a function of its economic feasibility
[25]. In these methods, a series of logical steps need to be defined
and followed in order achieve the exact solution. In contrast, in
numerical methods, the problem does not have a specified proce-
dure to follow in order to achieve a set of approximated solutions
[124,125]. Therefore, analytical methods required more computa-
tional time than numerical methods [33]. These methods have
not been widely used in the size optimization of standalone HES
consisting of PV and WT in recent years [97,126]. In [97], the
authors implemented an analytical method to minimize the pro-
duction cost of PV-WT hybrid autonomous system in Kandla, India.
The authors validated the results obtained from the proposed ana-
lytical method by comparing it to the results obtained by MCS. In
the proposed analytical method, the amount of metrological data
input is less in comparison to MCS. Therefore, the proposed analyt-
ical method provided low computational burden with relatively
less time compared to MCS.

4.1.2. Artificial technique
Artificial techniques have been implemented by several

researches to attain the optimal size of standalone HES. These tech-
niques can handle multiple objective problems and provide an
optimal solutions set. The most recent artificial single algorithms
applied for standalone PV-WT HES are discussed below.

Genetic Algorithm (GA), an evolutionary heuristic search algo-
rithm, is one of the most powerful optimization algorithm. Numer-
ous studies have implemented GA in finding the optimal sizing of
HRE system [48,55,77,127–129]. Ogunjuyigbe et al. [55] used GA
for the optimal sizing and allocation of HES in standalone mode.
In this study, the authors investigated five different combinations
for residential load, as well as the possibility of using small aggre-
gated diesel generators instead of a single big-sized diesel genera-
tor. In this study, LCC, net dump load (D) and total CO2 emissions
are used to assess the system’s economical, reliability and environ-
mental aspects respectively. The study found that PV-WT-Split-
diesel-BS HES is the most optimal combination in terms of the
minimum LCC, COE, net dump energy, and CO2 emissions. Addi-
tionally, the study found that the use of aggregated split diesel gen-
erators rather than a single big-sized diesel generator is more cost-
effective. Rajanna and Saini [77] used GA for the optimal sizing of
integrated renewable energy sources (IRES) considering several
RESs and a battery storage system for four different zones in Kar-
nataka, India. The study aims to find the optimal scenario combina-
tions among three different scenarios based on minimizing TNPC
and COE. The optimal combination of the system is found based
on the two economical assessment parameters TNPC and COE.
The study found that two scenarios consist of PV, WT, and BS with
other energy sources are the most cost-effective. Adaptive GA
(AGA) is used by [100] to optimize the size for a standalone PV-
WT-BS HES because of its improved adaptability with computa-
tional simplicity to solve such non-linear problem. In this study,
WT and PV generation powers were estimated based on previous
hourly solar irradiation, wind speed, and temperature data for
the Wuchi and Orchid islands in Taiwan. The objective function
of the optimization is to minimize the total installation cost of
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the hybrid system. The reliability of the system is assessed by using
LOLP. The optimal capacity of the standalone system was achieved
for both locations in terms of total cost and reliability. Another
improved version of GA, called non-dominated sorting genetic
algorithm (NSGA-II), is used by [37,130] and provided promising
results in solving MOO problems. Kamjoo et al. [37] applied the
NSGA-II algorithm to optimize a standalone PV-WT-BS HES combi-
nation for a household load in Kent, UK. The economic and reliabil-
ity objective functions of the optimization are to minimize TC and
DPSP. Owing to the uncertainties arising from renewable resource
which affect the DPSP value, the study used chance constrained
programming (CCP) with NSGA-II to estimate the DPSP value.
The proposed method provided more conservative set of solutions
compared to the usage of Monte Carlo Simulation (MCS). Another
study by [130] used NSGA-II in finding the optimal allocation for
PV-WT-BS HES in MG. In this study finding the minimums of TIC,
EENS and the losses of the line are used as economic and reliability
objective functions. The results of this study revealed that the pro-
posed hybrid system is optimized in terms of minimum invest-
ment cost and maximum reliability when combined with MG. A
variant of NSGA-II, called a controlled elitist GA, is utilized by
[131] to obtain the optimal combination of standalone PV-WT-BS
HES for a residential application. A triple multi-objective function
combination LCC, LPSP and EE is used in this study. Furthermore,
the optimal size was achieved considering the economical, reliabil-
ity and environmental assessment parameters.

Fathy [53] implemented mine blast algorithm (MBA) to find the
optimal sizing for a HRES in terms of minimizing the ATC for Hel-
wan, Egypt. The reliability of the system is assessed by ensuring
the power balance between generation and load. The author used
a real measured data of solar radiation, wind speed, and
temperature to investigate the optimal size for three different
combinations. The most cost-effective combination was found to
be PV-WT-FC system.

Particle swarm optimization (PSO) is one of the most popular
heuristic algorithms in solving non-linear optimization problem
because of its simplicity, ease of implementation and fast conver-
gence. Paliwal et al. [132] implemented PSO to find the optimal
combination of PV, WT, DG, and battery units in terms of reliability
(P(R), and P(H)), social (SCC), and economic (LCOE) assessment
parameters. As result, the reliability parameters are met with less
storage units by using ones with large storage capacities, which
reduced replacement costs. Moreover, the integration of RES with
DGs reduces SCC. Sanchez et al. [75] used PSO to optimize the size
for standalone PV, WT, FC, and HT for the remote residential load in
Chetumal, Mexico. The objective function of the optimization is to
minimize the system TC while ensuring the reliability of the sys-
tem. LPSP parameter is used to assess the reliability of the system.
The optimal size of components was found in terms of the lowest
TC for 20 years. Askarzadeh and Coelho [66] used PSO and some of
its variants to find the optimal combination among PV, WT, and BS
for a remote area located in Kerman, Iran. In this study, minimizing
the LCC is used as the economic objective function while LPSP is
used to assess the reliability of the system. The results showed that
the adaptive inertia weight-based PSO, which has a better balance
between global and local search and resultant elimination of pre-
mature convergence, provided minimal LCC compared to the orig-
inal PSO and its other variants. A similar study is conducted by [41]
to determine the optimal renewable mix for a remote area in Iran
in terms of minimizing TAC. The authors concluded that PSO-CF
produces more promising results compared to PSO, other PSO vari-
ants, and other artificial algorithms. Hassan et al. [51] proposed a
modified PSO (MPSO) to find the optimal combination of both stan-
dalone PV/WT/BS HES system and grid connected PV-WT HES. The
economic objective function of this optimization exercise was to
minimize the TIC of the system. The proposed algorithm provided
the optimum TIC for the standalone mode. Bghaee et al. [39] used
multi-objective PSO (MOPSO) to optimize the economical and reli-
ability aspects of HES comprised of PV, WT, FC, and HT for 20 years.
The main economic and reliability objective function of the opti-
mization is to minimize the TAC, LOLE and LOEE of the system.
The reliability of each component directly affects the annual cost
of the entire system. Therefore, by examining the effect of each
component outage on the whole system’s reliability and cost
authors optimized the sizing for different cases. Borhanazad et al.
[133] implemented MOPSO to find the optimal sizing for a PV,
WT, DG, and BS micro-grid for three different locations in Iran.
The optimal combination is achieved by minimizing COE and LPSP.
Safar et al. [134] used PSO to optimize the size for a standalone PV-
WT-BS-FC system to make the HES economical with high reliabil-
ity. The study used fuzzy logic controller to regulate energy flow
on HES. The membership functions of FLC are then optimized by
PSO. The study found that a well optimized FC system improves
the life time of the batteries by reducing the variation in SOC.

Shi et al. [80] used a multi-objective line-up competition algo-
rithm (MLUCA) to optimize the size of a standalone PV-WT-DG-
BS HES in terms of economic and environmental aspects. The eco-
nomic and environmental objective function of the optimization is
to minimize TAC and GHG emissions of the system. The authors
first introduced an improved power management strategy to
improve the battery utilization and then implemented MLUCA
algorithm to find the best combination of components that can sat-
isfy the load demand. The authors found that the proposed algo-
rithm incurred high cost and an optimum combination in terms
of minimum GHG emissions.

Ant colony optimization (ACO) is a metaheuristic optimization
technique with inherent capability of parallel computing, such that
it can solve complex problems with dynamic behavior. Suhane
et al. [81] applied ACO to find the optimal mix of PV, WT, BS, and
DG in terms of minimizing TAC for a village in India. The reliability
assessment parameter LCOE, which has good overall performance
with only 2% unmet load, is found to be much less than the COE
per unit for DG. Fetant and Khorasaninejad [135] employed ACO
for continuous domains (ACOR) based on integer programming to
find the optimal mix of PV, WT, and BS system by minimizing TC
(capital and maintenance). The reliability of the system is assessed
by ensuring the power balance between generation and load. The
minimum TC achieved for wind standalone system is $ 5652.65,
followed by the hybrid of 20 PVPs, 2 WTs, and 9 battery units at
$ 6429.19. In this study, ACOR provided the optimal solution of
the total costs with lower convergence iterations and time com-
pared to GA and artificial bee colony (ABC).

Preference-inspired coevolutionary algorithm (PICEA) that uses
goal vectors is a search technique which can solve complex multi-
objective optimization problems. The idea of this algorithm is to
coevolve multiple sets of preferences during the optimization pro-
cess in order to provide different Pareto front subsets to the deci-
sion maker [136]. Shi et al. [83] implemented PICEA to design
the size of standalone HES. The proposed methodology is devel-
oped to minimize ACS, LPSP, and E of a standalone PV-WT-BS-DG
HES. The optimal combination is achieved with 0% LPSP and ACS
of $ 8200.79.

Fruit fly optimization algorithm (FOA) is a heuristic evolution-
ary computation method used in finding global optimization. Zhao
et al. [82] used an improved FOA (IFOA) algorithm for the opti-
mization design of standalone PV-WT-BS-DG HES in Dongan island
in China. An economic and environmental multi-objective function
is utilized in the optimization that combines TC and E as assess-
ment parameters. The study aim to find the optimal size combina-
tion in terms of minimal TC and E. The study found that with less
number of WTs and battery units, better total cost, and increased
CO2 emissions can be achieved. The most economical system in
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terms of TC produces 5087.39 kg/year of CO2 emissions, whereas
the least economical combination is free-carbon emission.

Biogeography-based optimization (BBO) is a population-based
evolutionarymethod. Few studies that use BBO to optimize the size
of HES consisting of PV, WT, and other sources and storages have
been conducted [90,137]. Gupa et al. [90] implemented BBO to find
the optimal combination of a standalone PV- WT-DG-BS HES in
terms of minimizing COE. The power balance between generation
and demand is considered to ensure the reliability of the system.
In this study, ANN is used to forecast weather data. Optimal sizing
is achieved using the forecasted data, as these improve the quality
of optimization results more than the previous year’s data.

Artificial bee swarm optimization (ABSO) is a metaheuristic
algorithm that employs different types of bees to amend their posi-
tions in escaping local optima and finding a global solution. Maleki
and Askarzadeh [71] implemented ABSO to find the optimal mix of
HES components in terms of the minimum TAC. In this study, LPSP
is used to assess the reliability of the system. The optimization
results proved that PV-WT-FC is the most cost-effective system
with 0% LPSPmax.

Singh et al. [17] used artificial bee colony (ABC) to determine
the optimal combination of a PV-WT-BM-BS HES in order to
achieve a cost-effective and reliable HES for an isolated small vil-
lage in Patiala in Punjab, India. The economic objective function
of the optimization is to minimize the ASC of the system. The reli-
ability of the system is assessed by finding the effect of failure of
any generation unit of the system. The authors implemented ABC
and compared its performance with HOMER and PSO. The optimal
combination is achieved with an annual system cost of $ 63,006.

Imperial competitive algorithm (ICA) is an evolutionary algo-
rithm that can solve non-linear and multi-objective problems.
Gharavi et al. [52] implemented ICA to optimally design a stan-
dalone and grid-connected HES that includes PV-WT-FC and elec-
trolyzer (EL) while considering reliability (LOEE, LPSP and ELF),
economic (NPC), and environmental (E) assessment parameters.
The optimization method is implemented by first solving the
multi-objective function using fuzzy logic and then employing
ICA for optimization purposes. The study found that the grid-
connected system is more cost-effective, but it has high CO2 emis-
sion levels compared with standalone mode.

Cuckoo search (CS) is a metaheuristic algorithm that can
address complex and multi-objective optimization problems.
Sanajaoba and Fernandez [49] applied CS for optimal sizing relative
to the TC of three different combinations for a remote area in India.
The reliability is assessed by quantifying LOLE. The study found
that the standalone PV-WT-BS HES provided the most cost-
effective and reliable system than other HES combinations. Addi-
tionally, the study revealed that CS provides better-quality solu-
tions compared with other evolutionary algorithms in HES sizing.

Maleki and Askarzadeh [138] used discrete harmony search
(DHS) to find the optimal size combination system among PV,
WT, BS, and DG in terms of minimizing TAC and total emissions.
The total emission parameter consist of the total emissions of
CO2, SO2 and NO2 .The system components are modeled based on
the measured solar irradiation and wind speed data for Rafsanjan,
Iran. The authors found that the optimal combination is WT-DG-BS
which is followed by the PV-WT-DG-BS system.

Stochastic trust-region response-surface (STRONG) method is a
meta-model algorithm based on response surface methodology
(RSM) and the classic trust-region method. Chang and Lin [139]
implemented A-STRONG method, which modified the STRONG
method coupled with MCS to find the minimum TC for a stan-
dalone PV-WT-BS-DG HES. The balance between power generation
and demand is used to assess the system reliability. The optimal
combination is achieved by considering power generation alloca-
tion and transmission.
4.2. Hybrid algorithm

Artificial single-optimization algorithms provide an efficient
and accurate set of optimal solutions with relatively less conver-
gence and fast computational time. However, as PV-WT HES is
rapidly growing especially for islands and remote areas, there is
a need for even more accurate and highly advanced optimization
approaches. Therefore, hybrid algorithms have recently been
extensively applied for the sizing optimization of standalone PV-
WT HES. Hybrid algorithm is a combination of two or more single
algorithms (modern and/or classical); this combination assumes
the advantage of the complementary characteristics between the
algorithms to solve complex optimization problems with different
linear and non-linear constraints.

Ahmadi et al. [54] implemented the hybrid big bang–big crunch
(HBB-BC) algorithm to optimize the size of a standalone hybrid PV-
WT-BS system in terms of minimizing the TPC of the system. ENS is
used as the reliability assessment parameter in the optimization
problem. The proposed HBB–BC method used PSO and mutation
operator in order to prevent the trap into the local optimum value.
The proposed algorithm has successfully found the optimal combi-
nation that can fully satisfy the load demand for different ENS
values.

Hybrid teaching-learning-based optimization algorithm (TLBO)
is a new heuristic population-based optimization with population
size and number of iteration parameters. Cho et al. [38] used
improved TLBO by utilizing a clonal selection optimization to find
the optimal combinations for the standalone PV, WT, DG and BS
system in Jeju island in South Korea with economical and reliabil-
ity aspects. The economical assessment parameters used in this
optimization are TAC and fuel cost while the reliability assessment
parameter is LPSP. In this study, the authors used TLBO to search
for the global optimal solution, and then the optimal solution is
selected through the clonal selection method. Optimal sizing is
achieved with a 0% LPSP and an $ 89,400 TAC.

Tito et al. [36] applied a hybrid GA and an exhaustive-search
technique optimization method to size a standalone hybrid PV,
WT, and battery system considering socio-demographic factors in
terms of minimizing TC and ensuring system reliability to satisfy
load demand. The reliability parameter used in the optimization
problem is LPSP. Socio-demographic factor is used in this optimiza-
tion as a social assessment parameter. The study investigated the
effect of socio-demographic factors in sizing HES using the exam-
ined energy usage patterns of six different electrical users and their
influence on the size of HES. The six user patterns are constructed
based on 239 load profiles using Kohonen probabilistic neutral net-
work. The authors found that the optimal size of one user at 0%
LPSP cannot be exactly similar to that of other users. In this case,
the generation and storage capacity should be increased to ensure
that the system can meet all the load requirements of users,
thereby increasing system costs.

Iterative-Pareto-Fuzzy (IPF) technique is an evolutionary algo-
rithm that integrates the iterative, Pareto and fuzzy technologies
to solve single and multi-objective optimization problems.
Mukhtaruddin et al. [140] used IPF to find the optimal-mix combi-
nation of a standalone PV-WT-BS HES for Kuala Terengganu,
Malaysia. EENS, D and EIR parameters are used to assess the relia-
bility of the system while TC is used to assess the economics of the
system. The optimization results provided the optimal compro-
mised solution in minimizing TC and D while maximizing system
reliability. Additionally, minimizing the unutilized excess power
generated from RES yields is found to reduce TC. Abdelhak et al.
[141] proposed the determination of the optimum size of hybrid
PV-WT-BS system using long-term wind speed data and estimated
solar irradiation. The optimum size is achieved based on the objec-
tive function of minimizing the total cost of the system.
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Zahboune et al. [35] proposed the modified electric system cas-
cade analysis (MESCA) optimization method, which combines elec-
tric system cascade analysis (ESCA) and power pinch analyses
(PoPA) to derive the optimal combination of a standalone PV,
WT, and BS HES in Oujda, Morocco. The main objective function
of the optimization is minimizing TAC of the system. LPSP and
FEE are used in the optimization to assess the reliability of the sys-
tem. The optimization process is implemented in two parts by cal-
culating the number of PVPs, WTs, and battery units based on the
hybrid cascaded table (HCT) and the allowable loss of power sup-
ply (LPSP), which checks the results of the first part by computing
the obtained value of LPSP with analysis time and the difference
between the desired LPSP and obtained values. The optimal design
is achieved with 8 WTs, 26 PVPs, and 8 battery banks with TAC of €
2391.

Dufo-Lopez et al. [21] proposed a hybrid method by combining
MOEA and GA. The authors applied this hybrid method to optimize
the size of a standalone hybrid PV, WT, DG, and BS system. In this
study, the social parameters HDI and JC are considered for the first
time in the size optimization of HES. HDI depends on the annual
electrical consumption per capita, whereas JC is related to direct
and indirect jobs in manufacturing, installation, and operation
and maintenance of HES. The optimization process is conducted
in two parts: The first part implements MOEA for component sizing
in terms of minimizing NPC and maximizing HDI and JC, and the
second part applies GA to optimize the control strategy in terms
of NPC. The authors found that HDI can be maximized by increas-
ing the utilization of excess energy from renewable sources to
serve loads rather than dump load, hence minimizing NPC. Addi-
tionally, JC can be increased when the number of components
increased in the hybrid system.

Lujano-Rojas et al. [142] proposed a hybrid MCS- and ANN-
based GA optimization algorithm to find the optimal sizing for a
hybrid PV-WT-DG-BS system in terms of cost and reliability for
the Zaragoza area in Spain. NPC is used to assess the system eco-
nomically and ENS is used to assess the system’s reliability. The
authors used a probabilistic method MCS to solar radiation and
wind speed time series and then used generated data to train
ANN-based GA. The proposed method was able to find the optimal
combination of HES in a reasonable manner under conditions of
uncertainty.

Katsigiannis et al. [87] proposed a hybrid simulated annealing
(SA)-tabu search (TA) algorithm to optimize the size of a hybrid
system for the Chania region in Greece. As SA has rapid conver-
gence time in the neighborhood of optimal solutions and TS has
high efficiency in finding the best solutions in a given neighbor-
hood, the hybrid combination of the advantages of both algorithms
yields enhanced results in dealing with the problems of having
large number of diesel generator options and uncertainty in the
values of many imported input parameters. The optimization
objective function is to minimize the COE generated. The results
showed that the proposed algorithm improved the solution quality
without increasing the number of required simulations.

Markov-based GA is presented by [143] to determine the opti-
mal size of hybrid PV-WT-DG units in terms of minimizing the
TC. The environmental parameter considered in the optimization
is E while the reliability parameter is LOLP. The authors used
fuzzy-c-means (FCM) to cluster the operation states for PV, WT,
and load and the Markov model to model the PV, WT, and load.
Based on the models established by the Markov model, GA is then
employed to find the optimal sizing for the system components.
The authors concluded that the investment costs increase and fuel
costs decrease with low CO2 emissions and low LOLP values.

Askarzadeh [144] proposed a discrete chaotic harmony search-
based simulated annealing algorithm (DCHSSA) as a discrete meta-
heuristic optimization technique that combines chaotic search
(CS), harmony search (HS), and simulated annealing (SA). The
author used the proposed optimization method to find the optimal
size combination for a standalone PV, WT, and BS system in terms
of minimizing TAC. The reliability of the system is assessed by
ensuring the energy balance between the generation and load.
The proposed method has successfully found the optimal size of
HES which comprised of 2 PVPs, 2 WTs, and 58 batteries.

Maleki et al. [145] proposed harmony search-based chaotic
search (HSBCS) to optimize the size of a hybrid PV-WT-BS system
with reverse osmosis (RO) for a remote area in Iran. The authors
used ANN for the solar and wind forecasting and HSBCS for the
optimal sizing of the system components. The objective function
of the optimization is minimizing LCC of the system. The reliability
parameter used in this optimization is LPSP. Three hybrid combi-
nations are examined, and it was found that PV-BS with RO pro-
vides the lowest LCC at $ 6120 followed by the PV-WT-BS system
with RO at $ 6550 LCC.

Khatib et al. [146] implemented an optimization methodology
using the iterative method and GA to optimize the size of a stan-
dalone PV, WT, and BS system for Kuala Terengganu in Malaysia
in terms of LPP and TC. In this study, the authors used iterative
algorithm to generate a set of possible configurations of HES com-
ponents, and GA to then determine the optimal configuration
among the set of configurations obtained from iterative algo-
rithm. In addition, the authors investigated the optimal tilt angle
of the PV array and optimized the size of the HES inverter using
iterative method. Size optimization is accomplished at different
LPP values based on available daily wind speed and solar
radiation.

Zhou and Sun [73] proposed an improved simulated annealing
particle swarm optimization (SAPSO) algorithm to optimize the
size of PV, WT, BS, and super-capacitor (SC) by minimizing the sys-
tem LCC. The power balance between generation and load is used
to assess the reliability of the system. The authors combined the
improved SA with improved PSO to enhance the search ability
and accuracy of the size optimization solutions. The proposed algo-
rithm can find the optimal cost of the system with a total cost of $
5839.72.

Ma et al. [42] adopted natural selection particle swarm opti-
mization (NSPSO) by combining PSO with the selection strategy
of GA to improve the precision of the optimal results. LCC param-
eter is used to assess the economics of the system while LPSP, Kl

and LEP parameters are used to assess the system’s reliability. A
single-objective optimization is initially performed to optimize
LCC and then a multi-objective optimization to optimize the full
life cycle, LPSP, LEP, and Kl of PV-WT-BS HES. The authors intro-
duced a penalty function to realize the constants of LPSP and a
weight coefficient transformation method to embody the weight-
ing factors of LCC, LEP, and Kl.

Maleki et al. [43] used particle swarm optimization-based
Monte Carlo simulation (PSOMCS) to optimize the size of a PV-
WT-BS HES while considering the solar and wind uncertainty cal-
culation for all possibilities. TAC parameter is used to assess the
economics of the system while power balance between generation
and demand is used to assess the system’s reliability. The authors
implemented the optimization for three different hybrid combina-
tions using measured solar irradiation and wind speed data. It was
found that the hybrid WT-BS has the lowest TAC at $ 17,9472.67
followed by the hybrid PV-WT-BS system with a TC of $
18,132.69. However, the authors concluded that the hybrid PV-
WT-BS system is more reliable than the WT-BS system as it
reduces the probability of having no wind generation.

Tahani et al. [147] developed hybrid flower pollination algo-
rithm (FPA) and SA algorithm to find the optimal renewable mix
with increased reliability and maximum cumulative savings.
Cumulative savings is used to assess the economics of the system
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while LPSP is used to assess the system’s reliability. The authors
studied the optimal hybrid PV, WT, and BS system to supply elec-
tricity for a building in Tehran, Iran. In addition, the authors exam-
ined the influence of the PV panel’s tilt angle on size optimization.
The optimal size combination is achieved with 0% LPSP and 3.28%
payback time. The summary of hybrid techniques is presented in
Table 3.

4.3. Optimization computer software tools

Many software tools have been used in optimization of renew-
able energy systems [148]. Recently, two software tools, namely,
HOMER and iHOGA, have been mostly used for sizing a standalone
PV-WT HES.

HOMER can optimize and simulate energy systems including
renewable and conventional sources, as well as an energy storage
system in standalone and grid-connected modes. Optimization
can be conducted using previous meteorological data according
to monthly averaged or hourly data based on the site location.
HOMER Pro is the improved version of HOMER with some added
features such as optimizer, multi-year module, advanced battery,
load profile options, monthly demand limits, and ability to link
with the Matlab software [149–151]. HOMER software is widely
used for sizing a standalone hybrid PV and WT energy system
and other energy sources and storage systems integrated with it
[19,58,60,94,152]. The software is limited as it performs only a
single-objective optimization by minimizing NPC and the input
variables should be inserted by the user [35].

These software tools are used to find the optimal design of HES
for different locations worldwide by considering the main objec-
tive function of minimizing NPC and subjecting it to numerous
environmental, reliability, and social constraints. Table 4 provides
the selected most recent studies from different locations
worldwide.

Most studies found that PV-WT-BS energy resources is more
feasible as it provide the lowest NPC and COE with low or zero
CO2 emissions when used in HRES [40,57]. Das et al. [61] per-
formed a feasibility study to find the optimal size combination of
HES for Kuakata, Bangladesh. The optimal size is achieved with a
TNPC of $ 224,345 and zero emissions. A similar study by [40]
found the optimal size of HES for a telecom load in Chennai, India.
Seven combinations are examined to derive the most cost-
effective, reliable, and less emission combination. The authors
found that the PV-WT-BS system is the second most cost-
effective system with zero emission. Fazelpour et al. [84] reported
that PV-WT-BS system is the third most economical option in
terms of minimum NPC with zero emission for a building in Teh-
ran, Iran. A techno-economic study accomplished by [69] indicated
that PV-WT-BS system can completely replace diesel generator and
provide an economical and reliable energy system for a remote
island in Hong Kong. Zahboune et al. [35] used HOMER Pro to
determine the optimal size of a PV-WT-BS system for Oujda, Mor-
occo and compared its results with the proposed MESCA method.
The optimal combination by HOMER Pro has a TNPC of € 27,878.

The hybrid combination of a PV-WT-DG-BS system is widely
considered for various locations. Mamaghani et al. [62] studied
the optimal combinations for three different villages in Colombia.
The authors found that the PV-WT-DG-BS system can provide an
optimal cost-effective and reliable system with limited emissions
for the Puerto Estrella village. Another study by [56] found the
optimal mix of HES in terms of minimizing NPC, COE, and CO2

emissions for the KLIA Sepang site in Malaysia. The authors com-
pared the optimal HES with conventional plant and reported that
the hybrid PV-WT-DG-BS system reduces NPC and GHG emissions
compared with conventional plant. Baneshi and Hadianfard [78]
carried out a techno-economic and environmental study for the
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same combination in Shiraz, Iran, wherein authors considered NPV,
COE, RF, internal rate of return (IRR), and CO2 emissions in their
feasibility study. The PV-WT-DG-BS system is found to be optimal
in terms of the optimal COE and RF with maximum reduction of
CO2 compared with other off-grid combination. Baghdadi et al.
[153] conducted a techno-economic feasibility study for a PV-
WT-DG-BS system for Adrar, Algeria. The authors used HOMER to
find the optimal combination and then conducted a power man-
agement of the system by Matlab software. The optimal combina-
tion was able to provide high RF and 70% reduction in fossil fuel
consumption. Another techno-economic study by [154] considered
NPC, LCOE, and RF to determine the optimal renewable mix for six
zones in Nigeria. The authors considered the tilt angle of PVP in
their study to enhance PVP performance. A techno-economic, envi-
ronmental study by [155] on HES for Bizerte, Tunisia reported that
the PV-WT-DG-BS system is the most reliable with limited emis-
sions, whereas theWT-DG system is the most cost-effective. A sim-
ilar study by [156] found that the PV-WT-DG-BS system ensures a
significant reduction in GHG and is cost-effective for a large resort
in South China Sea in Malaysia. Bentouba and Bourouis [157] con-
sidered DG as a back-up source to PV and WT. The optimization
results showed that PV-WT-DG HES can satisfy 100% of the load
demand with a 96% reduction in carbon emissions.

A techno-economic study by [57] indicated that the PV-WT-FC-
BS-HT system is the most cost-effective and reliable combination
for the Bozcaada island in Turkey. Moreover, the authors concluded
that the increase in annual average of solar radiation and wind
speed decreases both NPC and COE. Another techno-economic
study is conducted by [74] to investigate the best of nine different
HRES combinations. The study showed that the hybrid MHP-BG-
BM-WT-PV-BS system provides minimum NPC and maximum JC.
A study by [85] found that HES with HG can be cost-effective
and reliable with limited emissions for the Tioman Island in Malay-
sia.iHOGA is another software tool used in the size optimization of
standalone PV-WT HES. iHOGA is a hybrid energy system opti-
mization software developed by the electric engineering depart-
ment of the University of Zaragoza [158]. The optimization can
be conducted by using input data of component, economic, and
constraints resources. The simulation is carried out for 1-h interval
in which all system variables remain unchanged throughout the
simulation. This software utilizes GA to perform the size optimiza-
tion of single- or multi-objective optimization and optimal control
strategies with less computational time compared to the use of GA
alone. In addition, it utilizes Monte Carlo Simulation to perform
probabilistic analysis [12,142]. It also can perform analysis for
buy and sell for electric energy when the hybrid system is con-
nected to the utility grid with different cases of net metering
[25,159] and allows for selling the surplus hydrogen produced by
the electrolyzer [158]. It allows to include the MPPT function in
the PV charge regulator and estimate the lifetime of the lead-acid
batteries [160] based on model predication of lead-acid batteries
developed by [161]. In addition, it consider the efficiency of the
inverter as a function of the power output. Moreover, it considers
the height of the wind turbine, and atmospheric pressure and air
density in the optimization problem [158]. In version 2.0 PRO plus,
the social criteria that effects the optimization of HES such as HDI
and JC can be included in the optimization problem. The optimiza-
tion is achieved by minimizing NPC and additional variables can be
minimized such as lifecycle emissions and unmet load. Fadaeene-
jad et al. [68] used the iHOGA software to examine the optimal size
combination for a village in Malaysia in terms of minimizing the
amount of CO2 emission, NPC, and COE. The study showed that
the hybrid PV-WT-BS energy system is a cost-effective and reliable
option for villages in Malaysia. Dufo-Lopez et al. [162] used HOGA
by utilizing two algorithms namely MOEA based on strength par-
eto evolutionary algorithm (SPEA) and SPEA2, and GA. MOEA
algorithm is utilized to search for the optimal combinations of
components in terms of minimizing costs and emissions while
GA algorithm is used to find the optimal control strategy in terms
with lowest cost. The authors performed four optimization cases
for two locations in Spain namely Zaragoza and Jaca. The study
found that the PV-WT-DG-BS system and PV-DG-BS system are
the most economical and eco-friendly combination for Zaragoza
and Jaca respectively.

4.4. Comparison between algorithms

The review demonstrates that many algorithms are applied for
sizing the standalone hybrid PV-WT system coupled with different
energy sources and storage systems. Table 5 summarizes the stud-
ies conducted in comparing the algorithms used in the size opti-
mization of HES.

PSO is considered as one of the most used algorithm in HES size
optimization due to its good performance, flexibility, and simplic-
ity. However, PSO has a low performance in solving non-coordinate
system as it defines the particle basis (RES components) based on
three-dimensional coordinates (x, y, z) only. This limitation makes
the optimization results insufficient when the system consists of
more than three components. Moreover, in some cases, PSO tends
to converge to a local optimal solution [18]. To overcome these
drawbacks, Zhou and Sun [73] proposed SAPSO. The advantages
of SAPSO over conventional PSO include its ability to avoid the
trapping at local optimal values and improve the diversity of PSO
to solve the non-coordinate system and improve the global search-
ing by reducing computational time. MBA is used to optimize the
size of HES and is compared with PSO, CS, and ABC. This study
again proved that PSO cannot provide the most optimal solution
due to its low performance in non-coordinate problems. Moreover,
ABC is compared to PSO and HOMER, which showed that ABC has
better computational time, and better results compared with that
of PSO [17]. Additionally, the study found that CS has better quality
results followed by ABC. In the other hand, MBA can achieve the
best optimal result compared to PSO, CS, and ABC with less compu-
tational time, as well as the lowest mean and standard deviation
[53]. PSO can be improved in terms of computational time and con-
vergence of results. A study by [51] proposed MPSO to find the
optimal renewable mix with minimum investment cost. MPSO
provided faster convergence and shorter computational time than
conventional PSO.

SA is a generic probabilistic algorithm and is a good option for
the global optimization problem. However, this method is not
widely used in standalone HES size optimization because of the
low precision of its solutions compared to other algorithms such
as PSO, GA and FPA [18,41,147]. A discrete version of SA (DSA) is
compared with DHS to evaluate its performance in sizing HES.
Unlike DHS, DSA failed to determine the optimal solutions [138].
By taking the advantage of SA in avoiding trapping at the local min-
ima, SA can be successfully used in HES size optimization by com-
bining it with search algorithm. DCHSSA is a combination of SA and
two search algorithms, namely, CS and HS. DCHSSA provided more
precise results and is the best optimal combination of HES com-
pared with DSA and DHSSA [144]. Another study [147] combined
SA with FPA to form a hybrid FPA-SA algorithm and compared it
with PSO and GA. FPA-SA is found to have better-quality results
with less computational time compared to GA and precise optimal
values compared to PSO.

Compared to other iterative procedures, TS is an iterative opti-
mization method that can avoid trapping in the local solutions.
However, TS needs to start from the feasible solution and requires
a large number of performed simulations. In [87], the authors
found that combining TS with SA overcomes this drawback. The
initial feasible solution can be obtained by SA and fed to TS. There-



Table 5
Comparison of size optimization methods.

Proposed method Compared methods System
components

Objective function The performance of proposed method compared with other methods Ref.

Mine blast algorithms (MBA) PSO, cuckoo search (CS) and
artificial bee colony (ABC)

PV-WT-FC Minimize ATC � MBA provides the minimal annual cost compared to the other algorithms
� Less computational time

[53]

Hybrid big bang–big crunch (HBB-BC) PSO and discrete harmony
search (DHS)

PV-WT-BS Minimize TPC � Higher optimal solutions accuracy
� Smaller standard deviation (Std.) compared to other algorithms

[54]

Hybrid GA and exhaustive search technique GA PV-WT-BS Minimize total cost � Provides same optimal solution but with smaller number of iterations than GA [36]
Ant colony optimization (ACO) GA and ABC PV-WT-BS Minimize total cost � ACO, GA and ABC provided same optimal costs

� ACO is faster by providing lower optimal convergence iterations and optimal
convergence time

[135]

Hybrid SA-Tabu search SA and TA PV-WT-BS -
DG-FC

Minimize COE � Higher quality of solutions
� Faster convergence

[87]

PSO, TS and SA Improved PSO(IPSO), improved
harmony search (HIS), improved
harmony search-based
simulated annealing (IHSBSA)
and artificial bee swarm
optimization (ABSO)

PV-WT-BS Minimize total annual cost
(TAC)

� At LPSPmax = 2%, the algorithms ranked based on mean, standard deviation,
worst and best indexes. The indexes have been reported over 50 runs

� ABSO ranked as 1 as it yields better results than the other algorithms
� IHSBSA, HIS, IPSO, PSO, TS and SA ranked as 2,3,4,5,6 and 7 respectively

[67]

Artificial bee colony (ABC) PSO and HOMER PV-WT-BM-
BS

Minimize TC � ABC provided slightly better convergence rate compared to PSO by converging in
almost 10th iteration

� ABC provided faster computational time with better quality results in terms of
minimizing LCOE

[17]

Cuckoo search (CS) PSO and GA PV-WT-BS Minimize total cost � CS faster in optimization as it reduces the computation burden
� CS sample the search space more efficiently and generated new solutions which
provided better solutions quality compared to GA and PSO

[49]

Natural selection particle swarm
optimization (NSPSO)

GA PV-WT-BS LPSP, LCC, LEP and Kl � NSPSO avoids a premature convergence effectively
� It provides precise results with lower fitness function value

[42]

Enumeration-based iterative HOMER PV-WT-DG-
BS

Minimize LCC � The proposed algorithm provided lower LCC [47]

Markov based GA Chronology-based GA PV-WT-DG Minimize total cost � Markov based GA has much smaller CPU time
� Markov based GA provided better cost

[143]

Discrete harmony search (DHS) Discrete simulated annealing
(DSA)

PV-WT-DG-
BS

Minimize TAC � DHS provided better results with less run time than DSA [138]

Discrete chaotic harmony search-based
simulated annealing algorithm (DCHSSA)

Discrete simulated annealing
(DSA) and Discrete harmony
search-based simulated
annealing (DHSSA)

PV-WT-BS Minimize TAC � DCHSSA yields better results in terms of mean and worst values than other
algorithms

� DCHSSA provided same ATC results as DHSSA

[144]

Harmony search-based chaotic search
(HSBCS)

Harmony search (HS) PV-WT-BS-
RO

Minimize LCC � It provides better average index than HS
� It provides better standard deviation and mean simulation time than HS

[145]

Simulated annealing particle swarm
optimization (SAPSO)

PSO PV-WT-BS-
SC

Minimize total cost � SAPSO yields better cost results in less computation time [73]

Modified particle awarm optimization
(MPSO)

PSO PV-WT-BS Minimize TIC � MPSO gives fast result convergence and shorter computational time [51]

Hybrid flower pollination algorithm
simulated annealing (FPA/SA)

GA and PSO PV-WT-BS Minimize LPSP and
maximize cumulative
savings

� FPA/SA provided better results quality than GA
� FPA/SA had a precise optimum values than PSO
� FPA/SA has better performance as it has less convergence time

[147]

PSO Differential evolution (DE) PV-WT-FC-
HT

Minimize TC � PSO has lower number of epoch
� PSO converging faster than DE

[75]

Modified electric system cascade analysis
(MESCA)

HOMER pro PV-WT-BS Minimize TAC � MESCA less iterations with slightly less computational time than HOMER pro
� MESCA provides more flexibility in selection of sources of energy types

[35]

Hybrid teaching-learning-based optimization
algorithm (TLBO)

GA and PSO PV-WT-BS-
DG

Minimize TAC, LPSP, and
fuel cost

� Hybrid TLBO provided better quality results (better total cost) [38]
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fore, the use of such hybrid algorithm provides better-quality HES
optimal size results compared to the use of TS or SA alone. In [67],
the authors examined the performance of seven heuristic algo-
rithms in terms of minimizing the TAC of different hybrid system
combinations. The algorithms are ranked based on mean, standard
deviation, and worst and best indexes of over 50 runs, and ABSO
was found to provide better results than IHSBSA, IHS, IPSO, PSO,
TS, and SA in terms of minimizing the TAC.

GA can provide good convergence by avoiding trapping in local
optimal solutions; however, it requires a large number of itera-
tions, which increase response time [18]. To overcome this draw-
back, GA can be combined with an exhaustive-search method to
take the advantage of GA as it can converge to a much wider search
space and avoid trapping in local solution and the advantage of
exhaustive-search technique to rapidly and effectively find the
optimal solution within the search space [36]. Additionally, GA
required long computational time as each iteration includes a set
of numerous solutions. To overcome this, a stochastic model such
as Markov or chronology can be used to predict the future state
based on its current state only to reduce computational time and
provide better results. In [143], a comparison between the
Markov- and chronology-based GA in optimizing HES indicated
that the former can reduce the CPU time more than the latter
and provide the most feasible solution. GA has high performance
in the search process, which can be combined with PSO to deal
with defects of both PSO and GA by improving the precision of
the results and the global optimization ability [42].

CS-based optimization methodology is efficient in finding the
optimal solutions for complex problems compared to PSO and GA
as it has faster computational time. Additionally, CS-based opti-
mization methodology provides better quality results as it samples
the search space more efficiently and, therefore, can be utilized to
solve complex HES sizing problem and provide efficient optimal
solutions [49]. ACO was compared with GA and ABC to minimize
the total cost of a hybrid PV-wind battery system. The optimal cost
results from all algorithms are the same. However, ACO provided
the optimal solutions with less convergence iterations and faster
convergence time [135].

DHS and PSO can avoid trapping at the local optimum value and
continue the search for global values. However, in very complex
systems, they perform with relatively high computation time and
low convergence. In this context, HBB-BC can avoid trapping at
local optimum values, same as DHS and PSO, and can provide faster
convergence with less computational time [54].

The initial population input data of the optimization algorithms
are unbounded and diverged due to random nature of renewable
sources (solar radiation, wind speed, and etc.). Hence, the opti-
mization results may be far from the minimum global solutions.
In [75], the authors examined the difference between PSO and
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Fig. 4. PV-WT HES combinations for standalone application since 2012–2016.
DE algorithms in the HES size optimization. PSO provided better
solutions in terms of convergence to global best values and conver-
gence speed when compared to DE. When random initial condi-
tions are chosen for PSO and DE algorithms, DE failed to provide
global convergence as initial conditions are far away from the min-
imum global solution, whereas PSO yielded the optimal solutions
close to minimum global solutions. Therefore, the use of PSO for
HES size optimization when unbounded random initial conditions
are applied is highly recommended, whereas DE can better per-
form when initial conditions are bounded to values near the global
best value [163] and can be used along with other algorithms to
compensate its population diversity decay in order to avoid sub-
optimal trap.

Hybrid TLBO is the combination of a search algorithm TLBO and
a selection algorithm clonal selection algorithm. Hybrid TLBO uses
a fewer number of parameters compared to GA and PSO but with
better performance. This algorithm can provide a better-quality
set of optimal solutions but might take longer computational time.
However, hybrid TLBO can be considered as a good choice for HES
size optimization as it has superior performance in dealing with
the fluctuation of solar irradiation and wind speed data [38].

MESCA can provide almost a similar quality of optimization
results compared to HOMER with less computational time as it
performs the optimization with less iterations. Therefore, MESCA
is recommended for HES optimization in complex sites [35].
HOMER software takes longer time to simulate HES and obtains
the results compared to other artificial algorithms such as ABC
and PSO [17]. In another study [47], authors proposed
enumeration-based iterative algorithm and compared it with
HOMER to evaluate its performance in sizing HES. The study found
that HOMER provided a high value of renewable energy penetra-
tion because it does not dump the excess energy generated from
RES. Therefore, the proposed iterative method can yield better
optimal results in terms of minimizing LCC.

5. Critical findings and discussions

d The implementation of HRESs provides a cost-effective and reli-
able option, given the fuel supply shortage and high cost asso-
ciated with grid extension for islands and remote rural areas.
The selection of RESs for a specific location is based on site spec-
ifications. This review shows that the most preferable hybrid
energy system for islands and remote areas is the PV-WT-DG-
BS system as it provides reliability and ensures continuity of
power supply, followed by PV-WT-BS as it is the most eco-
friendly combination with zero emissions as shown in Fig. 4.
Economic

Economic and 
reliablity

Economic and 
environmental

Economic, 
reilablity and 

environmental

Economic, 
reliablity and 

social

Fig. 5. Assessment parameters used for standalone PV-WT HES since 2012.



0
2
4
6
8

10
12
14
16
18
20

2012 2013 2014 2015 2016

N
um

be
r o

f p
ub

lis
he

d 
ar

�c
le

s

Years
SA HA Total

Fig. 6. Use of single and hybrid algorithms for sizing of standalone PV-WT HES from
2012 to 2016.

M.D.A. Al-falahi et al. / Energy Conversion and Management 143 (2017) 252–274 271
d As most standalone hybrid energy systems are used for remote
and rural areas, in many cases, the load profile data are unavail-
able. Moreover, the accuracy of load profile immensely influ-
ences the size optimization results. Therefore, more research
is required in the field of load profile estimation and forecasting
to establish and construct more accurate predictions for the
load profile. The new technique should not only focus on the
variables of technical and climate specifications in forecasting
process but also include social factors.

d The peaks of solar irradiation and wind speed influence the size
optimization solutions. Therefore, usage of hourly annual solar
and wind data rather than daily or monthly data is recom-
mended as hourly data contain the troughs and peaks of solar
irradiation and wind speed.

d Based on the reviewed studies, the manufacturing costs of
hybrid system components are the main reason of the high ini-
tial costs of HES, which require a significant reduction to lessen
initial system cost. This reduction will decrease payback time
and increase return in investment which will eventually
increase social acceptance and human development index.

d As shown in Fig. 5, few studies have considered social assess-
ments such as human development, job creation, and social
acceptance in optimization problems. These social factors are
usually affected by the total cost and energy savings of HES,
which influence HES sizing optimization. Therefore, considering
these factors in size optimization problems is recommended.

d PV, wind, and battery system have high potential in off-grid
application, thus, improvements in the life cycle of batteries
and the efficiency of power converters can increase the use of
this combination due to its zero-emission advantage.

d Considering the tilt angle of the PV array as a constraint in the
size optimization problem is important as it affects the accuracy
of the optimal results.

d The height of WT and its swept area are found be having a sig-
nificant effect on the optimization results. In this context, these
constraints in the optimization problem should be considered.

d From the review, it is found that most researchers look into the
cost and then the reliability objective in optimization as shown
in Fig. 5. Less researchers considered the environmental objec-
tive function. Cost and reliability are the criteria given the most
concern in the hybrid system. However, environmental objec-
tive especially when the hybrid system contains conventional
energy source should be given increased attention.

d As can be noticed from this review, the use of classical size opti-
mization methods recently declined, and a growing trend is
observed toward the use of modern size optimization methods
as they provide a set of optimal results that allow decision-
makers to select the best suitable combination of HES. There-
fore, the use of modern methods in HES is recommended as
they can provide promising and realistic optimal sizes.
d Owing to the stochastic nature and the capability of artificial
algorithms in solving multi-objective, non-linear, and complex
optimization problems, these methods have attracted much
attention as the usage of artificial methods in HES size opti-
mization drew more attention than the classical methods.

d SA algorithm is not widely used in HES size optimization. How-
ever, SA can escape from trapping at local solutions. Therefore,
SA is best used when it is combined with other evolutionary
algorithms and/or search algorithms to improve the accuracy
of its optimal solutions and enhance the global search.

d PSO has been widely used in sizing HES. However, conventional
PSO suffers from premature convergence. Therefore, in current
studies, the use of conventional PSO alone in size optimization
of HES started to decline. As a result, the use of PSO variant
and improved versions of PSO is currently utilized by many
studies as these improved versions provide better results com-
pared to conventional PSO.

d As the hybrid energy system optimization considered a complex
problem, many objective functions and constraints should be
considered to improve quality results. Numerous studies cur-
rently use triple-objective optimization problems as these pro-
vide more realistic solutions and, hence, more accurate optimal
results.

d The most common optimization method implemented for
triple-objective problems is NSGA-II. NSGA-II and its variant
(such as controlled elitist genetic algorithm) provided good per-
formance in solving triple-objective optimization problem.
Additionally, PICEA demonstrated good performance in solving
multi-objective functions. Therefore, the use of this algorithm in
HES size optimization problem is recommended.

d Single algorithms using artificial methods provide good perfor-
mance in solving size optimization problem of HES, whereas
hybrid algorithms perform better with more promising results.
In this context, the use of hybrid algorithms recently exten-
sively increased in size optimization for standalone PV-WT
HES as shown in Fig. 6.

d As can be seen from this review, newly developed hybrid algo-
rithms such as TLBO, FPA/SA, and NSPSO provide better-quality
results with less computational time compared with GA and
PSO.

6. Conclusion

This paper presents a comprehensive review and critical com-
parison of most recent size optimization methods of standalone
solar and wind based hybrid energy systems. The most popular
hybrid combination for islands and remote rural areas found to
be the solar, wind, diesel generator, and battery storage based
hybrid energy system as it provides more reliable and continuous
power supply. Finding the optimum size of each element is a key
factor to reduce the cost while maintaining the reliability and
social acceptance.

In order to solve a sizing optimization problem of a standalone
solar and wind hybrid energy system, various assessment parame-
ters such as economical, reliability, environmental and social
parameters are explained and summarized. The selection of some
of these parameters is essentially to obtain an optimal combination
for the standalone solar and wind system. Moreover, the metrolog-
ical data and load profile have an impact on the size optimization
problem. Based on the review, it is observed that the use of fore-
casted solar, wind, and load profile data in the optimization prob-
lem improve the size optimization results compared to the use of
historical data.

Most of the papers for sizing a standalone solar and wind hybrid
system are carried out based on single algorithms including classi-
cal and artificial methods. Artificial methods using single algo-
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rithms has the ability to search for local and global optima and pro-
vide a set of optimal results with less computational time. There-
fore, artificial methods have attracted much attention in sizing of
standalone solar and wind system than classical methods. How-
ever, as a standalone solar and wind systems are rapidly growing
especially for islands and remote areas, there is a need for even
much accurate and highly advanced optimization approaches.
Therefore, hybrid algorithms have recently been extensively
applied for the sizing optimization of standalone solar and wind
hybrid system. Moreover, software computer tools are also used
widely for sizing and designing of standalone solar and wind sys-
tem. However, using modern methods such as artificial algorithms
and hybrid algorithms provide more accurate optimization results
than software tools as they have the ability to solve multi-objective
optimization problems.
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